
Architectural Support for Handling Jitter
in Shared Memory Based Parallel Applications

Sandeep Chandran, Prathmesh Kallurkar, Parul Gupta, Senior Member, IEEE , and

Smruti R. Sarangi,Member, IEEE

Abstract—With an increasing number of cores per chip, it is becoming harder to guarantee optimal performance for parallel shared

memory applications due to interference caused by kernel threads, interrupts, bus contention, and temperature management schemes

(referred to as jitter). We demonstrate that the performance of parallel programs gets reduced (up to 35.22 percent) in large CMP

based systems. In this paper, we characterize the jitter for large multi-core processors, and evaluate the loss in performance. We

propose a novel jitter measurement unit that uses a distributed protocol to keep track of the number of wasted cycles. Subsequently,

we try to compensate for jitter by using DVFS across a region of timing critical instructions called a frame. Additionally, we propose an

OS cache that intelligently manages the OS cache lines to reduce memory interference. By performing detailed cycle accurate

simulations, we show that we are able to execute a suite of Splash2 and Parsec benchmarks with a deterministic timing overhead

limited to 2 percent for 14 out of 17 benchmarks with modest DVFS factors. We reduce the overall jitter by an average 13.5 percent for

Splash2 and 6.4 percent for Parsec. The area overhead of our scheme is limited to 1 percent.

Index Terms—CMP, hardware support for OS, DVFS, operating system jitter, HPC application

Ç

1 INTRODUCTION

THE number of cores per chip are doubling roughly every
two years as predicted by Moore’s law. Consequently,

traditional high performance computing (HPC) applications
are increasingly being ported to CMPs [1], [2]. As the num-
ber of cores on a CMP scales beyond 16 or 32, HPC applica-
tions will start becoming extremely sensitive to the length
of sequential portions and critical sections in the code. This
is a direct consequence of Amdahl’s law. Hence, it will
become necessary to properly tune the CMP systems (both
HW and SW) akin to HPC clusters such that optimal perfor-
mance can be guaranteed in the face of jitter inducing events
such as system calls, interrupts, kernel threads, system
events, daemons, and other processes. A small amount of
jitter in a critical section can elongate the critical path and
can lead to a disproportionate amount of slowdown.

Prior work has mostly focused on managing jitter for
large clusters [3], [4], [5], [6]. However, we could not find
any prior studies that studied the effect of jitter on CMP
based shared memory applications. In this paper, we study
the impact of jitter on a 16 core shared memory CMP using
POSIX thread(pthread) based benchmarks. We observed
slowdowns of up to 41 and 27 percent (see Fig. 10) in the
Splash and Parsec benchmark suites respectively.

Consequently, in this paper we exclusively focus on reduc-
ing jitter for general purpose non-real time HPC applications.

We shall focus on parallel real time applications with possi-
bly inviolable hard deadlines in the future. The main sour-
ces of jitter [3], [7] are OS induced jitter, multi-threading/
tasking, and cpu events. We further subdivide the OS jitter
into two types—active and passive. Timer interrupts
and I/O interrupts that are delivered by external agents
contribute to active OS jitter, whereas jitter caused by sys-
tem calls made by target applications contribute to passive
jitter. We demonstrate in Section 6.1.1 that passive synchro-
nization jitter caused by pthread based system calls to enter
and exit critical sections/barriers accounts for about 90 per-
cent of the total jitter in a properly tuned system (defined
in Section 5). However, pthread based synchronization calls
are integral to a shared memory based HPC system, and to
the best of our knowledge, prior work has not looked at it
in great detail. A properly tuned system adopts solutions
already devised by the HPC community to minimize jitter
such as real time kernels, threads with real time priority,
interrupt isolation, and curtailing all forms of extraneous
activity. For example, it is easy to minimize jitter due to
other processes by running a system in Linux single
user mode and setting thread priorities to real time. Like-
wise, cpu based power and thermal events such as
voltage frequency scaling can be switched off for the dura-
tion of execution of an HPC task, or we can use superior
cooling methods.

In this paper, we focus most of our effort in trying to
reduce the jitter due to pthread based synchronization calls.
We propose a novel piece of hardware called the jitter unit.
It runs a distributed protocol to estimate the number of
cycles/second lost due to OS jitter and a host of other events
including processor events, and timer interrupts. The jitter
unit consists of a set of intelligent counters to measure jitter
related events that take cues from special instructions
inserted into the standard POSIX thread library and the

� S. Chandran, P. Kallurkar, and S.R. Sarangi are with the Department of
Computer Science and Engineering, Indian Institute of Technology Delhi,
New Delhi 110016, India.

� P. Gupta is with IBM Research Labs, India.

Manuscript received 20 July 2012; revised 11 Mar. 2013; accepted 17
Apr. 2013; date of publication 23 Apr. 2013; date of current version 21
Mar. 2014.
Recommended for acceptance by K. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.127

1166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014

1045-9219� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



kernel. We envision this unit to be a non-intrusive monitor-
ing mechanism, which does not change or interfere with the
normal operation of the processor in any way.

We start out by dividing the total execution into discrete
quanta of dynamic instructions called frames. For regular
HPC applications, the entire program is a single frame.
However, for parallel real time applications such as soft-
ware radio [8], a frame can correspond to the code that pro-
cesses a single packet. For example, in the WiMax [9]
protocol, we need to process a given packet in less than
5 milliseconds. Thus, a frame in a WiMax application can be
defined to be 5 milliseconds long. We further divide a frame
into a set of subframes, where each subframe is n seconds
long. n is typically between 200 ms to 1 millisecond. In each
subframe, we estimate the amount of jitter by reading the
values saved in different jitter units, and add it to the accu-
mulated jitter within the current frame. We try to compen-
sate for this accumulated jitter over the next few subframes
by modulating their voltage and frequency.

We observe that using DVFS alone with inputs from the
jitter unit is not sufficient to curtail jitter. Hence, we propose
to supplement the scheme with a small OS cache. This is a
64 KB cache at the L2 level. It is meant to hold the cache
lines that belong to the operating system. Moreover, the OS
cache and the regular L2 cache can share cache lines
between them to reduce conflict and capacity misses. How-
ever, there are some subtle issues in the design of an OS
cache namely shared data (between user level processes
and the kernel), and cache coherence. We shall delve into
these issues in Section 4.2.

We present the background and related work in Section 2,
characterize synchronization jitter in Section 3, show the
implementation of the jitter unit in Section 4, present the
evaluation setup in Section 5, display the results in Section 6,
and finally conclude in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Definitions

Time sensitive task. A task (serial/parallel), which is being
monitored for jitter by our system.

Definition of jitter. Let us consider a sequence, S, of
dynamic instructions belonging to a time sensitive task. Let
it take time t to execute on an ideal machine, and time t0 on
a non-ideal machine. The jitter J is defined as t0 � t. An ideal
machine is defined as a system with zero interference from
any external source.

We note that S may contain interrupts to the kernel,
and may consist of disruptions introduced by multi-
threaded code. Our definition of jitter, which is similar
to that defined in [10], takes into account sources of
delay other than the OS.

2.2 Sources of Jitter

According to De et al. [3], [7] there are four main sources of
jitter in a computer system namely OS activity, multiple
threads (SMT interference), power/thermal management,
and the hypervisor. We do not consider hypervisors in
this work. A detailed description of the sources of
jitter can be found in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2013.127. We
shall provide a brief summary in this section.

Jitter can be primarily divided into two types—active and
passive. Active jitter is defined as jitter caused by external
events such as interrupts. Prior studies [3] have found the
timer interrupt to be the largest contributor of active jitter
(up to 85 percent). I/O and network activity have been
found to account for the rest. The reader should note that it
is not the case that timer interrupts take a long time to get
processed. The kernel opportunistically uses the timer inter-
rupts to schedule its own work.

Passive jitter is caused as a side effect of system calls. In
parallel benchmarks, synchronization calls (mutex lock,
unlock, etc.) often lead to system calls. The kernel uses these
opportunities to schedule its own work to run book keeping
tasks, daemons, or bottom-halves of device drivers. In our
studies we have found synchronization interrupts to be
more frequent than timer interrupts. Hence, most of the jit-
ter is accounted for by synchronization interrupts.

It is possible to reduce jitter by forcing the interrupts
to be handled on a fixed set of cores (cpu isolation) or
using proprietary real time operating systems. The for-
mer is a part of our baseline system, whereas, the latter
has prohibitive performance overheads. Jitter can also be
caused by multiple threads, and power/temperature
management events.

3 CHARACTERIZATION AND DETECTION OF

SYNCHRONIZATION JITTER

3.1 Basics of POSIX Threads

Fig. 1 shows the different types of synchronization opera-
tions in the POSIX threads (pthreads) library. Lock-Unlock
start and end a critical section using a memory address as
the lock address. Signal-Wait and Broadcast-Wait are two
paradigms in which one thread waits for another thread to
signal it to resume. The difference between signal and
broadcast is that signal is one-to-one communication, and
broadcast is one-to-many communication. The latest ver-
sion of the POSIX thread library has a barrier primitive.
Since it internally uses the broadcast mechanism, we omit it
for the sake of brevity. There are three more primitives for
thread creation and termination—create, exit, and join. In
the join operation, one thread waits for another thread to
finish. We define a set of events that are fired when we
enter a synchronization library call, and exit it. They are
shown in Table 1. Let us now look at typical communica-
tion scenarios for measuring signal-wait jitter. Other cases
can be handled similarly.

3.2 Scenarios for Signal-Wait Synchronization

3.2.1 Case 1

In Fig. 2, we look at a typical scenario for a signal-wait
communication pattern. First, a thread on core 1 issues a
wait_entry (w_e) call. We envision a dedicated piece of
hardware called the jitter unit on each core. The jitter unit
on core 1 makes an entry of this by logging it in a dedicated
wait buffer. Subsequently, a thread on core 2 tries to signal
the waiting thread. The jitter unit on core 2 catches this
event, and broadcasts the s_e event to the other jitter units.

CHANDRAN ET AL.: ARCHITECTURAL SUPPORT FOR HANDLING JITTER IN SHARED MEMORY BASED PARALLEL APPLICATIONS 1167



The s_e event contains the lock address, and the id of the
thread that is going to be woken up (the pthread library can
compute the id of the thread to be woken up very quickly
without any system calls). We don’t expect the overhead to
be more than a couple of cycles. Once core 1 receives the s_e
event, it starts searching for entries in its wait buffer that
match the address and the thread id. If a match is found,
then a thread is going to be woken up in the near future.
The jitter unit timestamps the wait entry.

In parallel, the pthread code on core 2 typically does
some pre-processing, and then sends an interrupt to the ker-
nel (int 0�80 instruction on x86). The kernel immediately
runs the schedule function, in which the kernel can either
send an inter-processor-interrupt (ipi) to core 1 to resume
the waiting thread, or it can mark the waiting thread as
ready, and just return. Fig. 2 shows the former case. The lat-
ter case is treated the same way.

The time between s_e and ipi on core 2 should be within
limits. If it is not the case, then this means that there is some
jitter in the kernel. After core 1 receives the ipi, it immedi-
ately transitions to kernel mode. Let us assume that the
waiting thread has the highest priority. Then the kernel will
exit (k_x) and wakeup the thread firing the w_x event.

The jitter in core 1 is the time difference between s_e and
w_x in Fig. 2. We call it signal-wait jitter. The justification
for this reasoning is as follows. From the programmer’s
point of view, the point of signal entry, s_e, is when she
expects core 1 to start instantaneously. She further expects
the signal call to finish instantaneously. We need to take
into account a certain base value for any kind of synchroni-
zation operation. We typically assign N ms for every opera-
tion. If the time, T , exceeds that, then the jitter is T �N .
Given this reasoning, if the time between the receipt of the

event s_e on core 1 and w_x (wait exit) on core 1 differ sig-
nificantly, then we can infer the existence of OS jitter.

Likewise on core 2, after sending the ipi, the kernel run-
ning on core 2 can schedule other tasks like daemons/
interrupt handlers. The time difference between s_e and s_x
is accounted for as purely signal jitter on core 2.

3.2.2 Case 2

Core 1 might wakeup another thread after receiving the
ipi, and then wake the time sensitive thread (details in
Appendix B, available in the online supplemental material).

3.2.3 Case 3

It is possible that the time sensitive thread that was origi-
nally on core 1, wakes up on core 3 as shown in Fig. 3. In
this case, core 3, will be aware of the fact that there has been
a migration. It will broadcast the id of the thread, and get
the time at which the corresponding signal event was issued
from core 1 and calculate the jitter appropriately. (details in
Appendix B, available in the online supplemental material).

We consider these cases exhaustive since we observe in
our experiments that their coverage is more than 99.999 per-
cent. Please note that it is possible to trivially extend our
scheme to consider the existence of multiple time sensitive
tasks. In this case, we need to have dedicated state in the

(a) (b) (c)

Fig. 1. Synchronization primitives in the pthread library.

Fig. 2. Synchronization involving two cores.

TABLE 1
List of Events

1168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



jitter unit, and a wait queue for each task. Furthermore, each
message needs to be stamped with the thread identifier.

4 IMPLEMENTATION DETAILS

We propose two schemes to contain jitter. The first is a
method to estimate the total jitter due to kernel interference.
In this scheme, we use a dedicated piece of hardware called
the jitter unit that runs a distributed protocol to calculate the
amount of jitter experienced by a time sensitive task. Based
on the amount of jitter, we try to compensate for it using
voltage-frequency scaling.

The other approach is to use an OS cache at the L2 level
to reduce the interference by the OS in the memory system.
To further reduce conflict and capacity misses, we propose
a method to seamlessly share lines between the OS cache
and the regular L2 cache.

4.1 Jitter Unit

Every core has a jitter monitoring subsystem called the jitter
unit as shown in Fig. 15 (Appendix C, available in the online
supplemental material). The jitter unit will be periodically
notified about different events by instructions in our modi-
fied pthread library, and events snooped from the processor
and the bus.

4.1.1 Event Monitoring

A time sensitive application thread starts with letting the jit-
ter unit know about itself by inserting its thread id in a
model specific register, jitter-reg using an assembly instruc-
tion. This register is automatically unset when the processor
switches to kernel mode or executes a pause, or halt instruc-
tion. When a time sensitive thread is swapped out, its cur-
rent PC along with the thread id is recorded in the thread-list
and broadcast to the rest of the jitter units in other cores.
They also record the (PC, thread id) in their thread-list. The
jitter units need to snoop the PC after a kernel exit event
(k_x) and match the PC with values stored in their thread-
list. If there is a match, then the jitter unit knows that it is a
time sensitive thread with a given thread id, and monitoring
jitter can proceed.

CPU events. CPUs have a lot of power management
events like instruction throttling, reduction of frequency,
powering down units, and so on. For every event, we calcu-
late the estimated slowdown. We allow users to set this. For
example, if we halve the frequency for 100 cycles, then we
have roughly lost 100 cycles as per our definition of jitter.

Bus events. The bus arbiter will now monitor the bus to
find out how many messages belonging to time sensitive
tasks are getting delayed. We propose to use the scheme in
[11] to measure the cycles lost.

4.1.2 OS Jitter Events

We instrument the POSIX thread (pthread) library (part of
the standard C library) to track the following methods: cre-
ate, exit, join, lock, unlock, signal, broadcast, and wait, as
explained in Section 3 and Table 1. For each event, the
pthread library writes the process id (pid), thread id (tid),
event type (ev_type), and the memory address of the lock (if
any), and time, to separate registers accessible by the jitter
unit. We track two more events called kernel_entry (k_e)
and kernel_exit (k_x). kernel_entry is fired when the kernel
starts executing and likewise kernel_exit is fired when there
is a context switch to a user process. We envision custom
logic that can monitor the supervisor bit in processors to
find out when the kernel is executing, and when it has
stopped executing.

4.1.3 Design of the Jitter Unit

The detailed design of the jitter unit is shown in Appendix
C, available in the online supplemental material. We sum-
marize the main structures in this section. The high level
design is shown in Fig. 4. The jitter unit is specific to each
core and processes events sent by the core, and some events
sent on the inter-core bus to compute the jitter experienced
by the time sensitive thread.

The design of the jitter unit can broadly be divided into
three parts: 1) information about the jitter experienced
by the current thread (jitter state), 2) PCs of different threads
in the time sensitive process, 3) events of interest that are
used to compute jitter.

The jitter unit maintains information about the current
thread, and especially the amount of jitter experienced in
the current frame such that it can use this information to
compensate for the resultant slowdown. This is known as
the jitter state of the thread. Additionally, the jitter unit
maintains information about the position of all the threads
in a time sensitive process in terms of their program counter
(PC) values before a context switch, in an SRAM array
called a thread list. The thread list is used to initialize the jit-
ter state of a core upon a thread migration.

Fig. 4. High-level design of the jitter unit (One per core).

Fig. 3. Synchronization involving three cores.

CHANDRAN ET AL.: ARCHITECTURAL SUPPORT FOR HANDLING JITTER IN SHARED MEMORY BASED PARALLEL APPLICATIONS 1169



The most complicated part of the jitter unit contains the
storage and logic to compute the jitter experienced by the
time sensitive threads by logging events of interest. There
are two main storage structures—lock buffer and wait
buffer. The lock buffer is used to save the timestamp of lock
events such that the jitter can be calculated once the corre-
sponding unlock is issued. Likewise, the wait buffer is used
to log wait events such that we can calculate the jitter for sig-
nal-wait and broadcast-wait synchronization patterns. Each
jitter unit contains a finite state machine (FSM) to track the
relationship between the different synchronization events
and compute the relevant time intervals. The logic follows
the patterns shown in Figs. 2 and 3. If these intervals exceed
a pre-specified threshold, then the extra time is logged as jit-
ter. Further details can be found in Section C.2.1 (It is there
in the appendix).

4.1.4 Calculating the Critical Path

Fig. 5 shows a typical example of multi-threaded code
where several threads are spawned simultaneously and join
with a barrier. If a frame is wholly contained within a
thread, then we try to reduce the time lost in jitter by apply-
ing DVFS across the subframes. The problem arises when a
thread spawns other threads or threads get coalesced with a
join operation.

To solve this, we force a subframe deadline when a
thread is created and joined. For the newly created thread,
we initialize its jitter counter with the jitter of the parent.
When thread A finishes its execution and joins thread B, we
set the jitter of thread B, to the maximum jitter of both
threads. When n threads join the parent thread, the jitter-
count is the maximum of the n threads and the parent. This
procedure ensures that the jitter-count accurately reflects
the critical path in a multi-threaded program.

A frame can thus spanmultiple threads. The programmer
should ensure that it corresponds to a piece of computation
that has a real time connotation. In the absence of program-
mer annotation, the jitter unit considers the entire span of
program execution as a single frame. However, a subframe
is defined for just one thread, and it has a specific DVFS set-
ting. In our scheme, DVFS is applied on a per-core basis.

4.1.5 Jitter from Multiple Threads/Tasks

We observe that there is sometimes significant jitter intro-
duced by kernel threads by displacing lines required by the

time sensitive application in the cache. We observe that the
penalty incurred in displacing L1 cache lines is not as high
as the case of L2 lines. This is because of the high memory
access latencies of the L2. Consequently, we propose to
maintain a time sensitive, ts, bit for every L2 line. Whenever
the kernel evicts a line with the ts bit on, we increment the
evicted lines count for the subframe. After the end of
the subframe, we multiply the number of evicted lines by
the memory access time and then divide it by the number of
banks to get an estimate of the jitter due to L2 cache line
eviction. We add this value to the jitter-count for a sub-
frame. We observe that this rough heuristic gives us accept-
able results in our experiments.

4.1.6 Control

Based on the amount of jitter measured by the jitter unit
residing on the core, a DVFS controller decides the DVFS
multiplier for the next subframe. The decision is based on a
lookup table maintained in software. Since, the DVFS con-
troller itself is in software, it can be configured in different
ways to mitigate jitter. The multipliers can be chosen very
aggressively in which case, the power consumed may be
too high; else a nominal setting may be used if the system
needs to be optimized for power.

For each subframe, we record its CPI, and the L2 miss
rate. The performance(insts/sec) is given by [12]:

P ¼ f

CPIcomp þmr �mp
: (1)

Here, CPIcomp is the clock cycles per instruction barring L2
misses, mr is the L2 miss rate, and mp is the miss penalty in
cycles. The L2 miss rates and the IPC remain more or less
constant across a program phase [13], which is much longer
than a subframe. Based on this information, we can get an
estimate of the time the next subframe will take. Simulta-
neously, we maintain a count of the time lost to jitter using
our measurement mechanisms.

Before the start of each subframe, we have two esti-
mates—tðfÞ and J . tðfÞ is the expected time of execution
for the subframe at a given frequency, and J is the time that
has been currently lost to jitter. It is saved in the jitter-count
register. Let f0 be the nominal frequency of the machine.
We set f such that tðfÞ ¼ tðf0Þ � J . At the end of the sub-
frame, the instantaneous value of jitter, J , is equal to the jit-
ter in the subframe plus the error in estimating f . This error
is the time the subframe took to execute minus tðfÞ. We can
further extend this equation to distribute the jitter across k
frames. The equation will be tðfÞ ¼ tðf0Þ � J=k. Henceforth,
we refer to k as the reactivity factor. The final aim is to set the
jitter-count to 0 at the end of the frame. It is difficult to com-
pensate for the jitter in the last few subframes. One solution
is to add a few dummy subframes at the end. Our scheme
can be trivially extended to model this.

4.2 OS Cache

Destructive interference between the application and the OS
in the memory system is a major source of OS jitter. Nellans
et al. [14] have suggested the use of an additional cache OS
cache at the L2 level to segregate the memory accesses of the
application and the OS. The accesses of the application and

Fig. 5. Subframes in a multi-threaded code.

1170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



the OS are sent to their respective caches by checking the
value of the supervisor bit. They use an OS cache of the
same size as the application cache.

We build on their work. First, we observed that the appli-
cation epoch is generally bigger than the OS epoch. Hence,
we propose the use of a smaller OS cache (64 KB) at the L2
level. Second, we did not obtain appreciable benefits by
using their naive approach. This was because there were
capacity misses for certain OS epochs, and this nullified the
effects of the OS cache. Hence, we propose an intelligent
cache in this work that can dynamically share lines between
the OS and application caches to effectively mitigate conflict
and capacity misses.

The cache lines that are shared between the application
and the kernel are stored in the application cache and
accesses to such lines are marked using a special shared bit
in the memory request. Moreover, the TLBs and the page
tables are augmented with this extra shared bit such that
the request can be sent to the right L2 level cache upon a L1
miss. It is possible to annotate these shared pages by instru-
menting the system call handlers in the kernel.

It is often the case that theOS cache is full but theremay be
some free (invalid) cache lines in the normal L2 cache or vice-
versa. We propose a cache line sharing mechanism wherein
the application and OS can use some of the space available in
the other cache seamlessly. However, in order to restrict the
interference due to such sharing, a cache line is treated with
least priority when stored in the other cache. We augment
the cache logic such that a dedicated bit(overflow bit) in each
line of a set is 1 if there is a possibility that a certain line in the
set might be present in the other cache. Also, the number of
cache lines that can be stored per set in the other cache is lim-
ited to half of the associativity of the other cache.

By design, we never store a cache line in both the applica-
tion and the OS cache. Hence, from the directory’s perspec-
tive, the combination of the application and the OS caches
can be viewed as a single large cache. A detailed description
of the OS cache can be found in Appendix C.

5 EVALUATION SETUP

5.1 Architectural Simulation

Our architectural simulations use the environment shown
in Table 2. This is similar to the setup used by [15].

We simulate the Splash2 set of benchmarks [16] using the
default inputs for sixteen cores similar to [15]. We had
issues in running cholesky, fft, volrend and radiosity for the
X86-64 architecture in our simulation infrastructure. For lu
and ocean, we use the contiguous_partitions inputs. We sim-
ulate the Parsec-2.1 set of benchmarks [17] using native
inputs. We had issues in running canneal, blackscholes and
freqmine in the Parsec benchmarks suite. This leaves us with
eight Splash benchmarks and nine Parsec benchmarks
(total 17). In this work, we have chosen general purpose,
shared memory, high performance parallel applications,
and we have tried to run them in an environment, where
we try to dynamically nullify all the jitter. Our main aim has
been to ensure scalability and deterministic execution at the
level of a frame.

We use an in-house cycle accurate simulator that uses
the popular binary instrumenter PIN [18] to simulate the

Splash2 [16] and Parsec-2.1 [17] benchmarks. We
describe the method of collecting jitter traces and inject-
ing them in our simulations in Appendix D, available in
the online supplemental material. We observe that oper-
ating system jitter is an inherently random process.
Consequently, we repeat the entire process for each
benchmark for 10 times, and report the maximum, mini-
mum, and mean time of executions.

Since the benchmarks we considered did not have pro-
grammer annotations, we considered the entire program
execution to be one single frame. Each subframe is 330 ms
long. A subframe should be much larger than the PLL lock
time (10 ms) and should be smaller than a OS scheduling
quantum(jiffy) (1 millisecond). The first 90 subframes dur-
ing the simulation of a benchmark are used to warm up the
caches and no measurements are taken during this period.

5.1.1 Area and Power Simulation

We calculate the area and power overheads using Cacti 5.1
[19] and Wattch [20].

Our DVFS settings are given in Table 3. We assume a
10 ms PLL lock time, and a maximum time of 20 ms to ramp
up the voltage (see [21]). We assume that our baseline sys-
tem runs at 3 GHz, which is lower than the rated frequency
of 3.6 GHz. All the applications should run optimally in an
ideal system running at 3 GHz. Our baseline has a lower fre-
quency than the rated frequency, because we need some
additional leeway to increase the frequency to compensate
for jitter.

6 EVALUATION

6.1 Jitter Characterization

Figs. 7 and 8 show the distribution of the jitter per synchro-
nization operation for the fmm (Splash2) and bodytrack (Par-
sec-2.1) benchmarks respectively. Please note that we only
plot those values that are above the jitter threshold (10 ms in

TABLE 2
Simulation Setup

CHANDRAN ET AL.: ARCHITECTURAL SUPPORT FOR HANDLING JITTER IN SHARED MEMORY BASED PARALLEL APPLICATIONS 1171



our case). We observe a heavy tailed distribution similar to
the log-normal distribution. The other benchmarks in the
two benchmark suites follow similar distributions. The
average jitter is about 100 ms, and starts tapering off after
about 200 ms. In some runs, we have observed the jitter to
be as high as a couple of milliseconds.

Fig. 9 shows the breakup of the jitter/kernel execution
overhead for the simulated benchmarks in Splash2 and Par-
sec experienced across all the cores. As mentioned above,
delays less than the jitter threshold, 10 ms, are not consid-
ered as jitter. We show the results for—u ! unlock, b !
broadcast, s ! signal, b! broadcast-wait, lu ! lock-unlock
and sw! signal-wait jitter (see Fig. 6).

We observe that lock-unlock and just unlock jitter account
for a lion’s share of the total jitter for some benchmarks. The
lock-unlock jitter varies from 2.5 to 81.9 percent. Since prior
work [16], [22] has observed that a majority of the synchroni-
zation calls are lock operations, we can justify this result.
Both the benchmark suites hardly use signal-wait synchroni-
zation. The only benchmarks that use it to an appreciable
extent are ferret, dedup and vips. Especially, in the case of vips,
signal-wait jitter is 91.5 percent of all the jitter.

The most important type of jitter is broadcast-wait. The
broadcast-wait jitter varies from 12.5 to 91.2 percent. Even
though, broadcast calls are relatively rare, its corresponding
wait operations are very jitter prone because the waiting
thread is typically out of action for a long time. The kernel
opportunistically uses this time window to schedule its
own tasks. Consequently, there is a visible delay in waking
up the waiting task. Second, the library and the kernel also
need to wake up several waiting tasks (15 in our case).
The last few tasks end up perceiving some jitter. The other
interesting result is that with the exception of x264, the
broadcast jitter is negligible.

If we compare it with the case of signal, we observe that its
proportion is much lower in benchmarks that use it. The sig-
nal jitter on an average is about 10-15 percent, whereas the
broadcast jitter is about 2-5 percent. This is because, we have
a lot of waiting threads in the case of broadcast. The kernel
can use their cpu time to do its work. Lastly, as compared to
Splash, we seemuchmore diversity in the case of Parsec.

6.1.1 Synch. Jitter versus Total Jitter

In this section, we try to estimate the contribution of syn-
chronization jitter to the total jitter (as defined in Section 2.1).
First, we use our jitter traces collected from the actual sys-
tem by instrumenting the GNU Libc (C standard libraries)
to compute the critical path of the program, which can
potentially flow across multiple threads. It consists of two
parts: (1) pure execution and (2) jitter. We estimated
(1) using Linux utilities, and since we know the total time,
we can compute (2). Now, the total jitter (2) consists of syn-
chronization jitter, and non-synchronization jitter. Using
our jitter measurement infrastructure, we were able to com-
pute the synchronization jitter. Consequently, we were able
to get an estimate of the non-synchronization jitter also.

Table 4 plots the ratio of synchronization jitter to total jit-
ter for the Splash benchmarks averaged across all threads.
We observe that for six out of the eight benchmarks, the
ratio is fairly high. It is between 82 to 97 percent. In fact
other than barnes, the rest of the Splash benchmarks have
figures larger than 95 percent. Without including lu and
radix, the mean is 93 percent. Lu and radix are kernels. They
have very infrequent synchronization operations. Conse-
quently, other sources contribute to most of the jitter.

Table 5 shows the same data for the Parsec benchmarks.
Here also the mean value is fairly large, i.e., 91 percent. For
benchmarks such as dedup, facesim, bodytrack, and streamclus-
ter, the values are larger than 95 percent.

Fig. 8. Jitter (Parsec).Fig. 6. Different types of jitter.

TABLE 3
DVFS Factors

Fig. 7. Jitter (Splash2).

1172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



6.2 Time Overhead

In this section, we evaluate the time overhead of jitter, and
also the efficacy of our proposed scheme. In this section, we
discuss the results of two configurations Unified Cache, and
OS Cache. Unified Cache models a real system where the
application and the kernel share the L2 cache. OS Cache is
our proposed intelligent OS cache where the application
and OS selectively share cache lines to balance interference
and performance.

Fig. 10 shows the effects of OS jitter for both the configu-
rations—Unified Cache and OS-Cache. We run each experi-
ment 10 times (error bars in the figure).

We observe that on an average, 14.5 and 6.4 percent slow-
down is experienced by Splash2 and Parsec respectively
due to jitter which is significant for high-performance paral-
lel applications.

We observe that using DVFS with inputs from the jitter
units on the unified cache, the mean jitter is just 1 percent for
Parsec. We also notice that for six out of the nine bench-
marks, it is negligible and for the remaining three, facesim,
dedup and fluidanimate, it is limited to just 2.5 percent. For
Splash, the average jitter is limited to 2.5 percent for five of
the eight benchmarks. In case ofwater_nsquared,water_spatial,
and ocean, the jitter could not be mitigated primarily because
of power constraints (there is a limit on the amount by which
voltage and frequency can be scaled). However, for even
these benchmarks, the total jitter falls from the 30-35 percent

range to the 10-20 percent range. We also observe that for 13
out of the 17 benchmarks, the variance in the execution times
is less than 1 percent.

On the other hand, we notice that, on an average, the OS-
Cache performs better than the unified cache (without
DVFS). This is expected since the amount of interference is
reduced due to the partitioning the application and the ker-
nel accesses. We see significant a benefit by using a separate
OS cache in the case of ferret and ocean where merely using
an OS cache mitigates the jitter completely. We attribute
this is to: i) the reduction in interference between applica-
tion and OS (as noticed in ocean), and ii) the reduction in the
number of capacity misses enabled by flexible sharing of
cache lines (as noticed in ferret).

Only in 4 out of the 17 benchmarks (streamcluster, face-
sim, raytrace) and water_spatial, the OS cache performs
worse than the unified cache. This is because there were
too many capacity misses that the OS cache could not
accommodate. Even in these benchmarks, the perfor-
mance of OS cache is close to that (< 2 percent) of the
unified cache configuration.

However, the most pernicious aspect of jitter is the
non-determinism in execution times for the same bench-
mark across multiple runs. Let us consider some exam-
ples. In the Splash benchmark suite, the total execution
time of water_nsquared and water_spatial vary up to 11 and
17 percent respectively. We observe that not only OS jitter

Fig. 9. Break-up of the jitter (Splash2 & Parsec).

TABLE 4
Proportion of Synch Jitter (Splash2)

TABLE 5
Proportion of Synch Jitter (Parsec)

CHANDRAN ET AL.: ARCHITECTURAL SUPPORT FOR HANDLING JITTER IN SHARED MEMORY BASED PARALLEL APPLICATIONS 1173



leads to a net slowdown, it also introduces a substantial
variance in the execution time. This makes it difficult to
design high performance parallel applications.

We observe that a combination of intelligent DVFS and
having the OS cache completely mitigates jitter. For
Parsec, DVFS combined with OS cache gives a speedup of
1.5 percent whereas for Splash, the overall mean jitter is just
1 percent. The observed speedups are due to the controller
over-compensating for the observed jitter in some cases. We
also observe that in only 3 out of 17 benchmarks, jitter has
not been fully mitigated. As previously mentioned, this is
due to the limit on the amount of voltage-frequency scaling
that is possible on a given system.

6.3 Power Overhead

In this section, we evaluate the power overhead of our
scheme. First, we observe that since the jitter unit is only
used when we have a synchronization event (typically once
every 50 ms), or at the beginning of a subframe, the power
overhead of the jitter unit per se is negligible.

Figs. 11 and 12 show the normalized frequency settings
for a typical frame across 30 subframes for water_spatial and
facesim respectively. We observe the responsiveness of our
frequency scaling algorithm. When the jitter has been over-
compensated in one subframe, we notice that the voltage-
frequency scaling algorithm tries to minimize the power
overhead by dropping the supply voltage to a value lower

than the base voltage (seen in the dip of frequency to 0.95).
We further observe that in the case of water_spatial, the
amount of jitter is high, and consequently the controller tries
its best to control it by setting the highest possible DVFS fac-
tor, 1.2. However, when the value of the jitter drops, the
controller realizes that it has over compensated, and then
tries to save power.

Fig. 13 shows the normalized power overhead. The
power overhead varies from less than 1 to 41 percent. For
the Splash benchmarks, the average power overhead is
14 and 13.6 percent for Unified and OS-Cache configurations
respectively. Whereas, for Parsec, the corresponding num-
bers are 16.3 and 16.5 percent respectively. For 11 out of
17 benchmarks, the average overhead is limited to 20 per-
cent in both the configurations.

As expected the values of power consumption are
roughly correlated with the values of measured jitter shown
in Fig. 10. For example, benchmarks such as lu, ferret, and
x264, have low values of jitter and power. Ocean, facesim, flu-
idanimate, and fmm have high values of jitter, and high
power consumption also.

However, there are some exceptions such as bodytrack.
They have low values of jitter, and still have high power
consumption. Likewise, we have benchmarks such as
water_nsquared, and water_spatial, which show the reverse
trend. After studying these benchmarks, we could explain
this phenomenon on the basis of the nature of the critical

Fig. 12. Frequency across subframes (facesim).Fig. 11. Frequency across subframes (water_spatial).

Fig. 10. Time overhead (Splash2 & Parsec).

1174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



path. In some benchmarks all the jitter happens on the criti-
cal path. Consequently, the power overhead is relatively
low. As compared to this, in some other benchmarks there
is a lot of jitter that happens in executions that are off
the critical path. Since, the controller does not have instanta-
neous knowledge of the critical path, it needs to nullify jitter
locally and synchronize later (see Section 4.1.4). This leads
to higher power consumption.

6.4 Area Overhead

We synthesized the jitter unit described in Section 4 using
the UMC 90 nm technology standard cell library. The imple-
mentation of the jitter unit uses a wait buffer and lock buffer
of eight entries each. We do not observe any space over-
flows in our simulations. The synthesized jitter unit occu-
pies 46,166 mm2 and has a delay of 850 ps.

Using standard technology scaling rules [23], we project
the size of the jitter unit to be 8,550 mm2 per core for a 32 nm
process. On a chip with 16-cores, the total area occupied by
jitter units is 0.136 mm2. The size of the (64 kB) OS cache
obtained from Cacti 5.1 [19] is 0.975 mm2, and for all the
16 cores, it occupies a total area of 3.9 mm2. Assuming a
400 mm2 die, the total area overhead is: 0.034 percent (jitter
units) þ 0.97 percent (OS cache). Therefore, our proposed
method with the OS cache and jitter units has an area over-
head of approximately 1 percent, which is small.

7 CONCLUSION

In this paper, we proposed a scheme to measure, character-
ize, and mitigate the effects of operating system jitter on
CMP based parallel programs. We proposed to have intelli-
gent performance counters called jitter units on every core.
These jitter units record thread synchronization events,
which are generated by an instrumented version of the C
library along with bus events, context switches, and power
management events. Second, we proposed an adaptive
algorithm which distributes the compensation of jitter over

next few subframes based on the interference due to OS at
the L2 cache. This scheme was not sufficient to completely
nullify jitter. Hence, we augmented the design with an OS
cache that saves the cache lines belonging to the kernel,
modules, and drivers. It can intelligently trade lines
between the itself and the regular application cache.

We showed in Section 6.1.1 that the main contributor to
OS jitter in CMP based parallel programs is thread synchro-
nization events. Subsequently, we characterized the sources
of synchronization jitter and found broadcast-wait methods
to be the largest contributor. We showed in Section 6 that
we are able to decrease the total amount of jitter from
14.5 to 1 percent for the Splash2 benchmark suite and from
6.4 to 0 percent for the Parsec Benchmark Suite. We can
almost completely nullify jitter for 12 of the 17 benchmarks.
Our scheme has a mean power overhead of approximately
15 percent for all the simulated benchmarks. Lastly, we
evaluated the area overheads of our scheme, and found it to
be approximately 1 percent.

REFERENCES

[1] M. Lee, Y. Ryu, S. Hong, and C. Lee, “Performance Impact of
Resource Conflicts on Chip Multi-Processor Servers,” Proc. Eighth
Int’l Conf. Applied Parallel Computing: State of the Art in Scientific
Computing (PARA ’06), pp. 1168-1177, 2007.

[2] R. Gioiosa, S. McKee, and M. Valero, “Designing OS for HPC
Applications: Scheduling,” Proc. IEEE Int’l Conf. Cluster Computing
(CLUSTER), pp. 78-87, Sept. 2010.

[3] P. De, V. Mann, and U. Mittal, “Handling OS Jitter on Multicore
Multithreaded Systems,” Proc. IEEE Int’l Symp. Parallel and Distrib-
uted Processing (IPDPS), 2009.

[4] F. Petrini, D.J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on
the 8, 192 Processors of ASCI Q,” Proc. ACM/IEEE Conf. High Per-
formance Networking and Computing, 2003.

[5] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R.
Blackmore, P. Caffrey, B. Maskell, P. Tomlinson, and M. Roberts,
“Improving the Scalability of Parallel Jobs by Adding Parallel
Awareness to the Operating System,” Proc. ACM/IEEE Conf.
Supercomputing (SC ’03), p. 10, http://doi.acm.org/10.1145/
1048935.1050161, 2003.

Fig. 13. Power overhead (Splash2 & Parsec).

CHANDRAN ET AL.: ARCHITECTURAL SUPPORT FOR HANDLING JITTER IN SHARED MEMORY BASED PARALLEL APPLICATIONS 1175



[6] P. Terry, A. Shan, and P. Huttunen, “Improving Application Per-
formance on HPC Systems with Process Synchronization,” Linux
J., vol. 2004, no. 127, p. 3, 2004.

[7] P. De, R. Kothari, and V. Mann, “Identifying Sources of Operating
System Jitter through Fine-Grained Kernel Instrumentation,”
Proc. IEEE Int’l Conf. Cluster Computing, pp. 331-340, 2007.

[8] M. Chetlur, U. Devi, P. Dutta, P. Gupta, L. Chen, Z.B. Zhu, S.
Kalyanaraman, and Y. Lin, “A Software Wimax Medium Access
Control Layer Using Massively Multithreaded Processors,” IBM J.
Research and Development, vol. 54, no. 1, pp. 1–13, 2010.

[9] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access. John
Wiley & Sons, 2007.

[10] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A Measure-
ment-Based Analysis of the Real-Time Performance of Linux,”
Proc. Eighth IEEE Real-Time and Embedded Technology and Applica-
tions Symp. (RTAS), 2002.

[11] M. Paolieri, N.E. Qui, F.J. Cazorla, G. Bernat, and M. Valero,
“Hardware Support for WCET Analysis of Hard Real-Time Multi-
core Systems,” Proc. 36th Ann. Int’l Symp. Computer Architecture
(ISCA), 2009.

[12] S.R. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL: Uti-
lizing Processors with Variation-Induced Timing Errors,” Proc.
41st IEEE/ACM Int’l Symp. Microarchitecture (MICRO), 2008.

[13] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking Prediction,”
Proc. 30th Int’l Symp. Computer Architecture (ISCA), 2003.

[14] D. Nellans, R. Balasubramonian, and E. Brunvand, “Interference
Aware Cache Designs for Operating System Execution,” Technical
Report UUCS-09-002, Univ. of Utah, Feb. 2009.

[15] R. Agarwal and J. Torrellas, “Flexbulk: Intelligently Forming
Atomic Blocks in Blocked-Execution Multiprocessors to Minimize
Squashes,” Proc. 38th Ann. Int’l Symp. Computer Architecture
(ISCA), 2011.

[16] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” ACM SIGARCH Computer Architecture News, vol. 23,
pp. 24-36, May 1995.

[17] C. Bienia, “Benchmarking Modern Multiprocessors,” PhD disser-
tation, Princeton Univ., Jan. 2011.

[18] V.R.A. Settle, D. Connors, and R. Cohn, “PIN: A Binary Instru-
mentation Tool for Computer Architecture Research Education,”
Proc. Workshop on Computer Architecture Education (WCAE), 2004.

[19] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N.P. Jouppi,
“CACTI 5.1,” Technical Report HPL-2008-20, HP Labs, 2008.

[20] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” ACM
SIGARCH Computer Architecture News, vol. 28, no. 2, pp. 83-94,
May 2000.

[21] J. Suh and M. Dubois, “Dynamic MIPS Rate Stabilization in Out-
of-Order Processors,” Proc. 36th Ann. Int’l Symp. Computer Archi-
tecture (ISCA), 2009.

[22] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The Parsec Benchmark
Suite: Characterization and Architectural Implications,” Proc.
17th Int’l Conf. Parallel Architectures and Compilation Techniques
(PACT ’08), pp. 72-81, 2008.

[23] W. Huang, K. Rajamani, M. Stan, and K. Skadron, “Scaling with
Design Constraints: Predicting the Future of Big Chips,” IEEE
Micro, vol. 31, no. 4, pp. 16-29, July/Aug. 2011.

[24] D. Tsafrir, Y. Etsion, D.G. Feitelson, and S. Kirkpatrick, “System
Noise OS Clock Ticks Fine-Grained Parallel Applications,” Proc.
19th Ann. Int’l Conf. Supercomputing (ICS), 2005.

[25] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole, “Supporting
Time-Sensitive Applications on a Commodity OS,” ACM SIGOPS
Operating System Rev., vol. 36, no. SI, pp. 165-180, 2002.

[26] K.B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
Application Sensitivity to OS Interference Using Kernel-Level
Noise Injection,” Proc. ACM/IEEE Conf. Supercomputing (SC), 2008.

[27] D. Tsafrir, “The Context-Switch Overhead Inflicted by Hardware
Interrupts (and the Enigma of Do-Nothing Loops),” Proc. Experi-
mental Computer Science, 2007.

[28] R. Love, Linux Kernel Development. Addison-Wesley, 2010.
[29] F. Hubertus and R. Rusty, “Fuss Futexes Furwocks: Fast Userlevel

Locking in Linux,” Proc. Ottawa Linux Symp., 2002.
[30] “Linux Kernel Archives,” git://git.kernel.org/pub/scm/linux/

kernel/git/maxk/cpuisol-2.6.git, 2012.
[31] S. Baskiyar and N. Meghanathan, “A Survey of Contemporary

Real-Time Operating Systems,” Informatica (Slovenia), vol. 29,
no. 2, pp. 233-240, 2005.

[32] F. Bellard, “QEMU, A Fast Portable Dynamic Translator,” Proc.
Ann. Conf. USENIX Ann. Technical Conf., 2005.

[33] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Ha

�
llberg, J. H€ogberg, F. Larsson, A. Moestedt, and B. Werner,

“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, 2002.

[34] P. De and V. Mann, “jitSim: A Simulator for Predicting Scalability
of Parallel Applications in Presence OS Jitter,” Proc. 16th Int’l
Euro-Par Conf. Parallel Processing (Europar), 2010.

[35] D. Freedman, R. Pisani, and R. Purves, Statistics. W.W. Norton
and Company, 2007.

Sandeep Chandran received the bachelor’s
degree in computer science and engineering
from Visveswaraya Technological University. He
is currently a research scholar at the Department
of Computer Science & Engineering, Indian Insti-
tute of Technology, Delhi. Prior to joining the
PhD program, he has worked in the industry for
two years. His research interests include post-
silicon validation methodologies, architectural
design-space exploration and fault-tolerant
systems.

Prathmesh Kallurkar received the bachelor’s
degree in computer science and engineering
from Birla Vishvakarma Mahavidyalaya, Sardar
Patel University, and the master’s degree in com-
puter science from the Department of Computer
Science and Engineering, Indian Institute of
Technology, Delhi, where he is currently a
research scholar. His research interests include
architectural support for operating Systems, and
fault-tolerant systems.

Parul Gupta received the BTech degree in elec-
trical engineering from the Indian Institute of
Technology, Bombay, and the MS degree in
electrical engineering from the University of Cali-
fornia, Los Angeles. She is currently a technical
staff member with IBM Research-India. Her
research interests include algorithms for wireless
communication systems, cloud computing, green
technologies and analytics. She has co-authored
12 publications and six patents. She is a senior
member of the IEEE and the ACM.

Smruti R. Sarangi received the BTech degree in
computer science from IIT Kharagpur, India, in
2002, and the MS and PhD degrees in computer
architecture from the University of Illinois at
Urbana-Champaign in 2007. He is currently an
assistant professor in the Department of Com-
puter Science and Engineering, IIT Delhi, India.
He has spent four years in industry working in
IBM India Research Labs, and Synopsys. He
works in the areas of computer architecture, par-
allel and distributed systems. He is a member of

the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


