
Extending Trace History Through Tapered Summaries in Post-silicon
Validation

Sandeep Chandran, Preeti Ranjan Panda, Deepak Chauhan, Sharad Kumar
Smruti R. Sarangi

Indian Institute of Technology Delhi Freescale Semiconductors India Pvt Ltd

New Delhi, India Noida, India

{sandeep,panda,srsarangi}@cse.iitd.ac.in {DeepakChauhan,sharad.kumar}@freescale.com

Abstract— On-chip trace buffers are increasingly be-
ing used for at-speed debug during post-silicon validation.
However, the activity history captured by these buffers is
small due to their limited size. We propose a novel scheme
that extends the captured trace history (by upto 162%) by
using a portion of the trace buffer to also store summaries
of trace messages. We describe an Overlapped trace buffer
architecture that uses a reduced number of ports to capture
tapered summaries where both detailed and summary ver-
sions of traces are stored simultaneously. We demonstrate
the usefulness of the proposed methodology for debugging
various classes of bugs encountered during post-silicon val-
idation.

I. INTRODUCTION

The increasing complexity of processors and SoCs, coupled

with aggressive time-to-market deadlines, have forced chip-

manufacturers to adopt well-planned strategies for post-silicon

validation [1, 2]. It is important that the on-chip Design for De-

bug (DfD) architecture provides necessary handles to the valida-

tion engineer so that he can root-cause the design errors quickly.

On-chip trace buffers have emerged as a promising solution

to the challenge of limited observability in post-silicon valida-

tion, with many chip manufacturers adopting it into their DfD

architecture. However, the limited size of these on-chip trace

buffers poses a significant challenge to post-silicon debug be-

cause only a short history of the activity inside a chip is cap-

tured, and the captured traces are required to be transferred off-

chip frequently. Two broad approaches have been proposed

in the past to improve trace buffer utilization: (i) Compres-
sion – trace messages are compressed before storing them in

the buffer [3, 4], and (ii) Event Triggers – trace messages are

stored (or discarded) only on the occurrence of events of inter-

est [5]. Both these approaches improve utilization by increasing

the effective capacity of the trace buffer. Another strategy used

to reduce the overhead of on-chip trace buffers is to configure a

part of the cache as trace buffer [6, 7] during post-silicon valida-

tion. This way, additional area is not invested on separate trace

buffers. Event Triggers and compression schemes can be ap-

plied over these proposals too in order to reduce the data stored

in these buffers.

Fig. 1. High-level schematic of proposed scheme. (a) Trace buffer

organized as a circular queue. (b) Flexible partition of the circular

queue into Detailed and Summary Buffers. Both versions are stored

simultaneously.

We propose a new approach to improve the utilization of

trace buffers. We store the summaries of trace messages before

over-writing them with incoming trace messages, and transfer

only these summaries off-chip. The validation engineer can use

the recent on-chip detailed traces to reconstruct the erroneous

state, and the off-chip summaries to infer the activity sequence

that led to the erroneous state. Since the summaries are smaller

than detailed traces, the activity window for which trace infor-

mation is captured on-chip is extended. Our experiments in-

dicate that storing summaries can extend the window by upto

162%.

We propose architectural features that allow the validation

engineer to choose: (i) the amount of space for storing sum-

maries, and (ii) the information to be captured in the summary.

We achieve this by reusing the existing trace buffer through

simple hardware extensions as shown in Figure 1. Figure 1(a)

shows the default trace buffer pictured as a circular buffer. In

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

8B-1

737

Fig. 2. Different methods to utilize trace buffers efficiently. Shaded boxes indicate the bits of the trace message that are stored in the trace buffer

under each scheme

our proposed architecture pictured in Figure 1(b), the space is

partitioned at run time into multiple circular buffers, to simul-

taneously capture both detailed and summary traces. We also

demonstrate that our proposed methodology: (i) supports effi-

cient debugging of different classes of errors encountered dur-

ing post-silicon validation, and (ii) reduces the number of stalls

required to transfer the captured traces off-chip by upto 63%.

II. RELATED WORK

Several researchers have proposed to significantly improve

the effective capacity of the trace buffer through Event Trig-

gers [8, 9] and Compression [3]. However, these works are tar-

getted at errors that can be deterministically repeatable. These

techniques use coarse-grained signatures (or summaries) in the

initial executions to gather sufficient information on the time in-

tervals where manifestations of the bug are captured in the trace

signals. The information on the time intervals thus gathered is

then passed on to subsequent executions during which more de-

tailed traces are collected. Our proposed technique targets non-

repeatable bugs as well because we do not gather information

on time intervals that are suspected to contain the footprints of

the bug. We only use the most recent detailed traces captured in

the initial execution to identify the fields that should be captured

in the summaries during subsequent executions.

Other recent works have used summaries to debug errors en-

countered during post-silicon validation, most remarkable of

which is the use of aggregates captured by performance coun-

ters in a chip to debug the CoreTM2 Duo processor [2]. Our

technique does not use summaries in the form of aggregates be-

cause identifying information, which is essential to reconstruct

the sequence of events that led to erroneous state, is not retained

in such summaries. Therefore, these summaries would have to

be used in conjunction with other techniques. Similarly, multi-

level traces (or tapered summaries) have been demonstrated to

be useful for transaction-based debugging of on-chip intercon-

nects [10]. However, the information captured in the traces at

coarser granularity, is frozen at design time and cannot adapt to

different requirements of different errors observed during post-

silicon validation. This restricts the validation engineer to debug

the observed error using only the information provided by these

traces, which reduces the efficiency of debug.

Other works that use hardware support for checking temporal

properties [11, 12, 13] for at-speed debug, can be extended to

generate trace summaries. However, these proposals too suffer

from limited flexibility because the information captured in the

summary is fixed at design time. Our work provides the valida-

tion engineer the much needed flexibility to specify, at runtime,

the most relevant information to be captured in the summaries

for the particular execution of the failing testcase.

III. TRACE SUMMARIES

Figures 2(a) and (b) shows the bits of a trace message

stored by Event Triggers and Compression respectively, and

Figure 2(c) illustrates an example of a summary that captures

bits 1,4, and 5 of the detailed trace. At present, such filtering of

captured information is done during off-chip analysis by which

time significant on-chip resources would have already been in-

vested in storing and transferring them off-chip. This ineffi-

ciency arises because the on-chip DfD hardware does not allow

the validation engineer to specify the bits (at runtime) within a

trace message that are of interest to him in a particular scenario.

The subset of bits that the validation engineer is interested

in can change from one debug scenario to another for multi-

ple reasons such as: the validation engineer has previously an-

alyzed the observed error and has deemed certain bits of the

trace message as irrelevant; or that he has gained some insights

into the bug based on the outputs produced prior to the erro-

neous behaviour, and so forth. This work seeks to address this

requirement in an area-efficient manner.

Moreover, our proposed technique is complementary to event

triggers and compression and can be used in conjunction with

them to further improve the utilization of trace buffer as shown

in Figure 2(d).

IV. ARCHITECTURAL CONSIDERATIONS

We explore three architectures: (i) Split, (ii) Unified and (ii)

Overlapped to store tapered summaries.

8B-1

738

Fig. 3. Split architecture Fig. 4. Unified architecture Fig. 5. Overlapped architecture

A. Split Architecture

Figure 3 shows the Split architecture where the detailed

traces and their summaries are stored in separate trace buffers.

The detailed trace messages are marked in blue, and the sum-

maries are marked in green. The space in the Detailed Trace

Buffer is regulated using two thresholds. When the number of

trace messages in the Detailed Trace Buffer exceeds the higher

threshold, the Summarizer makes space for incoming messages

by generating summaries and storing them into the Summary

Trace Buffer; it stops doing so when the available space falls

below the lower threshold. The sizes of the Detailed and Sum-

mary Trace Buffers are frozen at design time.

B. Unified Architecture

Figure 4 shows the Unified architecture for storing tapered

summaries. This architecture allows the validation engineer to

configure the sizes of the Detailed and Summary Trace Buffer

as per the requirement of the debug scenario. This is achieved

by merging the two Trace Buffers into a single physical buffer.

In steady state, new trace data is written into the Detailed Trace

Buffer, and the oldest detailed trace is simultaneously summa-

rized and written into the Summary Trace Buffer, in the same

clock cycle. The architecture retains the two thresholds of the

Split architecture to maintain flow control between the Detailed

and Summary Trace Buffer. This architecture requires a trace

buffer with three ports to support online operation of the Sum-

marizer: two write ports (one each to store incoming detailed

traces and summaries generated by Summarizer), and one read

port to read detailed trace messages into the Summarizer. This

leads to an increased area overhead of the Unified architecture.

C. Overlapped Architecture

Figure 5 shows the Overlapped architecture. This architec-

ture retains the flexibility of the Unified architecture but re-

duces the area overhead by discarding the dedicated read port

Fig. 6. Design of the Summarizer

of the Unified architecture. The Overlapped architecture gener-

ates and stores the summaries simultaneously with the detailed

trace messages being written to the Detailed Trace Buffer. This

avoids the need for the Summarizer to separately read the de-

tailed trace message again later. Both the Detailed and Sum-

mary Trace Buffers operate as regular circular buffers and the

oldest message is overwritten by the incoming ones. If over-

writing is not desirable, the system is stalled and the contents

of only the Summary Trace Buffer are transferred off-chip. We

transfer the contents of the Detailed Trace Buffer off-chip only

after the error being detected.

D. Extensions to multi-core systems

In extending the Summary Trace Buffer architecture to multi-

core systems, we have considered two broad approaches: (i)

Centralized and (ii) Distributed. Under the Centralized ap-

proach, a single Summary Trace Buffer is shared across all the

8B-1

739

Fig. 7. Design of the Online Filter Fig. 8. Illustration of working of the Online Filter

cores to store the summaries generated from their respective de-

tailed trace messages. This approach has a simpler design but

has some disadvantages: (i) it is inflexible because the buffer

sizes are frozen at design time, (ii) there is contention between

summaries from multiple cores, and (iii) it is cumbersome to

achieve flow-control due to communication delays between the

Buffer Controllers. Under the Distributed approach, the Sum-

mary Trace Buffer is duplicated along with the Detailed Trace

Buffer across multiple cores. This overcomes some of the dis-

advantages of the Centralized approach, and also creates addi-

tional opportunities, but at the expense of more synchronization

logic.

V. HARDWARE DESIGN

Figure 6 shows the hardware design of the Summarizer. The

fields of the detailed trace messages are classified into Primary

and Secondary fields. The Primary fields contain only identify-

ing information of the detailed trace message which is essential

to reconstruct the sequence of events during off-chip analysis.

Therefore, it is made part of every summary that is generated by

transferring them as-is to the output.

A subset of the Secondary fields is chosen using an Online
Filter that selects any k lines out of n input lines. The straight-

forward technique to achieve this is to use k n-to-1 multiplexers

(MUXes). This allows the validation engineer to select any bit

of the input at any of the k output positions. However, this de-

sign may have prohibitively high area overheads when the num-

ber of input lines is large; we propose an alternative design that

minimizes this overhead by imposing some constraints: (i) the

order of bits within a field remains unchanged, and (ii) the rela-

tive order of the field themselves could change. The validation

engineer can program the order of fields in the output. Permu-

tation of fields is important to enable compaction before further

on-chip processing such as compression. Only the number of

bits in the output, and the trace signals appearing at the inputs

are fixed at design time.

Figure 7 shows the hardware design of the Online Filter. The

output of each multiplexer (MUX) is a bit of the summary. The

order of fields at the input of each MUX is the same across all

MUXes, that is, any bit of input field 0 will appear only on

input line 0 of all the MUXes. This gives a consistent way of

specifying which field should be selected at a particular MUX.

Since we allow for the relative order of the field themselves to

change, a particular bit within a field can potentially occur at

any output MUX. We use a DeMUX to select at runtime one

output MUX to which a particular bit within the field should

go. Figure 8 illustrates an example of the permutations between

field 2 and 4 at the output. Such permutations allow the width

of filtered trace to be smaller than the number of output bits of

the Online Filter.

VI. EXPERIMENTS

A. Setup

Our experimental setup consists of a LEON3 SoC with 4-

cores (SPARCv8), DDR controller and an AHB. The off-the-

shelf LEON3 SoC generates a dynamic instruction trace, and a

trace of transactions on the AHB which is stored into the De-

bug Support Unit (DSU). We enhanced this DfD hardware by

tracing critical signals from the pipeline (similar to [14]), and

cache controllers. Table I shows the number of bits captured by

each of these detailed traces. We perform differential compres-

sion [15] to eliminate redundant temporal information before

storing them into their respective trace buffers. We retain the

distributed approach followed by the original LEON3 SoC, and

use a 4kB trace buffer per core and AHB to store the generated

traces. The information captured in the detailed trace is fixed

at design time and remains the same for all the bug scenarios

8B-1

740

TABLE I

DETAILS OF TRACES GENERATED BY THE DFD HARDWARE

Buffer Trace Detailed Primary Secondary (#bits) Summary (#bits) Area of Online

Location Type (#bits) (#bits) CCI WIM NAE CSL CCI WIM NAE CSL Filter (mm2)

Core

Instruction 128 32 - - - -

114 85 114 83

0.0018

Pipeline 151 18 32 3 32 - 0.017

Cache 80 32 - - - 1 0.009

DSU AHB 128 32 32 - 32 32 64 - 64 64 0.013

we discuss below. The bits captured in the summaries change

across scenarios, as shown in Table I. The C applications are

compiled using the Bare-C cross-compiler which allows them

to be executed off the bare-metal. We used CACTI 5.3 to esti-

mate the area of the trace buffers. The proposed design was im-

plemented in VHDL and synthesized using Cadence Encounter

RTL compiler with a 90nm technology standard cell library.

B. Bug Scenarios

We modeled different realistic architectural bugs that could

interfere with the functionality using a simple application with 4

threads: 2 writers and 2 readers. The writers increment a global

counter and the readers continuously read it. The application

was allowed to execute for 75000 cycles, and the bugs were

introduced at random times. Such directed test applications are

used extensively during post-silicon validation [2].

We considered three different configurations to capture trace

messages into the on-chip trace buffers: (i) Detailed Trace

Buffer (DTB) of 4kB with no Summary Trace Buffer (STB),

(ii) STB of 3kB and Detailed Trace Buffer of 1kB , and (iii)

Summary and Detailed Trace Buffer of 2kB each. We studied

the number of stalls required to transfer the contents of the trace

buffer off-chip in each of these configurations. Under our pro-

posed methodology, only the contents of the STB are transferred

off-chip when it is full and the older messages in the DTB are

overwritten by newer detailed trace messages.

Core-Cache interface (CCI): This bug is inspired by our

experience from an actual design scenario involving adding a

Victim Cache to the processor. The implementation of the vic-

tim cache sent the data to the core as well as to the L1 cache

as an optimization if the request to it resulted in a hit. An error

occurred at the interface between the core and the memory hier-

archy due to which the core proceeded with its execution using

the stale value present in its internal register. Previous studies

have also found that a large number of functional bugs occur at

the interface of the core [16].

After the initial run, we analyzed the most detailed trace mes-

sages available on-chip. This revealed that the contents of a

register retained the same value across multiple increment oper-

ations. For subsequent executions, we captured a summary that

included: (i) address and data values of the AHB trace, and (ii)

address and data values of the pipeline trace. Only the captured

summaries (a total of 114 bits) were transferred off-chip. A mis-

match in the data returned to the pipeline, and the data visible

over the AHB helped us localize the bug to the core-cache in-

TABLE II

NUMBER OF STALLS REQUIRED FOR DIFFERENT TRACE BUFFER

CONFIGURATIONS

Bug

#Stalls History (cycles)

DTB Summary DTB Summary

4 kB 3 kB 2 kB 4 kB 3 kB 2 kB

CCI 138 51 77 1332 3491 2374

WIM 94 36 54 1109 2085 1916

NAE 138 51 77 1332 3491 2374

CSL 138 52 78 1332 3534 2307

terface. Further debugging proceeded with a similar approach

until the bug was root-caused to an error in the victim cache

logic.

Table II shows the number of stalls required to transfer the

summaries off-chip, and the maximum duration of activity his-

tory captured in the trace buffer, for the three different configu-

rations of the Overlapped architecture: (i) Detailed Trace Buffer

(DTB) of 4kB, (ii) Summary Trace Buffer (STB) of 3kB and

DTB of 1 kB, and (iii) DTB and STB of 2kB each. We observe

that the number of stalls decrease by 63%, and the activity his-

tory is extended by 162% when a STB of 3kB is used. This re-

duction in stalls is because we dump only the contents of STB.

This resulted in the total time spent on dumping the contents of

trace buffer off-chip from 100.72s to 29.7s, when transferred

over LEON3 SoC’s DSU serial link operating at 115200 bps.

Window Invalid Mask (WIM): The next bug scenario deals

with the corruption of the Window Invalid Mask (WIM) of one

of the SPARCv8 cores in our SoC. Such an error affects the

Register Window operation, ultimately interfering with the cor-

rect return from deeply nested function calls, so the effect is

manifested infrequently and after lengthy intervals. Such a bug

could belong to the class of single bit-flips at flip flops [14, 17].

A corruption of the WIM during the system bootup, led to a

crash after 32646 cycles.

A combination of a summary sequence that captured only

the information on the Current Window Pointer (CWP), and the

detailed instruction trace was extracted to debug the cause of

the crash. We used event triggers to transfer the captured de-

tailed traces off-chip only when CWP changed. The CWP was

selected because the most recent update to the registers prior

to the crash was by the service routine of a window underflow

trap. Unlike CCI, this required us to capture the detailed traces

and summaries simultaneously. The stall reduction is shown in

8B-1

741

Table II.

Non-atomic execution of ldstuba (NAE): Determining

the root-cause of race conditions introduced into applications

due to hardware defects using at-speed debugging is a chal-

lenge because of their non-repeatable nature [18, 11]. We intro-

duced a bug deep in the logic of the atomic exchange instruction

(ldstuba) of SPARCv8 so as to break the mutual exclusion

between the two writer threads.

A summary consisting of: (i) address and data values in AHB

trace, and (ii) data values returned to the pipeline, sufficed to

localize the bug. Trace messages of the increment operation

appearing across multiple cores simultaneously, coupled with

the AHB transactions helped point to a faulty implementation

of ldstuba.

Cache snooping logic (CSL): We introduced a bug into the

cache coherence logic, which in turn, led to a race condition.

The objective was to test the robustness of our methodology

against different bugs that result in similar manifestations. The

race condition was introduced here due to data duplication, in-

stead of mutual exclusion violations. This is possible because

the semaphore is maintained in an alternate address space of

SPARCv8 that bypasses the caches. The shared data is main-

tained in a cachable address space for performance reasons. A

summary that captures (i) address and data values in AHB trace,

and (ii) line numbers of cache lines invalidated due to snoop

hits, was used to determine the root-cause.

None of the previous works on multi-level tracing [18, 13,

12] would be able to detect all the bugs studied above, because

each bug required the capture of a different set of signals, and a

different combination of detailed traces and summaries.

C. Area overhead

We synthesized the Online Filter that generates upto 32 sec-

ondary bits for each type of trace. The last column of Table I

shows the area overhead of each Online Filter for generating

secondary bits of upto 32-bits. The total area consumed by all

the Summarizers is 0.0408 mm2. The Split architecture, with

DTB and STB of 2kB each, occupies 0.216 mm2 of which

0.139 mm2 and 0.077 mm2 are occupied by the DTB and

STB respectively. The Overlapped architecture occupies 0.186

mm2, which is less than that of Split architecture by 13.9% due

to the reduced ports. The Unified architecture has the highest

area overhead of 0.399 mm2. The total area occupied by the

trace buffers and the Summarizers is 0.785 mm2, which is only

2.27% of the area occupied by a 64kB cache.

VII. CONCLUSION

We proposed a new debug methodology that uses a combina-

tion of detailed trace messages, and their summaries to maintain

an extended trace history. This combination of traces is stored in

the existing trace buffer using simple hardware extensions that

occupy less than 2.27% of the area of 64kB cache, but extend

the activity window for which trace history is available by upto

162%. The proposed methodology does not make any assump-

tions about the type of errors and supports at-speed debugging

of different classes of bugs such as non-repeatable errors, and

errors with long suspect windows that are encountered during

post-silicon validation.

REFERENCES

[1] A. Adir, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and J. Schu-

mann, “Leveraging pre-silicon verification resources for the post-

silicon validation of the ibm power7 processor,” in DAC 2011.

[2] T. Bojan, M. Arreola, E. Shlomo, and T. Shachar, “Functional

coverage measurements and results in post-silicon validation of

core2 duo family,” in HLVDT 2007.

[3] E. Anis Daoud and N. Nicolici, “On using lossy compression for

repeatable experiments during silicon debug,” IEEE TC, vol. 60,

no. 7, 2011.

[4] K. Basu and P. Mishra, “Efficient trace data compression using

statically selected dictionary,” in VTS 2011.

[5] H. F. Ko and N. Nicolici, “Mapping trigger conditions onto trig-

ger units during post-silicon validation and debugging,” IEEE TC,

vol. 61, no. 11, 2012.

[6] C.-H. Lai, Y.-C. Yang, and I.-J. Huang, “A versatile data cache

for trace buffer support,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 61, no. 11, pp. 3145–3154, Nov 2014.

[7] R. Abdel-Khalek and V. Bertacco, “Functional post-silicon diag-

nosis and debug for networks-on-chip,” in ICCAD 2012.

[8] J.-S. Yang and N. Touba, “Improved trace buffer observation via

selective data capture using 2-d compaction for post-silicon de-

bug,” IEEE TVLSI, vol. 21, no. 2, Feb 2013.

[9] X. Liu and Q. Xu, “On multiplexed signal tracing for post-silicon

validation,” IEEE TCAD, vol. 32, no. 5, May 2013.

[10] B. Vermeulen, K. Goossens, and S. Umrani, “Debugging

distributed-shared-memory communication at multiple granular-

ities in networks on chip,” in NoCS 2008.

[11] A. Gharehbaghi and M. Fujita, “Transaction-based debugging of

system-on-chips with patterns,” in ICCD 2009.

[12] M. Neishaburi and Z. Zilic, “On a new mechanism of trigger gen-

eration for post-silicon debugging,” IEEE TC, vol. 63, no. 9, Sept

2014.

[13] C.-T. Huang, K.-C. Tasi, J.-S. Lin, and H.-W. Chien, “Application-

level embedded communication tracer for many-core systems,” in

ASP-DAC 2015.

[14] S.-B. Park and S. Mitra, “Ifra: Instruction footprint recording and

analysis for post-silicon bug localization in processors,” in DAC
2008.

[15] A. Hopkins and K. McDonald-Maier, “Debug support for com-

plex systems on-chip: a review,” Computers and Digital Tech-
niques, IEE Proceedings -, vol. 153, no. 4, pp. 197–207, July

2006.

[16] S. Sarangi, A. Tiwari, and J. Torrellas, “Phoenix: Detecting

and recovering from permanent processor design bugs with pro-

grammable hardware,” in MICRO 2006.

[17] A. DeOrio, D. Khudia, and V. Bertacco, “Post-silicon bug diagno-

sis with inconsistent executions,” in ICCAD 2011.

[18] E. Larsson, B. Vermeulen, and K. Goossens, “A distributed archi-

tecture to check global properties for post-silicon debug,” in ETS
2010.

8B-1

742

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

