
A Generic Implementation of Barriers using Optical
Interconnects

Sandeep Chandran, Eldhose Peter, Preeti Ranjan Panda, and Smruti R. Sarangi
Department of Computer Science and Engineering,

Indian Institute of Technology Delhi (IITD),

Hauz Khas, New Delhi – 110016, India

{sandeep, eldhose, panda, srsarangi}@cse.iitd.ac.in

Abstract—Barriers have long been recognized as important
performance-critical constructs in parallel applications. As a
consequence, researchers have proposed fast implementations
of barriers in both traditional electrical networks and in non-
conventional networks such as optical NoCs. We prove in this
paper that current protocols for barriers in optical NoCs are
simplistic and cannot be trivially extended to accommodate for
normal events that arise in regular operation such as presence of
multiple applications, context switches, thread migrations, and
variability in the number of active threads. We propose two
generic protocols for barriers that can take all such cases into
account, are fast, and try to minimize the number of messages
sent over the NoC. One of these protocols is a centralized protocol
(suitable for less cores), and the other is a distributed protocol,
which is scalable. For a suite of standard benchmarks we found
the latter to yield a mean speedup of 30.77% over a design that
uses a hardware tree barrier. Our barrier implementation per se
is roughly 2X and 20X faster than prior implementations that
use transmission lines and electrical links respectively.

I. INTRODUCTION

Due to continued scaling as predicted by the Moore’s
law, we shall have large multicore chips with at least 32 to
64 cores very soon. Moreover, over the next 5-10 years, we
expect to have 128-256 core chips. It will then be possible to
run high performance computing (HPC) applications on such
manycore chips. At the moment such applications are being
run on clusters of servers. However, before the large scale
adoption of such HPC applications on manycore processors,
it will be necessary to implement some standard performance
enhancing features that are already present in high performance
clusters. One of the most important such features is support for
barriers. A barrier is defined as a rendezvous point for multiple
threads. It is most commonly used to start reduction operations
after a set of threads have completed their tasks. Currently,
HPC clusters have either dedicated networks for barriers, or
use fast software implementations of barriers because it is
widely recognized that barriers are critical to performance.
In manycore processors researchers have also realized the
importance of barriers and have thus proposed protocols [1],
[2], [3] for implementing fast barriers.

The problem of implementing barriers in traditional electri-
cal networks has been widely studied. However, recently the
community is aggressively looking at fast non-conventional
on-chip interconnect technologies such as optical and RF
interconnects. As compared to electrical NoCs (network-on-
chips), such interconnects have significantly lower latencies (1-
2 ns corner to corner), higher bandwidth, and naturally support
broadcast based traffic. Some of these features such as the
fast broadcast capabilities confer some unique advantages to
designers for creating protocols for ultra-fast barriers. There
is some preliminary work in this area [4], [5] that proposes

methods for implementing barriers using RF and optical inter-
connects respectively. The basic approach is to use a broadcast
bus to implement a wired-OR or wired-AND kind of logic. For
example with optical NoCs, each core can transmit a signal at
a predetermined wavelength on a broadcast bus, when it has
reached a barrier. When a core receives signals from all the
other cores (at their specified wavelengths), it can decide to
proceed past the barrier. There are many alternative renditions
of this protocol that we can design. For example, we can
change the sense of the signals (transmit before the barrier,
and then stop), or transmit a signal at only a single wavelength
and a core can absorb it if hasn’t reached the barrier.

In this paper, we identify a fundamental issue with such
prior proposals, which are simplistic in our view. In specific,
they assume that the number of cores is equal to the number
of threads, every thread is interested in entering the barrier,
there are no context switches or thread migrations, and we do
not need to support multiple barriers at the same time. All of
these are fairly restrictive assumptions, and do not hold for
programs running in the field. It is hard to fathom a system
that does not allow multiple applications to run in parallel,
and assumes before hand or at compile time that we know
about the behavior of all the threads in a program. Traditional
methods to implement barriers with electrical NoCs also make
some of these restrictive assumptions. However, it is easy to
design methods to circumvent these special cases because the
latencies involved in electrical NoCs with complex routers are
large (50-100 cycles). For example, in typical hardware tree
based barriers, we can change the structure of the tree if there
is a context switch, or we can resort to a centralized protocol
where all threads send their status to a central entity. There will
be no correctness issues. With non-conventional NoCs (such as
optical NoCs) the same set of options are available. However,
the main benefit of implementing a barrier on an optical NoC,
which is speed, needs to be sacrificed. It will take time to take
corner cases into account, and we will not be able to achieve
our original aim of having a very fast barrier implementation.

As a part of our work, we prove that current protocols
cannot be trivially extended to consider all the cases that are
possible during normal operation. There will be correctness
issues. To implement a generic protocol for barriers, we prove
(see Section III and online Appendix [6]) that we need to
maintain state consisting of at least �log(N)� bits (N is the
number of threads), maintain and broadcast a unique barrier-
id, and elect a leader (co-ordinator) among the threads if
we wish to get a O(N) times reduction in the number of
messages that are sent. Keeping these requirements in mind,
we design a new protocol that allows us to implement the
general case, where a barrier allows an unbounded number of
unknown participants, and is immune to problems caused by

2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems

978-1-4673-8700-2/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2016.16

334

2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems

978-1-4673-8700-2/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2016.16

347

2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems

978-1-4673-8700-2/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2016.16

349

thread migrations and context switches. We simulate both a
centralized and distributed version of our protocol for a suite
of standard benchmarks (Livermore Loops [7] and Parboil [8]).
Our barrier release latency in the distributed protocol is 2
processor cycles (1 cycle=500 ps). We show that the mean
speedup with the distributed protocol is 30.77% over the hard-
ware tree barrier for a standard suite of Livermore and Parboil
benchmarks. Our barrier implementation per se is faster (in
terms of release latency) than state of the art implementations
using transmission lines and electrical links by factors of 2X
and 20X respectively. We designed and synthesized all our
hardware units using industry standard tools, and showed that
the area overheads are minimal (0.01% for a 400mm2 chip).

II. BACKGROUND AND RELATED WORK

Basics of Barriers: A barrier is a software construct that
allows multiple threads (in a barrier group) to synchronize.
It has four attributes – (i) capacity (number of threads in
the barrier group), (ii) count (number of threads that have
currently reached the barrier), (iii) sense (a boolean variable
that switches from 0 to 1 and back with every barrier release),
and (iv) address (physical address that maintains a copy
of the attributes). These attributes are initialized through the
barrier init() operation which can also be performed by a
thread that is not a part of the barrier group. Each thread calls
barrier wait() when it reaches a barrier. When all the threads
in a barrier group reach a barrier they can all be released
simultaneously.

Optical Communication: We assume an off-chip laser source,
and an on-chip SWMR (single writer multiple reader) net-
work [9]. In such a network each transmitter is connected
to all the other receivers using separate optical channels. It
is a widely used network and seamlessly supports broadcast
traffic. We can use any other type of optical network also. Our
protocol is not dependent on the type of optical NoC.

Traditional Barriers: Sampson et al. [1] propose a hardware
assisted barrier that bases its synchronization on the availability
of cache lines. It takes hundreds of cycles. Sartori et al. [2]
propose a Steiner tree based barrier that forms a least weight
minimum spanning tree across the cores that are interested in a
barrier. Threads send messages along the edges of the tree. In
comparison, Stoif et al. [3] propose a centralized approach that
uses a set of counters to keep track of the number of threads
that have entered a barrier. To release a barrier, they use a fast
NoC to broadcast the release event.

Barriers using Optical/RF NoCs: Barriers using novel
technologies have proved to be an order of magnitude faster
than barriers with traditional electrical NOCs. TLSync [4]
proposes to implement barriers using an on-chip transmission
line. Each processor in a barrier group transmits a signal
in a known RF frequency on the shared transmission line
before reaching the barrier. Once it reaches the barrier it stops
transmitting. All processors know about the barrier release
when there is no signal on the transmission line. The main
issue with this paper is that the authors do not discuss how a
frequency for a barrier group is allocated, and secondly they
do not mention what happens if a thread gets swapped out,
or a thread migrates to another core. This is a non-trivial
problem and requires additional state and communication (see
Section III). Binkert et al. [5] envision a barrier purely using
an optical bus based network that makes two passes around

the cores. In the first pass of the bus, they propose to transmit
a signal at a prespecified wavelength along the optical bus
and any core that has not reached the barrier needs to divert
all the light. Once all the threads have reached the barrier
no thread diverts the optical signal, and its presence can be
deduced by sensing for the optical signal in the second pass
of the bus. Allocating a specific wavelength, letting all the
participating threads (which are unknown at compile time)
know about it, and taking care of thread context switches are
non-trivial problems, which have not been discussed in the
original paper. Moreover, it is hard to extend the protocol to
support simultaneous barrier operations by multiple processes
because we are limited by the number of wavelengths (32-64)
that the system can support.

III. THEORETICAL RESULTS

Due to lack of space, we shall only state the main results
of our theoretical contribution here. Readers can refer to the
online technical report posted at [6].

Related work [4], [5] assumes that the states of all the
barriers are available simultaneously, and it is possible to
compute a Boolean function on them. Individual stations
(transmitter/receiver) need not maintain any other state in
memory. We prove that in the general case, where the number
of threads is possibly more than the number of cores, we need
to store at least �log(N − M)� bits in memory, where N
is the number of threads in a barrier group, and M is the
number of threads that are scheduled on cores. It is always
possible that M can be 0, and thus we need to store at least
�log(N)� bits in memory. Current techniques do not propose
any method of incorporating additional state stored in memory.
Second, current approaches send only single bit signals that
indicate whether threads have reached the barrier or not. We
prove that this is not sufficient, and when we have multiple
barriers in the system, we will have correctness issues. It is
necessary to broadcast a unique barrier-id at least once for
each barrier entry/release cycle. Modifying [4], [5] to send
multi-bit signals is non-trivial; it will necessitate changing the
basic communication substrate. Finally, we also prove that it is
necessary to elect a leader among the set of cores running the
threads in a barrier group, if we want to minimize the number
of messages. We show that if we have a leader (co-ordinator)
we can reduce the number of messages by a factor of O(N).
Current approaches do not have a leader, and thus they need
to transmit their status all the time leading to a lot of wasted
laser power. By taking all of these constraints into account we
created a generic protocol that is significantly different and
sophisticated as compared to prior work.

IV. IMPLEMENTATION

We begin by appending each core with a small piece
of hardware called the barrier unit which is responsible for
handling all the barrier operations on behalf of the core, and
it also maintains a local copy of the state of the barrier used
by the current thread. The copy of the barrier-state is made a
part of the context of the thread, and hence, is swapped in and
out during context-switches. This avoids the need to maintain
the barrier-state at the barrier units across context switches,
thereby minimizing the overall area of the barrier unit. This
also enables us to support a potentially unlimited number of
simultaneous barriers.

335348350

message buffers

message queue

message
controller

barrier buffer
barrer id count capacity

comparator

optical channel

optical channel

optical channel

optical channel

optical channel

optical channel

size

queue
 size

size

size

Fig. 1: Central Station (Centralized Protocol)

We assume a 48 bit physical address (similar to AMD64
architectures). Every barrier is uniquely identified by a barrier
id (65 bits): 48 bit physical address, 16 bit process id, and
the sense of the barrier (1 bit). It is important to note that the
barrier-id remains the same across all the participating threads.
Each message passed in our proposed architecture consists of
3 fields, (i) a 3 bit message id that identifies the type of the
message, (ii) the 65 bit barrier id, and (iii) a 6 bit thread
id/barrier count (depending on the message type). The memory
address associated with a barrier stores its count and sense.

A. Centralized Protocol

We add a global structure called the central station that
maintains the state of each barrier in the system, and is
connected to all the cores via optical stations. During the
execution of a barrier init(), the thread sends a REGISTER
message to the central station with the address of the barrier,
and the capacity of the barrier. This creates a new entry
in the barrier buffer inside the central station, along with
initializing the barrier state maintained in the corresponding
memory location. After initialization, as the threads enter the
barrier by invoking barrier wait(), an ENTRY message is sent
to the central station to notify it. This can be done through
either an I/O instruction or a write to a model specific register.
The thread can then perform a spin lock on a dedicated
register, or go to sleep. It is then woken up by the barrier
unit, and allowed to proceed with execution upon the receipt
of a RELEASE message sent by the central station, when the
barrier is released.

Handling Context-switches: If a thread is swapped out
before it can send its ENTRY message, we set a bit in its
context. After it is swapped back, its barrier unit tries to send
the ENTRY message. Secondly, it is possible that when a
RELEASE message arrives, a given thread may be swapped
out. To remedy this problem, each time a thread waiting on a
barrier gets swapped in after a context switch, it checks if its
local copy of the sense matches with the sense of the barrier in
its memory location. In case of a mismatch, the thread releases
itself. To take memory consistency issues into account, it is
best if the thread issues a read request τw cycles after it has
been swapped in. Here, τw is the maximum number of cycles,
a memory write request takes to complete.

Hardware design: Figure 1 shows a high-level design of
the central station. It contains a set of message buffers that
buffer each incoming message for each input channel. The
barrier buffer is implemented as a content-addressable memory
(CAM) that is addressed by the barrier-id. The central station
requires 2 cycles (@ 2 GHz) to process a message. The first
cycle is required to lookup the CAM and access the entry in

the barrier buffer. In the second cycle it increments the count
and checks if the barrier can be released. We implement the
central station as a 2-stage pipeline. The message controller
feeds this pipeline either through the message queue, or from
the message buffers directly.

Finally, it is possible that the number of simultaneous
barriers exceeds the capacity of the barrier buffer. To handle
such scenarios, we propose to add an overflow bit to the central
station. If it is set to 1, then this indicates to the controller
that additional barrier entries are stored in a dedicated region
in main memory.

B. Distributed Protocol

Data: barrier t* barrier (address of barrier in memory)
1 barrier wait(mytid):
2 begin
3 < round1 > broadcast ENTRY message with tid
4 < round2 > T2 ← (tids of all ENTRY messages

received)
5 < round3 >
6 T3 ← (tids of all ENTRY messages received)
7 received ACCEPT: busy wait()
8 received RELEASE: release()
9 received no message: go to round 4

10 < round4 >
11 minTid ← min(T2 ∪ T3 ∪mytid)
12 if minTid = mytid then
13 send ACCEPT message
14 count ← | T2 | + | T3 | + 1
15 isTrans← 0, declare self as co-ordinator (see

lines 18-22), and process messages
16 end
17 end
18 declare self as co-ordinator:
19 after τw cycles:
20 if localSense = barrier.sense then
21 count ← (isTrans) ? count: (count +

barrier.count)
22 end
23 received RELEASE message / release():
24 localSense ← ! localSense
25 release barrier

26 context switch-in:
27 if waiting at barrier then
28 after τw cycles if localSense �= barrier.sense then
29 release()
30 else
31 sleep()
32 end
33 end
34 Co-ordinator: receive ENTRY message:
35 count ← count + #(ENTRY messages received)
36 if count = capacity then
37 send RELEASE message
38 barrier.sense ← !barrier.sense
39 barrier.count ← 0
40 release()
41 else
42 send ACCEPT message
43 end

In the distributed protocol, the decision of releasing a
barrier is taken collectively by the participating threads. The

336349351

44 Co-ordinator: context switch-out:
45 < round1 > send TRANSFER message
46 < round2 > TR ← all REPLY messages
47 < round3 > if TR = φ then
48 barrier.count ← count
49 barrier.sense ← localSense
50 else
51 < round4 > send COUNT message with count
52 end
53 received TRANSFER message:
54 < round2 > send REPLY message with tid
55 < round2 > TR ← tids of all REPLY messages
56 < round3 > if mytid = min(TR ∪ mytid) then
57 isTrans← 1, declare self as co-ordinator
58 end
59 < round4 > receive COUNT message, and set its value

to count

count of the number of threads that have currently reached a
barrier is maintained by a specific barrier unit elected as the
co-ordinator by the participating threads. Every message sent
by a barrier unit is broadcast to all the other barrier units. The
barrier units that are not a part of the barrier group discard
such messages.

Protocol: The distributed protocol is divided into several
rounds. In our implementation of the protocol, a round spans m
clock cycles, and it always starts at a cycle that is an integral
multiple of m (m = 2 in our design). All the barrier units
maintain a cycle count (without any skew). In the first round,
a core sends an ENTRY message with the barrier id (65 bits),
and its thread id (6 bits) to all the cores. In the second round,
the co-ordinator (another barrier unit in the barrier group)
increments the barrier count with the number of ENTRY
messages that it received. If the barrier count is equal to the
capacity of the barrier, then the co-ordinator sends a RELEASE
message in the third round. The co-ordinator proceeds to flip
the sense of the barrier stored at the address associated with the
barrier in the memory, and each participating thread flips its
local sense. If the barrier cannot be released, the co-ordinator
sends an ACCEPT message with the barrier id.

It is possible that there is no co-ordinator, or the co-
ordinator has been swapped out. In this case, the cores do not
receive the ACCEPT message in the third round. Each core
computes the minimum thread id received in the second and
third rounds. The core with the minimum thread id declares
itself to be the co-ordinator in the fourth round (no need to
send a message). It initializes the barrier count with the number
of ENTRY messages received in the last two rounds. We defer
processing context switch events till a barrier unit completes
all its rounds, and all its outstanding memory read requests (if
any) complete. Hence, we can safely assume that a barrier unit
is not interrupted in the middle of processing a barrier wait()
event, or a message sent on the bus.

Handling Context-switches: Before a context switch, the
co-ordinator needs to transfer its role to another barrier unit
that is waiting for the same barrier, if there is one. It broadcasts
a TRANSFER message with its barrier id, and barrier count.
All the other units that have threads in the same barrier group,
reply with their thread id, using a REPLY message in the next
round. Each participating barrier unit computes the minimum
thread id. If a certain barrier unit finds itself to be the new
co-ordinator, then it initializes its state with the barrier count

���������	
����
������

������������
���

����
�����

���

��

��
�����
���

��

��
��������
���
�

���������
������

�������
���� ���

!����� ��	����
� ���
���
���������
�
����� ����	

Fig. 2: Barrier Unit (Distributed Protocol)

equal to 0. The old co-ordinator sends its current count to the
new co-ordinator in a COUNT message. If the old co-ordinator
does not find a new co-ordinator, then it writes the barrier
count and its local sense to a fixed location in shared memory
(barrier address), and then performs the context switch.

It is possible that a set of threads enter the barrier, elect a
co-ordinator, and then all of them get swapped out. Later on
another set of threads enter the same instance of the barrier.
The new co-ordinator needs to be aware of the barrier count
recorded by the old co-ordinator. Hence, we add a new step
after a barrier unit takes on the role of a co-ordinator. It initiates
a read to the barrier address, and if the sense matches, it gets
the value of the barrier count. It then adds the fetched value to
its barrier count. Secondly, a thread might get swapped in, and
then realize that it is waiting for a barrier. The barrier might
have already been released. The barrier unit needs to initiate
a read to the barrier address τw cycles after getting swapped
in, and see if the barrier has been released (check if the sense
has reversed).

Hardware design: The design of a barrier unit implement-
ing the distributed protocol is shown in Figure 2. There are 3
separate controllers within the barrier unit. The barrier wait
FSM handles the barrier operations related to ENTRY and
RELEASE. The co-ordinator FSM deals with electing a co-
ordinator. The last controller, context-swap FSM, is responsible
for handling context switches. These controllers co-ordinate
among themselves based on the message type and the state
of the thread. Since, detection of the minimum thread id is
a crucial step when a co-ordinator is being elected during
ENTRY and TRANSFER, we instantiate a separate block for it,
which is shared between these controllers. The comparators are
arranged as a tree in order to compute the minimum thread-id
quickly. This increases the area overhead but limits latency.
The modulators and detectors convert the signals from the
optical to electrical domain and vice-versa.

We divide the duration of a round into two intervals. In the
first interval, we separately aggregate the ENTRY and REPLY
messages sent by other threads in the barrier group. In the
second interval, we count the number of messages in each
category, and also find the minimum thread id. For both of
these operations, we use a tree of adders, and comparators
respectively. At the lowest level, the tree of adders consists
of 1-bit adders only. The width of the adders increases as we
proceed from the leaves to the root of the adder tree. Each input
bit at the lowest level indicates whether or not a message has
arrived from the corresponding barrier unit. Each comparator
inside the tree of comparators is 6-bits wide (width of the
thread id) and computes the minimum of thread ids of all
the nodes in its sub-tree. These are the slowest operations in

337350352

our distributed protocol, and determine the critical path. An
astute reader might argue that we can have a similar unit in
the central station (centralized protocol) to process messages
in parallel. However, we need to have 64 such units, because
we can have 64 barriers progressing in parallel (one per core).
Secondly, we need dedicated logic to allocate and de-allocate
these units across barrier groups. The resulting complexity,
area and timing overheads are prohibitive.

V. RESULTS

A. Overheads

The main objective of this paper is to design hardware to
support multiple barriers, unknown participants, and context
switches. As discussed in Section II we use a standard optical
SWMR network similar to [9]. The extra network traffic (in a
system with only optical networks) due to the additional barrier
messages is low (< 5%) and we also do not propose any extra
waveguide for this implementation. Due to the low message
overhead, the additional power requirement is minimal. How-
ever, we do require that all the clocks in the barrier controllers
be synchronized with the optical bus clock. Implementing this
is not difficult because the barrier controllers can be in the
same clock domain as the optical stations, which with today’s
technology typically need to run at the same frequency as the
bus clock. Readers can refer to the paper on synchronizers for
optical networks by Ortin-Obon et al. [10].

B. Setup

We simulate the timing of the core, network on chip
(both optical and electrical) and memory systems using the
cycle accurate Tejas architectural simulator [11]. Table I shows
the configuration of the simulated 64 core system. Table IV
shows the optical parameters of the simulated interconnect. We
synthesize the central station, and the barrier units for both the
protocols using the Cadence Encounter RTL compiler with the
90nm UMC standard cell library. The results are scaled to 22
nm using the results in [12]. For the centralized station, we
use 4 message buffers per input channel, 16 channels, and a
32 entry barrier buffer.

We simulate 5 barrier intensive benchmarks (similar to
prior work [4], [1]). Livermore 1 and Livermore 3 kernels are
parallel loops from the Livermore suite [7]. Matrix mult is an
implementation of a parallel algorithm for matrix multiplica-
tion. Monte carlo, and Steady heat are heat flow benchmarks
that were developed in-house using POSIX threads based
on the algorithms given in [13]. For the purpose of fair
comparison, we run the rest of the system using electrical
networks, and use the optical/RF network only for barriers.

In our experiments we set the number of threads equal
to the number of cores, and compare the performance of
our barriers with other barrier implementations. None of the
other hardware based barriers explicitly take context switches
into account. Neither do they propose methods to consider
the associated correctness and performance issues. Hence, we
did not deem it appropriate to compare our results with other
barrier implementations in the presence of context switches.

C. Barrier Latency and Performance

Figure 4 shows the mean release latency of a barrier
across a range of hardware and software implementations. We

always keep the die size constant at 400 mm2 according to
ITRS [14] projections. The tournament and sense reversing
barriers are the most scalable software implementations. Even
beyond 4 cores, they start taking an excess of 1000 cycles.
In comparison, the hardware tree barrier is limited to 120
cycles for a 128 core system. TLSync350 is a fast transmission
line based barrier [4], and it requires 10 cycles across all the
configurations. Without contention, our distributed protocol
requires 3 rounds (6 cycles), and the centralized protocol
requires (4 cycles).

Figure 3 shows the performance improvement of the bench-
marks relative to a HW tree barrier. The speedups of the
distributed protocol range from 2.94 to 85.21%, with a mean
of 30.77%. The speedups of the centralized protocol range
from 1% to 19.9%, and a mean speedup of 8.19% (due to
contention). The increase in performance depends primarily
on the number of instructions executed by a thread between
successive barrier invocations (shown in Table II). As the
number of instructions between successive barrier wait calls
increases from 245 (in Livermore 1) to 8129 (in Steady heat),
the observed speedup dips sharply. Essentially, the perfor-
mance becomes less sensitive to the latency of a barrier.

Let us look at Figure 5 to study the effect of contention
among the participating threads. It shows the number of cycles
taken by Livermore 1 for 300 iterations when the number of
threads is varied from 4 to 128. We observe that the number
of cycles increases with an increasing number of participating
threads in the case of the centralized protocol, but remains
constant in the case of the distributed protocol. This is because
the centralized station is designed to have a queue that contains
messages possibly coming for different barrier groups. Subse-
quently, the messages are sorted by barrier group, and the state
is updated. The process of queueing, sorting, and updating the
state by accessing the barrier buffer is a sequential bottleneck.
Whereas, the co-ordinator in the distributed protocol handles
messages for a single barrier group, and can thus process
messages in parallel without any inspection and buffering.

D. Synthesis results

The modulators and detectors that convert a signal from
the electrical to optical, and the optical to electrical domains
take 100 ps each [15]. The maximum length of an optical
waveguide connecting 16 optical stations on a 400mm2 die is
50mm in the modified SWMR bus topology. Therefore, the
maximum propagation delay is 350 ps. Hence, it takes 550 ps
for an optical broadcast.

The area of the synthesized central station (see Table III) is
19616 μm2 (34% combinational logic, 64% sequential logic).
The barrier unit of the centralized protocol occupies 156 μm2

and has a delay of 40 ps. The total area requirement for the
centralized protocol is: 19616 + 156 × 64 = 29, 600 μm2.
The area occupied by a distributed barrier unit is 1091 μm2

(total: 1091× 64 = 69,824 μm2), and the length of its critical
path is 366 ps. The comparatively low duration of the critical
path is because the operation of the tree of adders and the
tree of comparators is mutually exclusive. There is no round
where both the trees are active. Thus, the total end to end
delay including the optical signal propagation, modulation, and
demodulation time, is 916 ps (which is less than the duration
of a round).

338351353

TABLE I: Processor parameters

Architectural Parameters

Frequency/ Die Size 2GHz/ 400 mm2

Cores 64 (16 clusters)
Technology 22nm
NOC mesh (XY routing)
Fetch /Decode /Issue Width 4/4/4
ROB Size /IW Size 168 / 54
Int Reg / Float Reg 32/32
L1 size (per core) 16KB
L2 size (per cluster) 2 MB
Associativity 1(L1)/ 8(L2)
Latency 2(L1)/ 22(L2)
Memory Controllers 1(per cluster)
Memory Latency 200 cycles

TABLE II: Benchmark characteristics

Benchmark #insts/barrier IPC
Livermore 1 245 2.35
Livermore 3 661 2.51
Matrix mult 694 2.39
Monte carlo 2035 0.73
Steady heat 8129 2.55

TABLE III: Area and latency

Area Latency

Central station 19616 μm2 452ps
Barrier unit 1091 μm2 366ps
(distributed)
Barrier unit 156 μm2 40 ps
(centralized)

Li
ve
rm
or
e_
1

Li
ve
rm
or
e_
3

M
at
rix
_m
ul
t

M
on
te
_c
ar
lo

St
ea
dy
_h
ea
t

M
ea
n

0

20

40

60

80

S
pe
ed
up
(%
)

Distributed
Centralized

Fig. 3: Performance relative to the HW Tree
barrier

TABLE IV: Optical parameters [15], [16]

Optical Parameters
Wavelength (λ) 1.55μm
Width of waveguide (Wg) 3μm
Slab height 1μm
Rib height 3μm
Refractive Index of SiO2(nr) 1.46
Refractive Index of Si (nc) 3.45
Combined transmitter and receiver delay 200 ps
Optical propagation delay 7 ps/mm
Electrical propagation delay 20 ps/mm

 2 4 8 1
6

 3
2

 6
4

 1
28

Number of Cores

1

10

100

1000

10000

100000

B
ar

rie
r

R
el

ea
se

 L
at

en
cy

 (
cy

cl
es

)

Tournament Sense reversing HW tree barrier TLSync 350 Distr. Cent.

Fig. 4: Release latencies of software and hardware barriers

�������	
��	���

�����

�����

�����

�����

�����

��
�
��

�	

�

��
��
�

�����������
�����������

� � � �� �� ��

Fig. 5: Centralized vs. the distributed protocol

VI. CONCLUSION

We have proposed and evaluated two broadcast-based,
barrier protocols – centralized and distributed, which can
handle unknown participants, context switches, and thread
migrations. We use a next-generation SWMR optical bus as
the broadcast interconnect in our implementations. We show
that the distributed protocol scales very well as the number
of participating threads increases and is also well-suited for
applications that require frequent synchronization. We observe
a mean speedup of 30.77% across a suite of 5 parallel
applications relative to a state of the art HW tree barrier.

REFERENCES

[1] J. Sampson, R. Gonzalez, J.-F. Collard, N. P. Jouppi, M. Schlansker,
and B. Calder, “Exploiting Fine-Grained Data Parallelism with Chip
Multiprocessors and Fast Barriers,” in MICRO, 2006.

[2] J. Sartori and R. Kumar, “Low-overhead, High-speed Multi-core Barrier
Synchronization,” HiPeac, 2010.

[3] C. Stoif, M. Schoeberl, B. Liccardi, and J. Haase, “Hardware synchro-
nization for embedded multi-core processors,” in ISCAS, 2011.

[4] J. Oh, M. Prvulovic, and A. Zajic, “TLSync: Support for Multiple Fast
Barriers Using On-Chip Transmission Lines,” in ISCA, 2011.

[5] N. Binkert, A. Davis, M. Lipasti, R. Schreiber, and D. Vantrease,
“Nanophotonic Barriers,” in Workshop on Photonic Interconnects &
Computer Architecture (in conjunction with MICRO 41), 2009.

[6] S. Chandran, E. Peter, P. R. Panda, and S. R. Sarangi, “Fundamental
results for a generic implementation of barriers using optical
interconnects,” 2015. [Online]. Available: http://arxiv.org/abs/1510.
00220

[7] T. Peters, “Livermore benchmarks.” [Online]. Available: http://www.
netlib.org/benchmark/livermorec

[8] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” Center for
Reliable and High-Performance Computing, 2012.

[9] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating Future Network-on-Chip with Nanophotonics,”
in ISCA, 2009.

[10] M. Ortı́n-Obón, L. Ramini, H. Tatenguem Fankem, V. Viñals, and
D. Bertozzi, “A complete electronic network interface architecture for
global contention-free communication over emerging optical networks-
on-chip,” in GLSVLSI, 2014.

[11] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, “Tejas:
A java based versatile micro-architectural simulator,” in PATMOS, 2015.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[13] M. Quinn, Parallel Programming in C with MPI and OpenMP. Tata
Mc-Graw Hill, 2003.

[14] ITRS, International Technology Roadmap for Semiconductors,
2011 (Accessed Feb 10, 2013), http://www.itrs.net/Links/2011ITRS/
Home2011.htm.

[15] M. Haurylau et al., “On-chip optical interconnect roadmap: Challenges
and critical directions,” Selected Topics in Quantum Electronics, IEEE
Journal of, vol. 12, no. 6, pp. 1699–1705, 2006.

[16] I. O’Connor, “Optical Solutions for System-Level Interconnect,” in
SLIP, 2004.

339352354

