
Space Sensitive Cache Dumping for Post-silicon
Validation

Sandeep Chandran, Smruti R. Sarangi, and Preeti Ranjan Panda
Department of Computer Science and Engineering, Indian Institute of Technology Delhi

Hauz Khas, New Delhi – 110016
{sandeep, srsarangi, panda}@cse.iitd.ac.in

Abstract—The internal state of complex modern processors
often needs to be dumped out frequently during post-silicon
validation. Since the last level cache (considered L2 in this
paper) holds most of the state, the volume of data dumped and
the transfer time are dominated by the L2 cache. The limited
bandwidth to transfer data off-chip coupled with the large size
of L2 cache results in stalling the processor for long durations
when dumping the cache contents off-chip. To alleviate this, we
propose to transfer only those cache lines that were updated
since the previous dump. Since maintaining a bit-vector with
a separate bit to track the status of individual cache lines is
expensive, we propose 2 methods: (i) where a bit tracks multiple
cache lines and (ii) an Interval Table which stores only the starting
and ending addresses of continuous runs of updated cache lines.
Both methods require significantly lesser space compared to
a bit-vector, and allow the designer to choose the amount of
space to allocate for this design-for-debug (DFD) feature. The
impact of reducing storage space is that some non-updated cache
lines are dumped too. We attempt to minimize such overheads.
Further, the Interval Table is independent of the cache size which
makes it ideal for large caches. Through experimentation, we
also determine the break-even point below which a t-lines/bit
bit-vector is beneficial compared to an Interval Table.

I. INTRODUCTION

The increasing complexity of modern processors has re-
sulted in the evolution of sophisticated post-silicon validation
features because simulation techniques are inadequate for
executing large test case scenarios [14], [15]. During post-
silicon validation, sample chips are validated on test platforms
where the execution is performed at high speed, but elaborate
mechanisms need to be put in place to identify the cause of
errors once faults are identified. Recent research efforts in this
area have investigated the broad topics of bug localization and
diagnosis [16], [17], [24], trace signal selection [18], [19], and
adaptation of test compression techniques [20], [21].

Among several interesting design-for-debug (DFD) features
used in the industry today, is a dumping mechanism, where
the entire state of the processor is transferred off-chip to the
debug infrastructure, to be analyzed offline. However, such
DFD hardware needs to operate under tight area constraints,
and should cause minimal interference in the normal execution
of the processor. Thus, the goals of an ideal DFD hardware
supporting efficient dumping during post-silicon validation,
are: (i) minimal intrusiveness; (ii) minimal space requirements;
and (iii) maximum visibility into the chip. These requirements
are clearly orthogonal, and balancing the three is a complex
task.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

The entire processor state consists of L1/L2 caches, and
registers in various structures such as pipelines, register files,
TLBs, and reorder buffers. Capturing this state at regular
intervals and analyzing sequences of such snapshots offline
gives crucial hints on possible causes of errors. However, since
the L2 cache is large, transferring each snapshot off-chip is
a time consuming process. We also require that, during the
dumping phase, the processor should not update the cache
since it may lead to inconsistencies. Therefore, the processor
is stalled during the dumping phase. The duration of processor
stalls can be reduced by decreasing the amount of data that is
required to be transferred off-chip [4], [20].

Another way to reduce the amount of data to be transferred
off-chip is by dumping only the cache lines that were updated
after the previous snapshot. The straightforward method of
storing the information on the lines that were updated in
the current dumping cycle is to maintain a bit-vector where
each bit represents a cache line and is set to 1 if the line is
updated. Its disadvantage is that the amount of space required
could be unacceptably large for the large caches of modern
processors since the bit-vector size equals the number of cache
lines. In this work we attempt to store the information about
updated cache lines in less space than that required by a bit-
vector representation, and allow the designer to control the
area overhead. The reduction in space utilized to capture the
information on updated cache lines in our proposed structure,
may lead to a small increase in the number of lines transferred
off-chip, which in turn, results in slightly longer durations of
the dumping phase as compared to that of bit-vector.

II. RELATED WORK

The challenge of limited visibility posed during post-silicon
validation is generally handled by two broad approaches:
tracing signals and event triggers. Most of the issues that arise
when tracing signals are due to limited storage space available
on-chip to store the signal values. This is improved by getting
rid of redundant signals and intelligently choosing the signals
for tracing. This improves the usage of trace buffers, as they
can now store values of many more signals than previously
possible. Novel methods have been proposed to solve issues
related to tracing signals for debugging purposes [1], [2], [3],
[5]. On the other hand, event triggers have a different set of
issues, including defining the triggers correctly, storing the def-
initions of triggers, and routing signals to and from the on-chip
control units that decide whether or not an event has occurred.
Some novel solutions to these problems have been proposed
recently by researchers [6], [7], [8], [9]. Recently, transaction
based debugging methods such as [10] and [11] have been

proposed. Other methods have been proposed for inferring
the subset of signals responsible for the faulty behaviour by
observing the manifestations of these signals on other easily
observable parameters [12], [13], [22], [23]. Some research
works also target compression [25], [26] and analysis [27]
of traces collected from executions, which are then used for
simulations or bug localization. Our method is orthogonal to,
and complements the above mentioned approaches in that it is
targeted at capturing a relatively complete snapshot of the chip
state. The other approaches are still applicable in this context,
during the processor execution cycle between successive state
dumps.

The field of data clustering, where n data points are
grouped into k-clusters while minimizing a distance metric,
is conceptually close to our area of work. We explored this
method by adapting a well-established clustering algorithm
BIRCH [28] to suit our scenario. In spite of the conceptual
similarities, a direct application of this method to hardware
will be inefficient because (i) operations such as split and
rebuild (which are central to BIRCH) are very time consuming
(ii) the complex algorithm would increase the area overhead,
defeating the main objective of our work. Our preliminary
simulations showed that BIRCH gave inferior results compared
to the proposals in this paper. Hence we did not synthesize this
algorithm.

Our work is similar in scope to [4] and [29], where the
cache contents are compressed using well-established com-
pression algorithms in order to reduce the amount of data
transferred off-chip. Our proposal focuses on two important
differences from the above works: (i) using very little space,
track and dump only the updated cache lines; and (ii) allow
the designer to parameterize this DFD feature based on an area
constraint. The compression techniques proposed above can be
applied on the cache lines that are marked as updated by our
technique to further reduce the size the data transferred off-
chip; this further strengthens the state dump-driven debugging
philosophy that these approaches follow.

III. METHODOLOGY

A. Definitions

Definition 1: A bit-vector corresponds to a sequence of
0s and 1s, where 1 indicates that the corresponding cache line
was modified after the previous cache dump and 0 indicates
otherwise.

Definition 2: We define the Overhead as the number of
non-updated cache lines that are transferred off-chip, expressed
as a percentage of the total number of cache lines.

The high spatial locality of reference in caches is the
primary motivation to use lesser space than a bit-vector to
track updated cache lines. Our proposals exploit this property
to save storage space.

B. Method 1 : t-lines/bit bit-vector

This method maps each bit to t (> 1) adjacent cache lines.
A bit is set to 1 if any of the t cache lines to which it
corresponds is updated after the previous cache dump. This
method reduces the amount of storage required by (1t). A
designer has the flexibility to choose any value of t that
satisfies the area budget. A large value of t increases the

overhead due to an increase in the number of non-updated
cache lines in the proximity of an updated cache line. In
Figure 1, columns (ii), (iv) and (vi) illustrate the t-lines/bit
bit-vector for t = 2 corresponding to the bit-vectors shown in
columns (i), (iii) and (v) respectively. The respective overheads
incurred are shown in the bottom row.

C. Interval Table

Definition 3 : A pair of starting address and ending address
(start addr, end addr) defines an Interval. A set of k intervals
is stored in an Interval Table I[k].

Unlike the previous method, this method does not partition
the cache lines into fixed size sets. Instead, a continuous run
of 1s in the bit-vector is stored as an Interval. The amount of
storage required to store an Interval is constant irrespective of
the length of the run of 1s. The shaded portion in columns (i),
(iii) and (v) of Figure 1 shows the set of cache lines marked
as updated by an Interval Table with k = 1.

(i)

2
1

3
4
5
6
7
8
9
10
11
12
13
14
15

0 1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0

1
1
1
1
0
0
1
0
1
1
1
1
0
0
0
0

1

1

1

1

1

1

1

1

Cache Lines

Updated :
Dumped :
Overhead :

1

1

1

1

1

1

0

0

1

1

0

1

1

1

0

0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

11
11
0.0

11
12
6.25

9
12

18.8

11
12
6.25

8
15

43.8

8
16
50

(ii) (iii) (iv) (v) (vi)

Fig. 1. Example of a Bit-vector
with corresponding 2-lines/bit bit-
vector. The shaded portion of bit-
vector shows the dumped lines us-
ing Interval Table with k = 1

St. Ad Length
2 1
4 2
9 1
11 4

(a)

St. Ad Length
11 4
4 2
2 1
9 1

(b)

St. Ad End Ad
0 10
15 15

(c) - Bit vector (ii)

St. Ad End Ad
0 3
6 10
15 15

(d) - Bit Vector (iii)

2
1

3
4
5
6
7
8
9
10
11
12
13
14
15

0 1
1
0
1
0
0
1
1
1
0
1
0
0
0
0
1

1
1
0
1
0
0
1
1
1
0
1
0
0
0
0
1

1
1
0
1
0
0
1
1
1
0
1
0
0
0
0
1

Cache Lines Bit Vector
(i) (ii) (iii)

Fig. 2. Illustration of the optimal
offline algorithm (a) Initial Gap Ta-
ble (b) Sorted Gap Table (c) Opti-
mal Interval Table for k = 2 (d)
Optimal Interval Table for k = 3

There are two adversarial situations to the Interval-based
approach in practice: (i) in a bit-vector, the actual number of
runs of 1s can be very large, and (ii) the length of some runs
can be smaller than the number of bits required to store its
starting and ending addresses. To overcome the former issue,
we merge some adjacent intervals to reduce the number of
stored intervals to k. The effect of the latter is sought to be
overcome by the space saved when there are long runs of
1s. Since log2N bits are needed to address N cache lines,
storing k intervals requires 2klog2N bits, and it is essential that
2klog2N < N (or k < N

2log2N
) for the Interval Table to save

space over the bit-vector. Therefore, the main challenge now
is to capture the information (starting and ending addresses)
of n runs of 1s in just k intervals where n� k.

Merging adjacent intervals due to the upper bound on k,
will capture some non-updated cache lines into the intervals,
which leads to overheads. Thus, the intervals with the smallest
runs of non-updated cache lines between them should be
merged. However, determining the nearest intervals is non-
trivial because of the online nature of the problem. Interval
Table I[k] needs to be maintained as and when the cache lines

are being updated. Intervals that were far apart at some point
in history can become the nearest if subsequent updates by the
processor occur to the cache lines between the two intervals.
Such problems are common in practical online algorithms,
such as page replacement.

D. Optimal Offline Algorithm

Definition 4: A set of k intervals O[k] is said to be
Optimal if no other set of k intervals exists with a lower
overhead.

The optimal algorithm takes the number of intervals k that
can be stored and the set of all updated cache lines as inputs
and returns the optimal set of k intervals for these inputs.
It is an offline algorithm, which requires the entire set of
updated lines as input. The solution returned by the optimal
algorithm helps determine the theoretical lower limit of the
overhead when using the Interval Table method to maintain
the information on updated cache lines and can be used as
a benchmark to compare the performance of the other online
algorithms.

Definition 5: A continuous run of non-updated cache lines
is called a Gap and a Gap Table holds the starting address and
the length of the current set of Gaps.

Algorithm 1 Optimal offline algorithm
Input: Bit vector B < 0..n− 1 >, Number of Intervals k
Output: Optimal set of k intervals O[k]

1: Store (start addr, length) of all gaps in B, in Gap Table
Gap[]

2: Sort the Gap Table in descending order of the gap lengths
3: Select topmost (k− 1) entries and sort them in ascending

order of start addr
4: O[0].start addr ← Address with first 1 in B
5: for i = 0 to k − 1 do
6: O[i].end addr ← Gap[i].start addr −1
7: O[i+1].start addr ← Gap[i].start addr + Gap[i].length
8: end for
9: O[i+ 1].end addr ← Address with last 1 in B

Algorithm 1 summarizes the offline strategy. Line 1 con-
structs a Gap Table by iterating over the bit-vector B and
storing the starting address and length of the continuous runs
of 0s. This is illustrated in Figure 2(a) for the initial bit-vector
marked (i). After constructing the Gap Table, Line 2 sorts it
in the descending order of the gap lengths (Figure 2(b)). The
top k − 1 entries are relevant to us. We first sort them in
increasing order of the start addresses (Line 3). Lines 5-8 in
the algorithm construct the final set of k intervals (O[k]) by
simply eliminating the cache lines constituting the topmost
k − 1 gaps in the sorted Gap Table. Figure 2(c) and 2(d)
indicate the optimal set of intervals (O[k]) for k = 2 and
k = 3 respectively. The corresponding bit-vectors are shown
in Figure 2(ii) and 2(iii) with the shaded regions indicating
the stored intervals. Some special cases are omitted in the
algorithm for the sake of simplicity of presentation.

E. Method 2 : Greedy algorithm

We propose a greedy online algorithm to capture the
information on updated cache lines into Interval Table I[k].
When the number of runs of 1s exceeds k, we merge adjacent

1

Start Address
End Address

Min Local Gap
Min Global Gap 3

0
3

9
10

14
15

0
3

7
10

14
15

-
-

1
1
1
1
0
0
0
1
0
1
1
0
0
0
1
1

2
1

3
4
5
6
7
8
9
10
11
12
13
14
15

0 1
1
1
1
0
0
0

0
1
1
0
0
0
1
1

1

Local
Gap 1

Local
Gap 2

Global
Gap

1

Global
Gap

2

Cache Lines

(a) (b)

Fig. 3. (a) Illustration of local gaps
and global gaps (b) Final bit-vector
on accommodating new incoming
request

Cache Lines

2
1

3
4
5
6
7
8
9
10
11
12
13
14
15

0

1

1
1
1
0
0
1
1
0
0
0
1
0
0
0

0

1
1
1
0
0
1
1
0
0
0
1
0
0
0

0
1

St. Ad End Ad
0 2
5 6
10 10
(b) - bit vector (i)

St. Ad End Ad
0 6
- -

10 10
(c)

St. Ad End Ad
0 6

10 10
- -

(d)

St. Ad End Ad
0 6

10 10
14 14

2 3
(a)

Min
Local
Gap

Min
Global
Gap

(i)
(e) - bit vector (ii)

(ii)

Fig. 4. Illustration of greedy
algorithm when minGlobalGap is
smaller than minLocalGap

intervals to form a larger interval. Since this action causes
us to include some 0s in the interval, we select for merging
two adjacent intervals with minimum Gap between them. Of
course, some of the included 0s may get updated to 1 in the
future due to spatial locality of accesses.

Algorithm 2 Greedy algorithm (Online)
Input: cache line lineNum, Number of Intervals k
Output: I[k] at time t

1: minLocalGap ← N
2: minGlobalGap ← N
3: for i = 0 to k − 1 do
4: if lineNum is within interval I[i] then
5: return
6: else
7: minLocalGap ← min((lineNum−I[i].end addr),

(I[i+ 1].start addr − lineNum), (minLocalGap))
8: minGlobalGap ← min((minGlobalGap), (I[i +

1].start addr −I[i].end addr))
9: end if

10: end for
11: merge intervals around min(minGlobalGap, minLocalGap)
12: place the lineNum in suitable interval (singleton if re-

quired)

Definition 6: Local Gap is the distance of a newly
updated cache line to a boundary of its nearest runs of 1s.
minLocalGap is the minimum among the two local gaps (one
to each boundary). Global Gap refers to the distance between
adjacent intervals already stored in the Interval Table I[k].
Similarly, minGlobalGap is the minimum among the k − 1
global gaps.

The greedy strategy is outlined in Algorithm 2. The for-
loop iterates over all the stored intervals, and checks for
membership of the newly updated cache line lineNum in the
corresponding interval. If lineNum is already part of a stored
interval, the algorithm returns without modifying anything.
Otherwise, lineNum lies in a gap between two intervals.
minLocalGap captures the smallest distance of lineNum to
its nearest interval. Similarly, minGlobalGap stores the min-
imum distance between any two previously stored adjacent

L2 Cache
Co

nt
ro

lle
r

De-MUX

min
GlobalGap

min
LocalGap

check
Interval

Dumping
Logic

Select Lines

Merge
Logic

Cacheline
Number

Update
Buffer

Busy

Reset

Dump

Read
Port

Write
Port

Start

2
1

3
.

k

.

.

.

.

.

.

End

Fig. 5. Hardware design of Greedy algorithm

intervals. On exiting the for-loop, the algorithm would have
determined the least possible distance when accommodating
lineNum. In case minLocalGap is smaller, the new cache line
lineNum will be merged to its nearest adjacent interval. This
requires modification only to the nearest stored interval. In
case minGlobalGap is smaller, then the intervals around the
minGlobalGap will be merged to create space to store lineNum
in an interval of its own.

Figure 3(a) shows the local gaps and global gaps for a
newly updated cache line (lineNum = 7) with an Interval Table
of size 3. Here, minLocalGap (for gap <8,8>) is smaller
than minGlobalGap (for gap <11,13>) and hence only the
nearest stored interval (<9,10>) is extended to accommodate
7. Figure 3(b) shows the final state of the Interval Table I[k]
and the corresponding bit-vector.

Figure 4 illustrates an example where minGlobalGap is
smaller than minLocalGap. In this case, the intervals around
the minGlobalGap (<0,2> and <5,6>) are merged (as shown
in Figure 4(c)) so as to create space for lineNum (14 in this
example). Once space is created, lineNum is stored in a new
interval by itself (<14,14>).

The advantages of the Greedy algorithm are: (i) the storage
space required is independent of the number of cache lines
unlike bit-vector (ii) the granularity of addressable units can
also be increased to t-lines instead of 1 line – larger t values
causes a decrease in the number of bits stored in the Interval
Table. The proof that the overhead is within 2x of that reported
by the optimal algorithm is outlined in [30].

IV. HARDWARE DESIGN

In this section, we discuss our design choices when
implementing Greedy algorithm in hardware. The hardware
implementation of bit-vector is straightforward and is not
discussed.

A. Sorted Storage of Intervals

We decided to store the intervals in the Interval Table
I[k] in sorted order (based on their starting address). This
simplifies the computation of minLocalGap and minGlobalGap
in Algorithm 2. Had we stored intervals in unsorted order, find-
ing the nearest two intervals (minGlobalGap) would require,
for every interval, iteration over all the other stored intervals
(O(k2) time). Now, in the case when minGlobalGap is smaller
than minLocalGap, we have to shift some stored intervals,
through a sequence of swaps to maintain the sorted order of

the table. Figure 4(b),(c),(d) and (e) illustrate the sequence of
operations when minGlobalGap is smaller than minLocalGap.
The movement operation requires O(k) time.

B. Logic Design

Figure 5 shows the detailed design of the hardware im-
plementation of the Greedy algorithm. The hardware uses
a single dual-ported memory to store all the k intervals.
After each interval is read out in sequence, the check for
membership, computing minLocalGap and minGlobalGap is
performed simultaneously. If the newly updated cache line
is determined to be a member of an existing interval, the
Controller aborts all the in-flight operations and returns to
the initial state. Otherwise, the Local Gaps and Global Gap
are computed for the interval and checked against the current
minLocalGap and minGlobalGap. If either the Local Gap or
Global Gap is smaller than minLocalGap or minGlobalGap
respectively, the new values are stored, along with the index
of the interval. The Controller then decides the intervals that
are to be merged based on the values of minLocalGap and
minGlobalGap. In subsequent cycles, the suitable intervals are
read out, merged and written back at suitable locations to the
Interval Table I[k].

Reading and computing minLocalGap and minGlobalGap
requires k cycles. The merging operation would take 2 cycles.
Some intervals may have to be shifted in order to accommodate
the newly updated cache line. In the worst case, such move-
ment of intervals require k − 1 cycles, wherein all the k − 1
intervals need shifting. Thus, our design requires a maximum
of 2k + 1 cycles to accommodate a newly updated cache line
into the Interval Table I[k]. The check for membership of
the newly updated cache line in the Interval Table can be
done faster by using binary search through all the intervals
of the Interval Table. However, we cannot avoid visiting
all the intervals as we have to compute minLocalGap and
minGlobalGap required by the algorithm.

C. Update Buffer

We use an Update Buffer to temporarily store cache line
update requests that are received when the hardware is busy
processing the current cache line update. During the 2k + 1
cycles described above, the processor is not allowed to update
any other cache line. Such stalls could potentially slow down
the execution if they occur frequently. To minimize the impact
of such stalls, we include a small buffer to hold the addresses
of the cache lines that are updated while the hardware is
busy. Clearly, as the size of this Update Buffer increases, the
number of processor stalls decreases, but the debug-hardware
area increases. The designer can control the size of the Update
Buffer. We examine its implications in Section V.

V. EXPERIMENTS

A. Setup

We used a simulation infrastructure to evaluate the impact
of our DFD hardware, and synthesized our proposed designs
with a 90nm ASIC library. Our simulation setup consists of
three components: (i) a Pintool [31] to generate a trace of all
the memory addresses accessed by the processor during the
execution of a benchmark; (ii) an in-house, functional, cache

simulator which instruments the cache using the traces gener-
ated in the previous step; and (iii) A Validation Engine which
uses the proposed algorithms to maintain the information on
the recently updated cache lines.

The cache simulator and the Validation Engine were pro-
grammed in C++ on Linux platform. We used trace-driven
functional cache simulator for faster simulations. However, to
determine the size of the Update Buffer, we used Simplescalar
as this required cycle accurate simulations. We also maintained
a bit-vector to track the updated cache lines during the sim-
ulations, which is necessary to compute the overheads of the
proposed methods. The final state of the bit-vector is used as
input to the optimal offline algorithm (Algorithm 1).

All simulations discussed in subsections V-B to V-E used
L1 caches with 32KB size, 2-way associativity, 32B per line;
and L2 caches with 2MB size, 8-way associativity, 128B per
line. We used CACTI 6.5 to estimate the cache areas. The
designs were implemented in VHDL and synthesized using
Cadence Encounter RTL compiler.

B. Overhead vs. Size of Interval Table (k)

We varied the size of the Interval Table from 4 to 32
for 8 different benchmarks (6 and 2 from Mediabench-I &
II respectively). The actual value of k need not be limited to
powers of two. For our selected L2 cache configuration, the
upper limit on k is given by 16384

2∗log2(16384) ≈ 585 intervals,
where 16384 is the total number of cache lines.

Figure 6 shows the overhead in the number of cache lines
dumped for various sizes of Interval Table. We observe that,
as the size of the Interval Table increases from 4 to 32, the
overhead decreases for both Optimal and Greedy algorithms, as
expected. Moreover, we also observe that the actual overhead
is less than 5% when k ≥ 8 for all benchmarks. The average
and maximum overheads of Greedy algorithm when k = 16,
are 2.1% and 3.72% respectively.

We also observe that the overhead of the Greedy algorithm
nearly matches that of the Optimal algorithm. The average
additional overhead of the greedy algorithm is under 1% for
all benchmarks for all values of k. The maximum additional
overhead of 1.7% occurs for adpcm dec when k = 4. The
maximum additional overhead is just 0.16% when k = 16
for gsm enc. These low overheads of the online algorithm
can be attributed to the locality of references in cache and
memory accesses (as discussed in Section III-E). Our hardware
implementation of the Greedy algorithm uses 16 intervals. The
choice of k represents a trade-off between area overhead and
dumping overhead, and is configurable by the designer based
on a profiling of the target applications.

C. t-lines/bit bit-vector vs Interval Table

Figure 7 shows the overhead for t = 2, 4, 8, 16, 32 and 64.
We observe that, as t increases from 2 to 16, the overhead
increases too. This is expected, as for larger values of t, larger
number of cache lines are tracked together. The average and
maximum overheads of Greedy algorithm with k = 16 lie in
between that of 4-lines/bit (1.38% and 2.35% respectively) and
8-lines/bit bit-vectors (2.42% and 4.1% respectively).

ad
pc

m
_d

ec

ad
pc

m
_e

nc

gs
m

_d
ec

gs
m

_e
nc

g7
21

_d
ec

g7
21

_e
nc

cj
pe

g

dj
pe

g

Buffer Size

0

0.5

1.0

1.5

2.0

2.5

S
lo

w
d
o
w

n
 (

%
 o

f
e
x
e
c
u
ti
o
n
 t
im

e
)

 4 8 16

Fig. 8. Slowdown vs. Buffer Size

TABLE I
AREA OVERHEAD

t-lines/bit bit-vector (%) Greedy algorithm (%)
t=1 t=2 t=4 t=8 t=16 k=16

10.28 4.8 2.21 1.27 0.57 0.64

D. Update Buffer Size vs. Processor stalls

Figure 8 shows the slowdown experienced by the processor
as a result of the stalls induced when the hardware (correspond-
ing to Greedy algorithm) is busy when a new cache line update
arrives. Since the computational complexity associated with a
t-lines/bit bit-vector is limited, the slowdown experienced by
processor is negligible and hence is not considered here. We
considered Update Buffer sizes of 4, 8, and 16. We observe
that for all the benchmarks, as the buffer size increases from
4 to 32, the slowdown decreases. This slowdown is negligible
(less than 1%) in 6 out of 8 benchmarks and is maximum
(2.3%) in the case of cjpeg for buffer size of 4. Based on
these observations, we decided to use an Update Buffer of
size 4 for the hardware implementation.

E. Area overhead

We synthesized the designs corresponding to the conven-
tional bit-vector, t-lines/bit bit-vector for t = 2, 4, 8 and 16 and
the Greedy algorithm (as discussed in Section IV) using 90nm
technology standard cell library. The processor stalls computed
earlier used the delays of these designs. Table I shows the
results as a percentage of the overall cache area.

The highlight of this experiment is that the Greedy method,
in spite of the additional computational complexity, has an area
overhead of only 0.64% as compared to 10.28% of a conven-
tional 1-line/bit bit-vector. The savings due to reduction in
storage space is more than the increase in combinational logic
due to added processing complexity of the Greedy algorithm.
As expected, the area of t-lines/bit bit-vector proportionally
decreases as we increase the value of t.

We also observe that the area overhead of the Greedy
algorithm is lesser than that of 4-lines/bit and 8-lines/bit bit-
vector, although the dump overhead of Greedy algorithm lies
in betweeen the two (as observed in Section V-C).

F. Overhead vs Cache Size

As the cache size (number of lines) decreases, we reach
a break-even point where the overhead and area of Greedy

ad
pc

m
_e

nc

g7
21

_d
ec

od
e

gs
m

_d
ec

ad
pc

m
_d

ec

gs
m

_e
nc

cj
pe

g

dj
pe

g

g7
21

_e
nc

od
e

 Benchmarks

0

2.0

4.0

6.0

8.0

10.0
 O

v
e

rh
e
a

d
 %

Optimal_4
Greedy_4
Optimal_8
Greedy_8

Optimal_16
Greedy_16
Optimal_32
Greedy_32

Fig. 6. Overhead of Optimal and Greedy algorithms

ad
pc

m
_e

nc

g7
21

_d
ec

od
e

gs
m

_d
ec

ad
pc

m
_d

ec

gs
m

_e
nc

cj
pe

g

dj
pe

g

g7
21

_e
nc

od
e

 Benchmarks

0

2.0

4.0

6.0

8.0

10.0

 O
v
e
rh

e
a
d
 %

2-lines/bit
4-lines/bit
8-lines/bit

16-lines/bit
32-lines/bit
64-lines/bit

Fig. 7. Overhead of t-lines/bit bit-vector

algorithm and a t-lines/bit bit-vector are similar; below this,
the t-lines/bit bit-vector is more beneficial than the Greedy
approach. Our experiments indicate that the break-even point
is 4096 lines (L2 cache of 256KB size, 4-way, 64B per line).
For this configuration, the average and maximum overhead of
Greedy algorithm with k = 16 (2.96% and 4.76%) is closer to
that of 4-lines/bit bit-vector (2.56% and 4.35% respectively).
The area overheads of Greedy algorithm and 4-lines/bit bit-
vector using this configuration was also found to be similar
(3.09% and 3.18% respectively). When going from a cache
size of 2MB to 256KB, the area of Greedy algorithm showed
a marginal downward trend – this is because the table sizes
gradually decreased but the other logic was almost constant.
This makes the Greedy algorithm ideal for large caches.

VI. CONCLUSIONS

In this work, we proposed two space sensitive techniques
to keep track of the cache lines that are updated after the
previous transfer of L2 cache contents off-chip, during post-
silicon validation. One major feature of the proposed DFD
hardware is that, the designer can tune them to match his
area budget. Our proposed methods use a small fraction of
the overall cache area with an average dumping overhead of
less than 2.5% as compared to over 10% area overhead of a
simple bit-vector. For a 90nm library, the break-even point at
which both the methods perform similarly in terms of overhead
and area are caches with 4096 lines. For caches with number
of lines less than this, t-lines/bit bit-vector is better. The area
of our Interval Table based design is almost independent of the
cache size, which makes it ideal for large last level caches.

REFERENCES

[1] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in DATE, 2008.

[2] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement
in post-silicon validation,” in DATE, 2009.

[3] Q. Xu and X. Liu, “On signal tracing in post-silicon validation,” in
ASP-DAC, 2010.

[4] P. R. Panda, M. Balakrishnan, and A. Vishnoi, “Compressing cache
state for postsilicon processor debug,” IEEE TC, 60(4), 2011.

[5] H. Shojaei and A. Davoodi, “Trace signal selection to enhance timing
and logic visibility in post-silicon validation,” in ICCAD, 2010.

[6] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”
in DAC, 2006.

[7] K. Goossens, B. Vermeulen, and A. Nejad, “A high-level debug envi-
ronment for communication-centric debug,” in DATE, 2009.

[8] H. F. Ko and N. Nicolici, “On automated trigger event generation in
post-silicon validation,” in DATE, 2008.

[9] H. Yi, S. Park, and S. Kundu, “A design-for-debug (DfD) for NoC-based
SoC debugging via NoC,” in ATS, 2008.

[10] A. Gharehbaghi and M. Fujita, “Global transaction ordering in network-
on-chips for post-silicon validation,” in (ISQED), 2011.

[11] E. Singerman, Y. Abarbanel, and S. Baartmans, “Transaction based pre-
to-post silicon validation,” in DAC, 2011.

[12] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-silicon validation
of the memory subsystem in multi-core designs,” in HPCA 2009.

[13] S.-B. Park and S. Mitra, “IFRA: instruction footprint recording and
analysis for post-silicon bug localization in processors,” in DAC, 2008.

[14] K.-H. Chang, I. L. Markov, V. Bertacco, “ Automating post-silicon
debugging and repair.” ICCAD 2007.

[15] Y.-S. Yang, A. G. Veneris, N. Nicolici, M. Fujita, “Automated data
analysis techniques for a modern silicon debug environment.” ASP-DAC
2012.

[16] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim, H.
Naeimi, D. S. Gardner, S. Mitra, “ QED: Quick Error Detection tests
for effective post-silicon validation.” ITC 2010.

[17] A. DeOrio, D. S. Khudia, V. Bertacco: Post-silicon bug diagnosis with
inconsistent executions. ICCAD 2011.

[18] H. F. Ko, N. Nicolici, “ Automated trace signals selection using the
RTL descriptions.” ITC 2010.

[19] D. Chatterjee, C. McCarter, V. Bertacco, “ Simulation-based signal
selection for state restoration in silicon debug.” ICCAD 2011.

[20] E. Anis, N. Nicolici, “ On using lossless compression of debug data in
embedded logic analysis.” ITC 2007

[21] E. A. Daoud, N. Nicolici, “ On Using Lossy Compression for Repeat-
able Experiments during Silicon Debug.” IEEE TC, 60(7), 2011.

[22] E. Daoud and N. Nicolici, “Embedded debug architecture for bypassing
blocking bugs during post-silicon validation,” IEEE TVLSI, 15(2), 2011.

[23] L. Lee, L.-C. Wang, T. Mak, and K.-T. Cheng, “A path-based method-
ology for post-silicon timing validation,” in ICCAD, 2004.

[24] S.-B. Park, A. Bracy, H. Wang, S. Mitra, “ BLoG: post-silicon bug
localization in processors using bug localization graphs.” DAC 2010.

[25] P. Michaud, “Online compression of cache-filtered address traces,”
ISPASS, 2009.

[26] K. Basu and P. Mishra, “Efficient trace data compression using statically
selected dictionary,” in VLSI Test Symposium (VTS), 2011.

[27] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in DAC 2010

[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” SIGMOD Rec., 1996.

[29] A. Vishnoi, P. R. Panda, and M. Balakrishnan, “Online cache state
dumping for processor debug,” in DAC, 2009.

[30] A. Kumar, P. R. Panda, and S. Sarangi, “Efficient on-line algorithm for
maintaining k-cover of sparse bit-strings,” in FSTTCS 2012., in press.

[31] V. R. A. Settle, D. Connors, and R. Cohn, “Pin: A binary instrumenta-
tion tool for computer architecture research and education,” in WCAE,
2004.

