
An Introdu
tion to Operational Semanti
s

Sanjiva Prasad S. Arun-Kumar

February 4, 2002

Abstra
t

The obje
tive of this
hapter is to introdu
e to
ompiler developers

the rudimentary
on
epts of operational semanti
s used in spe
ifying

the operational behavior of programs and systems, and for reason-

ing about them. There are already various ex
ellent
omprehensive

introdu
tions to syntax-dire
ted approa
hes to operational semanti
s,

most notably the seminal papers by Plotkin [Plo81℄ and Kahn [Kah87℄.

Some of that material has already been in
orporated in standard text

books on the semanti
s of programming languages and
on
urren
y,

su
h as those by Winskel [Win93℄, Gunter [Gun92℄, Watt [Wat90℄ and

Hennessy [Hen88℄. Yet, though the
on
epts and te
hniques employed

are mathemati
ally simple and a

essible, many
ompiler developers

have not been exposed to them.

The material presented here is largely based on the seminal work

mentioned above, and is aimed at presenting the ideas in an inte-

grated form. It is tutorial in nature, oriented towards those interested

in relating language spe
i�
ation to
ompiler design. There are also

several ex
ellent surveys and referen
es on resear
h aspe
ts in opera-

tional semanti
s, parti
ularly in the
ontext of semanti
s of
omputa-

tion [Ong99℄ and of pro
ess algebra [AFV00℄, intended for those who

are already familiar with semanti
s issues in programming languages

and
on
urren
y.

1

Contents

1 Introdu
tion 2

2 Preliminaries 10

2.1 Transition Systems . 10

2.2 Stru
tural Operational Semanti
s for Expressions 13

2.3 Private de�nitions . 25

3 Imperative Languages 28

3.1 Non-determinism . 34

3.2 Blo
ks and Variable De
larations 36

3.3 Pro
edures and parameter passing 38

3.4 Run-time Allo
ation and Deallo
ation 40

4 Fun
tions and higher-order forms 44

4.1 �-
al
ulus . 44

4.2 Relationship with fun
tional languages. 47

4.3 Closures and Environment ma
hines 50

4.4 Implementation issues related to environments 54

4.5 Control operators . 56

5 LTSs and Intera
tive Programs 58

5.1 CSP . 61

5.2 Extensions . 66

6 Con
lusion 68

1 Introdu
tion

Operational Semanti
s involves giving a pre
ise des
ription of the behavior

of a program or a system, namely, how it may exe
ute or operate. As in any

semanti
 enterprise, the intention in developing operational semanti
s is to

give behavioral des
riptions in rigorous mathemati
al terms, in a form that

supports understanding and reasoning about the behavior of the systems un-

der
onsideration. A mathemati
al model serves as the basis for analysis and

veri�
ation. In fa
t, the very a
t of formalization
an help remove mis
on-

eptions and fo
us attention on subtleties that may be glossed over in an

informal des
ription.

2

A
lear operational semanti
s is an invaluable referen
e while develop-

ing language implementations, as was re
ognized over a quarter of a
en-

tury ago by M
Carthy [M
C63℄, Landin [Lan64, Lan65b℄, Hoare and Lauer

[HL74℄, Milner, Plotkin and various other resear
hers. Early examples of

real-world languages being provided formal operational semanti
s in
lude

Algol 60 [Lau68℄ and PL/I [PL/86℄.

Formalism, per se, is not the only goal; de�ning the meaning of a pro-

gramming language as the behavior indu
ed by a parti
ular implementation

is a formal treatment. However, su
h an approa
h is not parti
ularly sat-

isfa
tory sin
e the intention is to provide behavioral des
riptions at a high

level, divor
ed from implementation details to as great an extent as possi-

ble. Moreover, the high-level formalism should be readily a

essible. Indeed,

the attra
tion of using operational semanti
 approa
hes to programming lan-

guages is the relative simpli
ity of the formal mathemati
s and the asso
iated

te
hniques.

The past twenty or so years has seen, following seminal
ontributions

by Plotkin [Plo81℄, Milner [Mil73, Mil76℄, Kahn [Kah87℄, Hoare [Hoa85℄ and

others, the development of syntax-dire
ted \stru
tural" frameworks that pro-

vide, to quote Plotkin, a \simple and dire
t method for spe
ifying the se-

manti
s of programming languages", whi
h require very little mathemati
al

ba
kground, that yet provide \
on
ise,
omprehensible semanti
 de�nitions".

The de�nition of the mostly fun
tional language Standard ML in a wholly

operational semanti
 framework [MTHM97℄ is an ex
ellent example of the

power and versatility as well as the relative a

essibility of these operational

te
hniques. Other languages whi
h have
omplete operational des
riptions

are Esterel [BC84, Gon88, BG92℄ and Ada ([ANB

+

86℄
ontains an early def-

inition that employs the main ideas dis
ussed here in a rigorous algebrai

framework).

While formalization is
learly important for resear
h in programming lan-

guage semanti
s, the aim of this
hapter is to make modern approa
hes to

operational semanti
s a

essible to those involved in
ompiler design and

development. It is therefore worthwhile to reiterate here why formal op-

erational des
riptions are important in the
ontext of
ompiler design and

implementation. As mentioned above, su
h des
riptions provide an unam-

biguous de�nition of a language, whi
h
an serve as a referen
e for imple-

mentations. A stru
tural operational semanti
s (SOS) style seems to be an

in
reasingly favored style of providing a
omprehensive and
omprehensible

formal de�nitions of programming languages. Apart from the examples of

3

Standard ML and Esterel
ited above, SOS semanti
s have been provided

for several languages in
luding Java [CKRW99℄ and logi
 programming lan-

guages based on Prolog [HJP92℄. Se
ondly, these formal des
riptions allow

us to develop theories su
h as program equivalen
e or orderings, whi
h serve

as a semanti
ally sound basis for assessing proposed program optimizations

and stati
 analysis te
hniques. While it may be naive to expe
t the algebrai

laws of equivalen
e (or ordering) to suggest optimizations, it is nevertheless

expe
ted that any optimization preserves the operational behavior of a pro-

gram (or at least the important behavioral properties needed in the
ontext

of a parti
ular
omputation). Thirdly, the operational des
riptions give us a

framework in whi
h
ompiler veri�
ation
an be formulated and
arried out

[dS92℄. Finally, operational frameworks allow us to explore novel, alternative

implementation te
hniques | by studying di�erent abstra
t implementations

that realize the same spe
i�
ations. A noteworthy approa
h in this respe
t

is that of Hannan and his
ollaborators [Han94℄.

Stru
tural operational te
hniques have been su

essfully employed with

great su

ess for studying the
orre
tness of
ompiler te
hniques and hard-

ware implementations [Tin01, WBB92, WO92℄, for
ompiler veri�
ation [dS92,

HP92℄, for establishing type soundness following the work of Wright and

Felleisen [WF94℄, for stati
 program analysis [MS96℄ and deriving proof rules

for fun
tional languages [San97℄.

We also should mention that there are areas of
ru
ial importan
e to

ompiler developers where operational te
hniques have not been seriously

applied. An example is
oating-point
omputation, where to our knowledge,

the intri
a
ies of the numeri
al models proposed and used have not been

adequately addressed in an operational framework.

Operational des
riptions at di�erent levels of abstra
tion. Formal

operational des
riptions of program exe
ution
an be presented in several dif-

ferent ways. In fa
t, having di�erent des
riptions may serve a useful purpose,

espe
ially sin
e they are usually presented at varying levels of abstra
tion.

In the following paragraphs, we give a brief overview of three broad levels of

operational des
ription, whi
h have histori
ally tended (roughly) to go from

\low-level" to \high-level" des
riptions for the same language, though there

have been notable ex
eptions where implementations have been guided by

higher-level spe
i�
ations.

The very �rst step in providing a des
ription of a language independent

4

of any parti
ular implementation is to
on
entrate on the abstra
t synta
ti

stru
ture of programs in the language rather than on the
on
rete syntax.

This also has the advantage of being able to abstra
t over di�erent
on
rete

renderings of a
on
ept in di�erent languages, e.g., the syntax used for as-

signment in Pas
al versus that used in C. A relatively higher level semanti

des
ription than a parti
ular implementation is a
hieved by translation of

the abstra
t syntax into instru
tions of a simple ma
hine, the des
ription of

whi
h is given in abstra
t terms, typi
ally as a �nite
olle
tion of rules. Su
h

an idealized ma
hine is
alled an abstra
t ma
hine.

Reasoning about programs using abstra
t ma
hine des
riptions
onsists

of reasoning about the pro
ess of translation, and then reasoning about ex-

e
ution sequen
es of the abstra
t ma
hine. A signi�
ant observation that

greatly simpli�ed the �rst aspe
t was the following: The abstra
t syntax of

most languages is indu
tively
hara
terized, and the translation to the ma-

hine instru
tions tends to be a mapping that preserves the abstra
t synta
ti

stru
ture, often a homomorphi
 fun
tion.

A good early example of this kind of operational des
ription is Landin's

use of the so-
alled SECD ma
hine to spe
ify the operational semanti
s of

a quintessential (
all-by-value) fun
tional language ISWIM [Lan65a℄. Also

well known is the Warren Abstra
t Ma
hine (WAM) [War83℄, used to spe
ify

the exe
ution ma
hinery for Prolog. Abstra
t ma
hines are a popular (and

often the �rst) method for spe
ifying the exe
ution semanti
s of a proposed

language as well as for outlining an implementation. For instan
e, abstra
t

ma
hines were used in presenting the �rst formal operational des
riptions of

various extensions to the fun
tional paradigm su
h as integrations of fun
-

tional programming with
on
urrent programming models based on ideas

from pro
ess algebra [Car86a, Car86b, GMP89℄.

Although abstra
t ma
hines provide higher-level, implementation inde-

pendent spe
i�
ations of program exe
ution, it is not always
lear how ef-

fe
tive su
h te
hniques are in proving program properties, notions of pro-

gram equivalen
e and developing a semanti
ally-justi�ed algebra of programs.

Moreover, proofs about program exe
ution are (often tedious and
umber-

some) indu
tion arguments on exe
ution sequen
es, using
ase analyses on

whi
h rule is employed at ea
h step, with little referen
e to the original sour
e

programs and their stru
ture.

A se
ond and novel step was the development of stru
tural operational se-

manti
s, or \SOS", where program behavior was expressed dire
tly in terms

of the sour
e programs (and perhaps a few an
illary data stru
tures) without

5

any intervening translation to an abstra
t ma
hine. The stru
tural approa
h

onsists of providing an indu
tive de�nition of a relation des
ribing program

exe
ution, whi
h follows the indu
tive stru
ture of the abstra
t syntax. Thus,

in the operational setting, the approa
h adheres to a
ompositionality prin
i-

ple asso
iated with Frege that \the meaning of a phrase
an be obtained from

the meaning of its
omponents in a well-de�ned way", a feature of the S
ott{

Stra
hey style of denotational semanti
s. The standard presentation of the

indu
tively de�ned relation is by using inferen
e rules. The
onsequent of a

rule de�nes a transition from a
ompound expression, whi
h depends on the

transitions for one or more of its
omponents spe
i�ed in the rule ante
edent.

This indu
tive approa
h based on abstra
t synta
ti
 stru
ture is also appro-

priate for formulating stati
 semanti
s. An added bonus of using relations

is that features su
h as non-termination and partiality, non-determinism, er-

ror
on�gurations and various others
an easily be a

ommodated into the

framework without having to resort to more diÆ
ult mathemati
al
on
epts.

The asso
iated proof te
hniques are based on indu
tion on the proof trees

built using the inferen
e rules, or equivalently | sin
e the inferen
e rules are

presented in a syntax-dire
ted manner | on the stru
ture of the sour
e

program. Notions of program equivalen
e or ordering are stated dire
tly in

terms of the sour
e programs rather than via any other ma
hinery, and thus

the development of an algebra of programs gets fa
ilitated. It is this aspe
t

of stru
tural indu
tion that justi�es the moniker \stru
tural", sin
e the other

te
hniques also ultimately depend on program stru
ture.

The pioneering works where the stru
tural approa
h is arti
ulated are

those of Plotkin [Plo81, Plo83℄, Milner [Mil80℄ and Kahn [Kah87℄, although

instan
es of the stru
tural approa
hes predate these publi
ations | most

notably, the operational semanti
s of various �-
al
uli [Bar84℄. Stru
tural

semanti
s
omes in a variety of
avors, and we broadly
lassify them as:

(i) \big-step", often
alled \natural" due to its
onne
tions with normal-

ization in Natural Dedu
tion proof systems [Kah87, BH87℄, and sometimes

relational [MTHM97℄ or proof-theoreti
 [MH90℄; and (ii) \small-step", whi
h

is often
alled \redu
tion" following the terminology used in the �-
al
ulus

[Plo81℄. Big-step semanti
s justify a
omplete exe
ution sequen
e using a

tree-stru
tured proof whereas small-step semanti
s provide tree-stru
tured

justi�
ations for ea
h step of the sequen
e. There are, however, situations

where a \mixed-step" formulation is
onvenient. In
ontrast, abstra
t ma-

hine semanti
s
onsists of a sequen
e of steps, ea
h justi�ed as being an

instan
e of a
onditional rewrite rule.

6

Yet another dimension in the varieties of stru
tural operational semanti
s

is the use of labelled relations that allow the spe
i�
ation of the intera
tion

between a program and its environment during exe
ution. Most examples of

labelled relations are in a small-step style, and abstra
t ma
hines rarely use

labelled relations at all.

One of the aims of this
hapter is to
onvey to the reader the rudiments of

these three kinds of operational semanti
s and their inter-relationships and

important synta
ti
 properties, su
h as
on
uen
e and standardization. We

endeavor to present these notions in frameworks that are as simple and fa-

miliar as possible, and assuming minimal
on
epts. Various aspe
ts of these

onne
tions have been studied in great detail elsewhere, assuming varying de-

grees of familiarity with the
on
epts. Plotkin [Plo81℄
overs a large variety of

onstru
ts in the redu
tion semanti
s framework. Some subtle issues arising

in relating the big-step and small-step formulations are explored in [Ast91℄.

Winskel's book [Win93℄ studies the relation between big-step and denota-

tional semanti
s for simple imperative and fun
tional languages. Hannan

and Miller [MH90℄ present a framework for
onstru
ting abstra
t ma
hines

from big-step semanti
s for fun
tional languages via a series of
orre
tness

preserving transformations. Hannan further explores
on
rete realizations

of the ma
hines [Han91℄. Plotkin [Plo75℄ studies the
onne
tion between

the redu
tion semanti
s of the
all-by-value �-
al
ulus and its abstra
t ma-

hine (and respe
tively for
all-by-name), as well as how the
al
uli relate to

one another by
ontinuation-passing style (CPS) translations. An ex
ellent

referen
e
overing mu
h of this material in detail is [AC98℄.

Dis
laimers. This
hapter does not attempt to survey the variety of oper-

ational semanti
s frameworks used in the spe
i�
ation and implementation

of programming languages. In parti
ular, two major approa
hes have been

negle
ted | those of A
tion Semanti
s [Mos92℄ and Evolving Algebras or

Abstra
t State Ma
hines [Gur93℄. A
tion Semanti
s is based on ideas from

universal algebra, and seeks to
ombine the salient strong features of denota-

tional and operational approa
hes, without their weaknesses. The semanti

spe
i�
ation is given round the basi
 a
tions in a system, and the approa
h

addresses the important issues of readability and modularity of semanti
s

frameworks. In the sequel, we will see that even small language extensions

ne
essitate major
hanges in the semanti
 rules. A
tion semanti
s has been

su

essfully used in diverse appli
ations, a very signi�
ant one in the area of

7

ompilation being the work of Palsberg on provably
orre
t
ompiler gener-

ation [Pal92℄.

Evolving algebras, or abstra
t state ma
hines as they are
alled now, are

based on the idea of interpreting the dynami
 semanti
 a
tions of a system as

operators of an algebra that evolves during exe
ution. The approa
h is very

general and permits spe
i�
ation of a system at di�erent levels of abstra
tion.

The operational framework is
losely related to
onditional rewriting systems,

and the theory also addresses the mathemati
al issue of algebrai
 models for

rules. Furthermore, abstra
t state ma
hine des
riptions admit parallelism

(
on
urren
y) in an extremely natural way. They have been used extensively

for des
ribing a variety of systems and languages, su
h as Prolog [BS90℄

and Modula-2 [Mor88℄, apart from being used as a vehi
le for understanding

various
on
urren
y features of Ada and other su
h intri
a
ies.

We have also
on
entrated on only three paradigms | imperative, fun
-

tional and
on
urrent | and not addressed issues in logi
 programming and

obje
t-oriented programming. Nor have we examined seriously the issues

that arise when di�erent su
h paradigms are integrated in a single language.

Relationship with other kinds of semanti
s. An alternative to oper-

ational te
hniques for spe
ifying the semanti
s of programming languages is

providing mathemati
al models, i.e., denotational semanti
s (well known text

books on denotational semanti
s are [Sto77, S
h86℄). Denotational frame-

works are also spe
i�ed indu
tively on abstra
t syntax. The attra
tion of

denotational methods is that they provide ri
h mathemati
al theory for rea-

soning about programs. Moreover, when the denoted obje
ts are readily

onstru
tible in a
omputational framework, the semanti
s
an be viewed as

providing an immediate implementation of the language.

However, two questions immediately arise when providing a language with

a denotational model: First, whether su
h a model is in (
omplete) agree-

ment with operational intuition. Milner was the �rst to propose a
riterion,

alled full abstra
tion, whi
h formalizes this notion of \
omplete agreement"

between the two forms of semanti
s. He
onvin
ingly argues that it is the

operational semanti
s that should be the referen
e (the \tou
hstone") for

assessing mathemati
al models, rather than the
onverse, sin
e operational

models are (usually) set up with minimal pre
on
eptions. The se
ond ques-

tion is whether there is indeed a unique mathemati
al model. Milner points

out that any mathemati
al model
an
apture only some aspe
ts of the opera-

8

tional behavior, whereas there may be diverse aspe
ts that
an be of interest

| espe
ially in non-deterministi

omputations. Operational frameworks,

being relational,
an easily a

ommodate aspe
ts su
h as non-determinism,

partiality, erroneous
omputations, et
., with minimal reworking of de�ni-

tions, whereas these may ne
essitate signi�
ant
hanges to the mathemati
al

models used in a denotational des
ription.

Another alternative to the operational approa
h is the so-
alled axiomati

semanti
s [Hoa69℄ in whi
h the meaning of a programming
onstru
t is given

using proof rules within a program logi
. The orientation of the approa
h is

towards proving program
orre
tness with respe
t to logi
al spe
i�
ations.

Again, one
ould argue for the prima
y of operational te
hniques to interpret

and justify the soundness of the logi
al rules. Moreover, the formulation of

operational semanti
s using inferen
e rules in the SOS approa
hes together

with the indu
ed algebrai
 notions of equivalen
e or ordering on programs

in
orporate many aspe
ts of the axiomati
 approa
h into operational ones

|
ompositionality, syntax-orientation and proof theory in parti
ular.

It must be noted, however, that the three approa
hes are not mutually

ex
lusive or
on
i
ting. Ea
h �nds use when reasoning about programs, and

often while employing a parti
ular kind of approa
h, one may resort to an-

other. For instan
e, while reasoning about the operational semanti
s (proving

meta-theorems) it may be
onvenient to use results from the denotational se-

manti
s sin
e this enables one to abstra
t away irrelevant operational details

and to use abstra
t mathemati
al
on
epts.

Stru
ture of this
hapter. The rest of the
hapter is stru
tured as

follows. In x2, we introdu
e various important rudimentary
on
epts used

in des
ribing the operational behavior of systems. We start with the notion

of transition systems, and then pro
eed to providing meaning to abstra
t

syntax trees. We use a simple language of expressions to illustrate three

di�erent levels of operational des
ription. We enri
h the language with vari-

ables and then s
oped lo
al de�nitions. x3 presents the operational semanti
s

for a simple imperative language. A variety of extensions of this language to

in
orporate non-determinism and parallel exe
ution, blo
k stru
ture, simple

pro
edures and storage allo
ation are dis
ussed. In x4, we dis
uss des
rip-

tions of higher-order fun
tions, referring to the �-
al
ulus and two evaluation

strategies |
all-by-name and
all-by-value, together with environment ma-

hines for implementing these
al
uli. Then, in x5, we mention features of

9

languages involving
on
urren
y and intera
tion that are naturally modeled

using labelled transitions, before
on
luding in x6.

2 Preliminaries

2.1 Transition Systems

The primary task involved in providing an operational des
ription of a sys-

tem is to spe
ify the
on�gurations of the system and the possible transitions

between
on�gurations. A transition system
onsists of a
olle
tion (usually

a set) S of
on�gurations and a binary relation on
on�gurations �!� S�S

alled the transition relation. We use the metavariable s to range over
on�g-

urations. In most appli
ations, a subset I � S,
alled initial or starting
on-

�gurations, is distinguished. Terminal
on�gurations are those from whi
h

a transition is not possible | fs 2 S j 6 9s

0

: s �! s

0

g. We denote the

transitive
losure of the transition relation by �!

+

and its re
exive transi-

tive
losure by �!

�

. Termination arguments often require showing that the

transition relation is well-founded.

A
losely related notion is that of a labelled transition system (LTS).

Let L be a set of labels, with l a typi
al label. An LTS
onsists of a set

of
on�gurations S, the label set L, and a relation

�

�! � S � L � S

alled the labelled transition relation. We write s

l

�! s

0

to mean that

hs; l; s

0

i 2

�

�! . Often a LTS is presented as a
olle
tion of TSs sharing

the same
on�gurations S, but with one transition relation for ea
h label.

Example 2.1 (Lexi
al Analysis) Lexi
al analysis
an be
ast as a transi-

tion system. Let M = hQ; q

0

2 Q; Æ � Q � � � Q;F � Qi be a �nite state

automaton re
ognizing a language over alphabet �, and let & 2 �

�

be any

string over that alphabet. Let � denote the empty string, and let a& denote

the string starting with letter a followed by the suÆx string &.

Let S = Q��

�

and let �! be de�ned as hq; a &i �! hq

0

; &i if and only

if (q; a; q

0

) 2 Æ. I = fhq

0

; &i j & 2 �

�

g is the set of initial
on�gurations.

Terminal
on�gurations are of two kinds: those in F � f�g are \a

epting"

whereas those in (Q � F � f�g)

S

fhq; b &i j :9q

0

: (q; b; q

0

) 2 Æg are \non-

a

epting".

Example 2.2 (An automaton is an LTS) Finite State (and indeed other)

Automata are examples of labelled transition systems, with the
on�gurations

10

S being the states, labels being � and Æ being the labelled transition relation.

The example of automata also motivates a bun
h of
on
epts important

in operational semanti
s. We usually asso
iate a notion of observation with

a transition system (e.g.,
onsumption of a string and terminating in an a
-

epting state in a �nite state automaton), with respe
t to whi
h transition

systems are as
ribed observable behaviors (e.g., strings a

epted by the au-

tomaton). There
an be di�erent notions of what is observable for even the

same transition system. Any given notion of observability yields a
orre-

sponding notion of equivalen
e or ordering between two transition systems

based on their observable behaviors.

De�nition 2.3 (observational equivalen
e and ordering) TS

1

is said

to be observably simulatable by TS

2

, written TS

1

� TS

2

, if every observable

behavior possible of TS

1

is also possible of TS

2

. TS

1

and TS

2

are
onsidered

equivalent, denoted TS

1

� TS

2

, if both have the same observable behaviors.

Equivalen
e of two systems does not ne
essarily imply that one
an be

repla
ed by the other in any
ontext, sin
e some notions of equivalen
e may

not be preserved under ea
h and every
onstru
tion possible in a
lass of

transition systems.

The automata example also give an idea of how a LTS
an relate to a TS.

The automaton LTS des
ribes the
ontrol aspe
t of the transition system in

abstra
tion from the data (the string &) on whi
h it is run. The di
hotomy

between
ontrol and data is not the
entral issue, and is indeed relevant to

this and some other examples. Rather, labels are used to indi
ate intera
tion

between a
omponent of a larger system with its
ontext. This intera
tion

an be of a variety of kinds, and hen
e there are diverse uses of labelled

transition systems. For example, a pro
ess re
eiving signals and performing

some
omputation in response
an be spe
i�ed separately from the pro
esses

sending it signals. The use of labelled transitions permits the des
ription of

a
omponent's behavior separately from that of its
ontext, with the labels

spe
ifying the intera
tion
apabilities. Very
rudely, a labelled transition

system
an be turned into a
orresponding unlabelled one by by providing

within the system \enough
ontext" | thus \
losing up" a des
ription of an

open system. Conversely,
ontexts
an be used to label transitions. The main

issue is to
hara
terize interesting de
ompositions of systems into program

fragment and
ontext. This is still very mu
h the subje
t of a
tive resear
h,

with some re
ent promising results in this dire
tion [Lei01, Sew98℄.

11

Example 2.4 (Parsing) We also en
ounter a transition system in parsing.

String generation
an be thought of as a transition system as follows. Let

G = hN;T;P; S 2 Ni be a
ontext-free grammar. Let the
on�gurations S =

(N

S

T)

�

and let the transition relation �! be de�ned as s �! s

0

if and only

if there exists a produ
tion r 2 P su
h that r � X ! w for some X 2 N

and w 2 (N

S

T)

�

, s = s

1

Xs

2

and s

0

= s

1

ws

2

. S is the unique starting

on�guration, and those terminal
on�gurations that are in T

�

and rea
hable

from S are the \generated" strings.

This transition system
an be \reversed" to yield a transition system for

parsing. The produ
tion rules are used in the reverse dire
tion; I = T

�

is the

set of initial
on�gurations, there is a single \a

epting" �nal
on�guration

S, and possibly many other terminal
on�gurations that are \non-a

epting".

Remark 2.5 Plotkin's seminal paper [Plo81,
hapter 1℄ lists several di�erent

examples of transition systems or labelled transition systems that one en
oun-

ters in
omputer s
ien
e | �nite state automata, transdu
ers, grammars of

di�erent types, k-
ounter ma
hines, sta
k ma
hines, Petri Nets, Turing Ma-

hines, Semi-Thue systems, Post systems, L-systems, Conway's Game of

Life, push down automata, tree automata,
ellular automata, neural nets. In

addition, many dynami
 systems we en
ounter in daily life may be modeled

as transition systems. Games are good examples of transition systems.

Properties. Transition systems provide a framework on whi
h we
an

drape various formal veri�
ation exer
ises. Many of these involve establishing

that a parti
ular transition system satis�es various kinds of properties. One

su
h important property is totality. A transition system is total if it has

no terminal
on�gurations, i.e., for every s 2 S there exists s

0

2 S su
h

that s �! s

0

. Another
ommon property is determinism: for every s 2 S,

jfs

0

j s �! s

0

gj � 1. These notions
an also extend to labelled transitions,

either \per-label" or \a
ross labels".

A
ru
ial property in the above examples for lexi
al and grammati
al

analysis is rea
hability from designated initial
on�gurations. Rea
hability is

also used in proving safety properties of systems | no \bad"
on�guration

is rea
hable from spe
i�ed initial
on�gurations.

Another property is what we
all properly terminating, where all terminal

on�gurations are \good". This is an example of a liveness property | that

\something good
an eventually happen".

12

Another important meta-property is
on
uen
e: for any s; s

1

; s

2

2 S,

whenever s �!

�

s

1

and s �!

�

s

2

, then there exists s

3

2 S su
h that

s

1

�!

�

s

3

and s

2

�!

�

s

3

. Stronger
on
uen
e properties are the so-
alled

\diamond" properties. A transition system exhibits the \strong diamond"

property if for any s; s

1

; s

2

2 S, whenever s �! s

1

and s �! s

2

and s

1

6= s

2

,

then there exists s

3

2 S su
h that s

1

�! s

3

and s

2

�! s

3

. The transition

system has a \weak diamond" property if whenever s �! s

1

and s �! s

2

and s

1

6= s

2

, then s

3

is rea
hable from s

1

and s

2

via the re
exive transitive

losure of the transition relation, that is, s

1

�!

�

s

3

and s

2

�!

�

s

3

.

Various properties follow from
ertain �niteness
onstraints on transition

systems. A TS (or LTS) is
alled

� �nitely bran
hing if for every s 2 S, the set fs

0

j s �! s

0

g is �nite.

� �nite if it is �nitely bran
hing and �! is a well-ordering.

� regular if it is �nitely bran
hing and for ea
h s 2 S, the set fs

0

j s �!

�

s

0

g is �nite, where �!

�

is the re
exive transitive
losure of �!.

In general, transition systems whose transition relation
an be
hara
ter-

ized in a
on
ise but abstra
t manner (usually as a set of rules) are of inter-

est, sin
e they usually admit e�e
tive te
hniques for establishing properties

of those systems. Finite or indu
tively
hara
terized transition systems are

extremely
ommon, with indu
tion and
ase analysis on (linear) sequen
es of

transitions being the most widely wielded proof methods for reasoning about

exe
ution sequen
es or, at a higher level, observable behavior.

2.2 Stru
tural Operational Semanti
s for Expressions

Abstra
t syntax. It is the abstra
t rather than the
on
rete syntax of a

language that is of interest while spe
ifying the meaning of programs. Op-

erational semanti
s des
riptions manipulate these abstra
t synta
ti
 obje
ts

and work wholly within syntax. For
onvenien
e, however, it may be ne
es-

sary to augment the syntax with \extra-synta
ti
" data stru
tures, but these

entities
an be shown to
orrespond in some obvious way to purely synta
ti

entities. The abstra
t syntax of programs
an be indu
tively
hara
terized,

e.g., as trees. We will use abstra
t grammars as a handy notational devi
e

for des
ribing abstra
t synta
ti

ategories.

13

We present three di�erent kinds of operational des
ription for an ex-

tremely simple language Exp; the presentation
an be adapted to any lan-

guage of �rst-order expressions.

Example 2.6 (Simple arithmeti
 expressions) Let Num denote the de-

numerable set of numerals (in some radix), and let X be a denumerable set

of variables, with x; y; z typi
al meta-variables ranging over X . Exp
an

be presented using the following abstra
t grammar, where e; e

1

; e

2

are meta-

variables ranging over Exp, and n ranges over Num.

e 2 Exp ::= x j n j (e

1

+ e

2

)

Expression evaluation
onsists of simplifying a given expression to a form

that
annot be further simpli�ed, hopefully to an element in a set of \good"

anoni
al forms that we loosely
all \values" (there are a variety of notions of

\value" depending on the language). The �rst task in presenting operational

semanti
s for expressions is to identify the set V of values. In the next few

examples the set V will be the set of numerals Num. The meta-variable v

ranges over V.

For expressions
ontaining variables, we need to know what the variables

stand for in order to simplify them to values. A

ordingly, we present the

operational semanti
s with respe
t to a �nite domain fun
tion
alled an envi-

ronment
 : X !

�n

V, that maps variables to values. Let Env denote the set

of su
h �nite domain fun
tions from variables to values

1

. Environments are

an example of \extra-synta
ti
"
onstru
tions we employ in our operational

des
ription. We write dom(
) to mean the set fx 2 X j
(x) de�nedg. We

work with �nite domain fun
tions sin
e it is inappropriate to frame essen-

tially synta
ti
 ideas in terms of in�nite stru
tures. If

1

and

2

are �nite

domain fun
tions, we denote by

1

[

2

℄ the �nite domain fun
tion with domain

dom(

1

)

S

dom(

2

) de�ned as

1

[

2

℄(x) =

8

>

<

>

:

2

(x) if x 2 dom(

2

)

1

(x) if x 2 dom(

1

)� dom(

2

)

unde�ned otherwise

1

It is also possible to work with environments whi
h are �nite domain fun
tions from

variables to variable-free expressions rather than to values. The nature of the rules and

results does not
hange, ex
ept perhaps in some minor details.

14

(var)

 ` x =)

e

(x)

where x 2 dom(
)

(num)

 ` n =)

e

n

(add)

 ` e

1

=)

e

n

1

 ` e

2

=)

e

n

2

 ` (e

1

+ e

2

) =)

e

n

3

where n

3

= ADD(n

1

; n

2

)

Table 1: \Big-step" semanti
s for evaluating simple expressions

Big-step or Natural Semanti
s We �rst present a \big-step stru
tural

operational semanti
s" or \natural semanti
s" for Exp.

The \big-step" transition relation =)

e

� Env � Exp � V(= Num) is

de�ned indu
tively as the smallest relation
losed under the inferen
e rules

given in Table 1. We read the relation
 ` e =)

e

n as \given environment

, expression e
an evaluate to value n". When the environment
 is not

needed, and so
an be arbitrary, we sometimes omit writing \
 `".

This relation
an be viewed as a transition system with
on�gurations

S = (Env �Exp). A transition
 ` e =)

e

v is understood as a transition

h
; ei ! h
; vi, highlighting the fa
t that transitions leave
 un
hanged.

The way these rules are used is that if we have an expression that mat
hes

the left side of the
onsequent (\denominator") of a rule via a substitution

� for the s
hemati
 variables, and if using the same substitution �, all the

ante
edents (statements in the \numerator")
an be indu
tively established

while also respe
ting any side-
onditions, then the expression
an evaluate to

an expression of the form given on the right side of the
onsequent instan
ed

using �. Used in this manner, the rules
an be seen as forming tree-stru
tured

justi�
ations or proof trees of why an expression e
an evaluate to a value

n | the goal judgment (e =)

e

n in this
ase) is at the root, the leaves

are axiom instan
es, and internal nodes
orrespond to rule instan
es with a

bran
h for ea
h ante
edent.

The use of proof rules to spe
ify transition systems is itself an area of

resear
h. [AFV00℄
ontains an ex
ellent summary of rule spe
i�
ations, the

meanings of the transition systems they spe
ify and of various formats and

the formal properties they guarantee (see also [Mi
94℄).

Observe that the rules are syntax-dire
ted, in that there is a rule for ea
h

15

synta
ti

ase. Further, in rules with ante
edents, the
onsequent of the rule

des
ribes the evaluation of a
ompound expression; this evaluation depends

on the evaluation of the
omponent subexpressions, des
ribed in the rule's

ante
edents. The base
ases of the relation =)

e

are the axioms (num) and

var, whi
h state(respe
tively) that any numeral evaluates to itself, sin
e it is

in
anoni
al form, and that a variable evaluates to the value asso
iated with

it in the environment. Note, however, that instan
es of the rule var apply

only when the side
ondition or proviso x 2 dom(
) holds. The indu
tion

ase is the rule (add). The rule may be read as \given
, expression (e

1

+ e

2

)

an evaluate to numeral n

3

if expression e

1

an evaluate to a numeral n

1

with

respe
t to
, and e

2

to n

2

also with respe
t to gamma, and where adding

numerals n

1

and n

2

yields numeral n

3

. We assume there is a synta
ti
 routine

ADD for adding numerals.

Note that the big-step relation is re
exive on values. The relation is not

total on environments and Exp, be
ause the var rule does not spe
ify how to

evaluate a variable y 62 dom(
).

Typi
al exer
ises involve studying various properties of this relation. For

instan
e, assuming that the pro
edure ADD is fun
tional and total, we
an

show that the relation =)

e

is indeed a partial fun
tion:

jfn j
 ` e =)

e

ngj � 1 for all
 2 Env and e 2 Exp:

If vars(e) is the set of variables in e, we
an show:

Proposition 2.7 For any e 2 Exp,
 2 Env, if vars(e) � dom(
), there

exists n 2 Num su
h that
 ` e =)

e

n.

Proof of this proposition is by indu
tion on the stru
ture of the proof tree of

 ` e =)

e

n, whi
h amounts to indu
tion on the stru
ture of e, sin
e the

relation is syntax-dire
ted.

Further, we
an show that the big-step operational semanti
s agrees with

any \standard" denotational semanti
s if the pro
edure ADD behaves in

a

ordan
e with the
orresponding mathemati
al operation. Let � be an

assignment of values to variables, let [[n℄℄ denote the number represented by

numeral n, and let [jej℄� be the denotation of e with respe
t to �.

Proposition 2.8 For any e 2 Exp,
; � su
h that vars(e) � dom(
) and for

all x 2 dom(
), �(x) = [[
(x)℄℄:
 ` e =)

e

n if and only if [jej℄� = [[n℄℄.

This result too is proven by indu
tion on the stru
ture of e.

16

Small-step or Redu
tion Semanti
s. The big-step relation spe
i�es

what normal forms an expression may have. It is a high-level spe
i�
ation,

possibly non-deterministi
, and does not detail how the
omputation may be

performed. It is inherently parallel; for example, in simplifying (e

1

+ e

2

), no

indi
ation is given as to whether to simplify e

1

before e

2

or otherwise. Nor

is any hint given on how to implement the relation with �nite resour
es.

In
ontrast, a small-step or redu
tion relation is used to spe
ify not merely

what an evaluation may return, but also a strategy to a
hieve it. This ap-

proa
h is essentially the step-wise rewriting approa
h followed, for example,

in junior s
hool when tea
hing
hildren to simplify arithmeti
 expressions,

with the strategy spe
ifying whi
h subexpressions may be simpli�ed at any

stage.

Again,
on�gurations are simple arithmeti
 expressions: S = Env � Exp

and V = Num. The small-step relation �!

e

1

� Env � Exp � Exp, is between

two expressions, given an environment. The important di�eren
e with big-

step semanti
s us that expressions do not simplify \in one go" to a value, but

rather simplify one step at a time to other expressions, and perhaps �nally

to values. The redu
tion relation is also de�ned indu
tively, using inferen
e

rules, whi
h are syntax-dire
ted, but in a sense slightly di�erent from that in

the big-step semanti
s. There may be several rules for the same synta
ti

onstru
t, and some
onstru
ts may have no asso
iated rules. Moreover, the

ase analysis is not stri
tly on synta
ti
 stru
ture but rather on an analysis

of where in an expression simpli�
ation
an take pla
e. Small-step redu
tion

relations are seldom transitive and are usually irre
exive.

Table 2 displays a redu
tion relation for evaluating simple arithmeti

expressions. The rule (vbl) says that variables are simpli�ed to the value

spe
i�ed in the given environment. As expe
ted, the rule has a proviso

requiring that the variable be in the environment's domain. Note there is no

rule for numerals! The rule (add

0

)
an be understood as saying \(n

1

+ n

2

)

simpli�es to the result of ADD(n

1

; n

2

)". The rules (add

l

) and (add

r

) are

symmetri
; the former says that if e

1

an simplify to e

0

1

, then (e

1

+ e

2

)
an

simplify to (e

0

1

+ e

2

) in a single step (similarly for simplifying e

2

�rst). Note

that the relation is non-deterministi
, and involves lo
alized rewriting.

Observe that it is possible for an expression, su
h as ((7 + 21) + y) where

y 62 dom(
) for a given environment
, to be redu
ed a few steps before it

gets \stu
k". This is in
ontrast to the big-step situation where no transition

is possible for that expression with respe
t to su
h an environment
.

An expression of the form (n

1

+ n

2

), an instan
e of the left side in an

17

(vbl)

 ` x �!

e

1

(x)

provided x 2 dom(
).

(add

0

)

 ` (n

1

+ n

2

) �!

e

1

n

3

where n

3

= ADD(n

1

; n

2

)

(add

l

)

 ` e

1

�!

e

1

e

0

1

 ` (e

1

+ e

2

) �!

e

1

(e

0

1

+ e

2

)

(add

r

)

 ` e

2

�!

e

1

e

0

2

 ` (e

1

+ e

2

) �!

e

1

(e

1

+ e

0

2

)

Table 2: \Small-step" semanti
s for arithmeti
 expressions

axiom, is
alled a redex. Any redu
ible expression
an be shown to
ontain

a redex. Di�erent small-step relations may be proposed that di�er in whi
h

redex should be sele
ted �rst for redu
tion.

Typi
al results about small-step semanti
s usually pertain to the re
exive

transitive
losure of the redu
tion relation. For instan
e, we
an show the

agreement with the big-step semanti
s:

Proposition 2.9 For all e 2 Exp,
 2 Env and n 2 Num:
 ` e (�!

e

1

)

�

n

if and only if
 ` e =)

e

n.

This and similar results are proven by indu
tion on the number of redu
tion

steps involved in
 ` e (�!

e

1

)

�

n, and within ea
h redu
tion step, by an

indu
tion on the depth of the proof tree justifying the single redu
tion step.

A
orollary to the proposition above is that the \redu
tion-down-to-

values" relation is a (partial) fun
tion, though su
h results
an be shown

from �rst prin
iples without referen
e to the big-step semanti
s.

A more interesting result to show about the relation �!

e

1

is whether it

satis�es a strong diamond property. The proof of this property is by stru
tural

indu
tion on the original expression, and analysis on how it
ould redu
e to

di�erent expressions using indu
tion on these justi�
ations. This
on
uen
e

result provides a dire
t proof that while redu
tion is non-deterministi
, the

input-output relation it indu
es is a fun
tion. (Totality is often shown by

proving that a redu
tion relation is well-ordered.)

18

A
on
uen
e result
an greatly simplify reasoning about program exe
u-

tion, sin
e it essentially says that we need not
onsider ea
h possible sequen
e

but merely any one sequen
e to a point of
on
uen
e. Con
uen
e properties

an play an important role in
ompilation, sin
e
on
uent systems admit

simpli�
ations in any order, in
luding strategies that involve simpli�
ation

of subexpressions in parallel or even in non-deterministi
 fashion; these may

make sense in
ertain ar
hite
tures su
h as those involving pipelining or mul-

tiple
omputational units. Non-
on
uen
e should alert a
ompiler developer

that a proposed optimization may in fa
t be unsound if it alters redu
tion

order, and ought therefore be avoided.

The small-step framework admits various restri
ted versions of redu
tion

orresponding to spe
ialized strategies, typi
ally those that are deterministi

or easier to implement. For instan
e, we
ould repla
e the (add

r

) rule by

more restri
tive versions, e.g.,

(add

lseq

r

)

 ` e

2

�!

e

1

e

0

2

 ` (n + e

2

) �!

e

1

(n + e

0

2

)

whi
h allow simpli�
ation of the se
ond summand only when the �rst is

already a numeral. With these more restri
tive rules, the redu
tion relation

be
omes deterministi
; for any expression at most one redu
tion rule applies.

The modi�ed relation spe
i�es a sequential left-to-right evaluation strategy.

It is then important to prove that this strategy
an simulate the original

relation
orre
tly in the sense that both relations have the same re
exive

transitive
losures when
onsidering redu
tions down to values. This result

is an example of standardization: if an expression
an be redu
ed to a value

by any strategy, it
an be redu
ed by a standard sequen
e using a parti
ular

strategy

2

.

Standardization is useful in reasoning about program exe
ution, sin
e it

allows one to transform any sequen
e of redu
tions to another one about

whi
h it is somehow easier to reason. Standardization results are often em-

ployed, for instan
e, in showing that
ertain redu
tion sequen
es are not

possible. They
an be important to a
ompiler writer, sin
e they permit

the use of possibly more eÆ
ient implementation strategies without having

to sa
ri�
e any generality. It must be emphasized that standardization is

a very important synta
ti
 meta-theorem of transition systems that applies

only in systems whose extensional behavior (input-output) is deterministi
.

2

Ri
her languages may require more
ompli
ated standardization results.

19

Example 2.10 Phenomena su
h as non-termination sharpen the di�eren
es be-

tween various evaluation strategies. Consider a simple language of possibly non-

terminating boolean expressions given by the abstra
t grammar:

b := tv j
 j (b

1

_

b

2

) tv 2 ftrue; falseg

We de�ne three di�erent small-step relations (omitting the \
 `" in the rules):

�!

omp

1

whi
h evaluates all parts of a disjun
tive boolean expression,

 �!

omp

1

(tv

1

_

tv

2

) �!

omp

1

tv

3

tv

3

= OR(tv

1

; tv

2

)

b

1

�!

omp

1

b

0

1

(b

1

_

b

2

) �!

omp

1

(b

0

1

_

b

2

)

b

2

�!

omp

1

b

0

2

(tv

_

b

2

) �!

omp

1

(tv

_

b

0

2

)

�!

ls

1

whi
h is a left sequential evaluation,

 �!

ls

1

b

1

�!

ls

1

b

0

1

(b

1

_

b

2

) �!

ls

1

(b

0

1

_

b

2

)

(true

_

b) �!

ls

1

true (false

_

b

2

) �!

ls

1

b

2

and �!

par

1

whi
h is parallel evaluation

 �!

par

1

b

1

�!

par

1

b

0

1

(b

1

_

b

2

) �!

par

1

(b

0

1

_

b

2

)

b

2

�!

par

1

b

0

2

(b

1

_

b

2

) �!

par

1

(b

1

_

b

0

2

)

(b

1

_

false) �!

par

1

b

1

(false

_

b

2

) �!

par

1

b

2

(b

1

_

true) �!

par

1

true (true

_

b

2

) �!

par

1

true

If a boolean expression b rea
hes normal form via �!

omp

1

then it rea
hes the

same normal form via �!

ls

1

, in whi
h
ase it rea
hes the same normal form via

�!

par

1

. However, the
onverse is not true:

(true

W

) �!

par

1

true and (

W

true) �!

par

1

true, but

(true

W

) �!

ls

1

true whereas (

W

true) �!

ls

1

(

W

true). However,

both (true

W

) �!

omp

1

(true

W

) and (

W

true) �!

omp

1

(

W

true).

20

Environment-free formulations. We pause brie
y to remark that the

formulation of the above relations using environments
an be transformed to

transition systems that operates wholly within syntax. For this we need the

notion of substitution.

De�nition 2.11 (substitution) A substitution � is a �nite domain fun
-

tion from X to Exp. Equivalently, it
an be viewed as a total fun
tion that is

almost everywhere identity. We write e� to denote applying � to e yielding

an expression obtained by simultaneously repla
ing in e every o

urren
e of

variable x by the expression �(x) for ea
h x 2 vars(e).

An environment
 is a spe
i�
 instan
e of a substitution. It
an easily be

shown that if
 ` e (�!

e

1

)

�

n then ` e
 (�!

e

1

)

�

n (the variable free
ase)

and likewise for =)

e

.

This observation may
ause you to wonder why we introdu
ed environ-

ments in the �rst pla
e. The reason is that substitution is usually an ex-

pensive operation, whereas the environment data stru
ture allows the
om-

putation to \look up" the expression to be substituted for a variable as and

when it is needed. Moreover, the later se
tions will show that environments

arise naturally when we try to implement languages with blo
k stru
ture

and fun
tions. The environment-less formulation eases the presentation of

the following notion of equality.

Operational notions of equality. Given a small-step relation su
h as

�!

e

1

, it is often natural to de�ne a notion of equality =

e

on expressions

as the symmetri
 re
exive transitive
losure of the redu
tion relation. This

is pre
isely the idea taught in junior s
hool to show that two arithmeti

expressions are equal.

De�nition 2.12 (Equality) e =

e

e

0

if there is a sequen
e of expressions

e

1

; : : : ; e

n

su
h that e � e

1

, e

0

� e

n

and for ea
h i : 1 � i � n � 1, either

e

i

�!

e

1

e

i+1

or e

i+1

�!

e

1

e

i

.

If the �!

e

1

relation is weakly
on
uent, e and e

0

an be redu
ed to a
ommon

form.

Abstra
t ma
hines. A more
ommon approa
h to spe
ifying arithmeti

expression evaluation, familiar to most
omputer s
ientists after an introdu
-

tory data stru
tures
ourse, is by using a sta
k ma
hine. This semanti
s is at

21

a lower level than either the big-step or small-step semanti
s, sin
e it departs

from providing a spe
i�
ation of evaluation dire
tly in terms of the sour
e

syntax, and also sin
e it employs additional data stru
tures.

The op-
odes of the ma
hine are instru
tions for loading numeri
al
on-

stants, for adding numerals and for looking up bindings of variables. To avoid

introdu
ing new symbols, we employ the same symbols for the op-
odes of

the ma
hine. Let OpCodes be de�ned as sequen
es (strings) over the sym-

bol +, numerals, variables in X , with the idea that a variable is a look-up

operation

3

.

OpCodes = (Num

[

X

[

f+g)

�

Consider now a post-order traversal of the abstra
t syntax tree of an expres-

sion in Exp. This is de�ned as a re
ursive fun
tion
ompile : Exp ! OpCodes.

To enhan
e readability, we have used ^ to indi
ate string
atenation.

ompile(n) = n

ompile(x) = x

ompile((e

1

+ e

2

)) =
ompile(e

1

)̂
ompile(e

2

)̂ +

Con�gurations of the abstra
t ma
hine are triples
onsisting of an envi-

ronment, a \sta
k" of numerals, and a sequen
e of op-
odes. Table 3 details

the initialization and transitions (the relation ��.) of the abstra
t ma
hine.

Observe that we have presented a (�nite) set of possibly
onditional rewrite

rules in a two-dimensional syntax. The rules are operated by taking any
on-

�guration that mat
hes via a substitution for the s
hemati
 variables, e.g.,

;
; S; n; : : :, the pattern indi
ated in the left side of a rule, and repla
ing

it with the
on�guration obtained by applying the same substitution to the

right side of a rule. In this example the rewrite rules involved are determinis-

ti
 and \regular", in that at most one rule applies and that no
on�guration

an be rewritten to more than one
on�guration.

The ma
hine is initialized with a given environment
 with respe
t to

whi
h expression e is to be evaluated, an empty sta
k, and a sequen
e of

op-
odes
orresponding to
ompile(e). (For readability we have used the ML-

like notation :: for sequen
e
on
atenation, writing e.g., + :: C

0

to spe
ify

a sequen
e beginning with + followed by sequen
e C

0

.) Observe that there

are no inferen
e rules | merely rewrite rules, whi
h are applied repeatedly

3

In implementations, we
an have a single op-
ode that is parametrized by a variable

(or equivalently an address or index
orresponding to the variable), and similarly a single

op-
ode for loading
onstants.

22

load(
; e) = h
;

j k

;
ompile(e)i

variables h
; S; x :: Ci ��. h
;

$

(x)

S

%

; Ci

onstants h
; S; n :: Ci ��. h
;

$

n

S

%

; Ci

add h
;

6

6

6

6

4

n

2

n

1

S

7

7

7

7

5

; + :: Ci ��. h
;

$

n

3

S

%

; Ci where n

3

= ADD(n

1

; n

2

)

unload (h
;

j

n

k

; �i) = n

Table 3: Evaluating expressions using an abstra
t sta
k ma
hine

until no rule applies. The moves depend primarily on the �rst op-
ode in

the sequen
e. The \good" terminal states are those with a single value on

the sta
k, from whi
h the results are \unloaded", and an empty sequen
e of

op-
odes.

The operational semanti
s indu
ed by the abstra
t ma
hine is exa
tly

the same as the big-step =)

e

(and thus also the
losure of the small-step

relation).

Proposition 2.13 For all e 2 Exp,
 2 Env and n 2 Num:
 ` e =)

e

n

if and only if there exists a
on�guration s su
h that load(
; e) (��.)

�

s and

unload(s) = n

The proof involves indu
tion on e and on the number of ��. steps in

rea
hing the terminal
on�guration. In fa
t, several non-trivial lemmas need

to be shown, whi
h essentially state that the evaluation of an expression does

not examine or disturb the part of the sta
k below its initial top, and that

any expression results in a single value on the sta
k.

A typi
al result that has to be shown is along the lines of \for any sta
k

S and
ode list C

0

, if

h
;

j

S

k

;
ompile(e)̂ C

0

i (��.)

�

h
;

j

S

0

k

; C

0

i

23

then

j

S

0

k

=

$

n

S

%

for some n 2 Num." The proof is by indu
tion on the

length of the op-
ode sequen
e, but observe that we need to expli
itly involve

all \
ontexts" in whi
h an expression may be evaluated | the universal

quanti�
ation on all sta
ks S and \
ontinuation"
ode C

0

| in the statement

of this property.

The above abstra
t ma
hine
an be seen as an implementation of a left-to-

right redu
tion. In general, standardization results help mediate the relation-

ship between the abstra
t ma
hine semanti
s and the redu
tion semanti
s.

Tuples, re
ords and
onditionals. We make a qui
k foray into giving

rules for stru
tured expressions. We
onsider pairs (the idea extends easily

to tuples and re
ords) and a simple
onditional (whi
h generalizes to
ase

statements. We only point out that in the rules for
onditionals, the test

e

1

is �rst evaluated to a truth value before one of the bran
hes e

2

or e

3

is

sele
ted.

We assume that our values v ::= n j tv j hv

1

; v

2

i. The big-step rules for

pairs and
onditionals are:

(pair)

 ` e

1

=)

e

v

1

 ` e

2

=)

e

v

2

 ` he

1

; e

2

i =)

e

hv

1

; v

2

i

(if

t

)

 ` e

1

=)

e

true
 ` e

2

=)

e

v

2

 ` if e

1

then e

2

else e

3

=)

e

v

2

(if

f

)

 ` e

1

=)

e

false
 ` e

3

=)

e

v

3

 ` if e

1

then e

2

else e

3

=)

e

v

3

24

One possible set of small step rules are:

(pair

l

)

 ` e

1

�!

e

1

e

0

1

 ` he

1

; e

2

i �!

e

1

he

0

1

; e

2

i

(pair

r

)

 ` e

2

�!

e

1

e

0

2

 ` he

1

; e

2

i �!

e

1

he

1

; e

0

2

i

(if

0

)

 ` e

1

�!

e

1

e

0

1

 ` if e

1

then e

2

else e

3

�!

e

1

if e

0

1

then e

2

else e

3

(if

l

)

 ` if true then e

2

else e

3

�!

e

1

e

2

(if

r

)

 ` if false then e

2

else e

3

�!

e

1

e

3

We do not present the abstra
t ma
hine rules but observe that new op-

odes need to be introdu
ed, and the
ompile fun
tion extended. The rule

for a n-tuple-formation op-
ode takes n values o� the sta
k forms an n-tuple

whi
h is then pushed onto the sta
k. A re
ord formation operation will

require a little more jugglery, for example, by sorting the �elds a

ording a

parti
ular order (lexi
ographi
, say) at the
ompilation stage, and traversing

the abstra
t syntax tree a

ordingly. The op-
ode for
onditional
hoi
e

pi
ks one of two
ontinuations based on the value on the top of the sta
k.

At an abstra
t level, it is possible to talk of
ompound op-
odes IF (

1

;

2

),

whi
h are realized on a
tual ma
hines by jumps. Another tri
k, used by

Plotkin [Plo81, page 18℄ as a motivating illustration for advo
ating more

stru
ture in operational des
riptions, is to take the syntax apart and stash the

ontinuations or markers, sele
ting the
orre
t one based on the evaluation

of e

1

.

2.3 Private de�nitions

Tennent's prin
iple of quali�
ation [Ten81℄ suggests that Exp
an be extended

to in
lude expressions that employ lo
ally s
oped de�nitions.

e ::= : : : j let x

def

= e

1

in e

2

In let x

def

= e

1

in e

2

, the s
ope of the de�nition of x to e

1

is limited to e

2

. The

o

urren
es of variables in an expression are now of two kinds: those whi
h

25

are bound and those whi
h are free. De�ne fv : Exp ! X as:

fv(x) = x fv(f(e

1

; :::; e

k

)) =

S

k

i=i

fv(e

i

)

fv(
) = ; fv(let x

def

= e

1

in e

2

) = fv(e

1

)

S

(fv(e

2

)� fxg)

The big-step rules are extended with:

 ` e

1

=)

e

n

1

[x 7! n

1

℄ ` e

2

=)

e

n

2

 ` let x

def

= e

1

in e

2

=)

e

n

2

The small-step rules are:

 ` e

1

�!

e

1

e

0

1

 ` let x

def

= e

1

in e

2

�!

e

1

let x

def

= e

0

1

in e

2

[x 7! n

1

℄ ` e

2

�!

e

1

e

0

2

 ` let x

def

= n

1

in e

2

�!

e

1

let x

def

= n

1

in e

0

2

 ` let x

def

= n

1

in n

2

�!

e

1

n

2

We postpone the presentation of an abstra
t ma
hine that
an
orre
tly

deal with s
oping issues to our dis
ussion of fun
tions in x4, sin
e the ma-

hinery needed there subsumes that needed here. Tennent's prin
iple of

orresponden
e relates de�nition me
hanisms to parameter-passing and thus

de�nition me
hanisms get addressed in the operational semanti
s for fun
-

tion de�nition and
all. It suÆ
es to mention at this stage that the ma
hines

will now additionally have to sta
k environments (or stru
tures
ontaining

them) to implement the lexi
al s
oping of blo
k stru
tured languages.

Instead we will dis
uss
ompound de�nitions. Consider the synta
ti

ategory Defs with meta-variable d:

d ::= x

def

= e j d

1

;d

2

j d

1

kd

2

with dv : Defs ! X returning the de�ned variables, and fv extended to Defs

dv(x

def

= e) = fxg dv(d

1

;d

2

) = dv(d

1

)

[

dv(d

2

) dv(d

1

kd

2

) = dv(d

1

) ℄ dv(d

2

)

fv(x

def

= e) = fv(e) fv(d

1

;d

2

) = fv(d

1

)

S

(fv(d

2

)� dv(d

1

))

fv(d

1

kd

2

) = fv(d

1

)

S

fv(d

2

)

26

Here ℄ stands for disjoint union, de�ned only when the sets are a
tually

disjoint.

The big-step semanti
s uses two mutually re
ursive (but nevertheless in-

du
tive de�nitions): =)

e

as before and =)

d

� Env�Defs�Env . Observe

here that the \values" (
anoni
al forms) for the =)

d

transition system are

environments, whi
h are \extra-synta
ti
"! The rules for =)

d

are:

 ` e =)

e

n

 ` x

def

= e =)

d

[x 7! n℄

 ` d

1

=)

d

1

[

1

℄ ` d

2

=)

d

2

 ` d

1

;d

2

=)

d

1

[

2

℄

 ` d

1

=)

d

1

 ` d

2

=)

d

2

 ` d

1

kd

2

=)

d

1

[

2

To
orre
tly implement s
oping, =)

d

returns the in
remental
hange to the

environment obtained by pro
essing a de�nition. In sequential de�nitions

we �rst pro
ess d

1

with respe
t to
, whi
h we augment with the resulting

environment to pro
ess d

2

, whereas with simultaneous de�nitions, the same

environment is used for elaborating the parallel de�nitions. In the last rule,

sin
e we assumed that dv(d

1

)

T

dv(d

2

) = ;, the union of environments is

well-de�ned.

Finally, sin
e the prin
iple of quali�
ation may be applied to Defs, we

obtain de�nitions that
ontain auxiliary lo
al de�nitions

d ::= : : : j lo
al d

1

in d

2

dv(lo
al d

1

in d

2

) = dv(d

2

) fv(lo
al d

1

in d

2

) = fv(d

1

)

[

(fv(d

2

)�dv(d

1

))

The big-step semanti
s of this
onstru
t is:

 ` d

1

=)

d

1

[

1

℄ ` d

2

=)

d

2

 ` lo
al d

1

in d

2

=)

d

2

The redu
tion semanti
s for Defs is somewhat more tri
ky (see [Plo81,

pages 80-81℄). The problem
an perhaps be understood in trying to redu
e

let d in e when d is irredu
ible. Here, the bindings of d must somehow be

augmented to the outer environment
 before e
an be evaluated. Plotkin

27

employs the expedient of treating environments as a
anoni
al form of de�-

nitions,
larifying that they are not in the abstra
t syntax but merely in the

ontrol
omponent in
on�gurations.

[

1

℄ ` e �!

e

1

e

0

 ` let

1

in e �!

e

1

let

1

in e

0

Indeed, this mixing of extra-synta
ti
 data stru
tures (environments) with

abstra
t syntax is a somewhat weak point about pure redu
tion semanti
s.

While the big-step formulations also use extra-synta
ti

onstru
tions, their

use is far more dis
iplined (indeed Astesiano points out that various semanti

de�nitions
an be given in the same indu
tive framework of big-step seman-

ti
s) [Ast91℄.

Relation to types. We �nish this se
tion with an important issue of

how the operational semanti
s relates to type-
he
king. Indeed, our presen-

tation has avoided typing issues altogether, although they are a signi�
ant

part of any stru
tural semanti
 presentation. The relationship between typ-

ing and exe
ution is parti
ularly signi�
ant in strongly-typed languages with

ompile-time type-
he
king: Programs that type-
he
k
orre
tly at
ompile

time should not raise type errors at run-time. This property
an be guaran-

teed if expressions do not
hange type during exe
ution. Su
h a theorem is

alled subje
t redu
tion. A typi
al subje
t redu
tion (stated for small-step

semanti
s, but an analogous statement holds for big-step semanti
s) is:

Let � be a set of assumptions of types of variables under whi
h

expression e has type � (written � ` e : �). If
 is an environ-

ment that
onforms to �, i.e., it binds variables to values having

type a

ording to �, and if
 ` e �!

e

1

e

0

, then � ` e

0

: � .

3 Imperative Languages

We now move on to providing a simple imperative language While with

operational semanti
s. While has nested within it a language of expressions

(boolean expressions in parti
ular) and the operational semanti
s provides

a good illustration of how semanti
s developed for one synta
ti

ategory

an be employed in the indu
tive de�nition of another | transitions for

expressions are employed in those for imperative
ommands.

28

Syntax. The syntax of
ommandsComm inWhile with typi
al metavari-

able
 is given by the following abstra
t grammar, where metavariable e

ranges over Exp, whi
h we assume in
ludes a sublanguage of boolean expres-

sions.

 ::= skip

j x:=e

j

1

;

2

j if e then

1

else

2

j while e do

Big-step semanti
s. The big-step semanti
s ofWhile, as noted earlier,

is a relational spe
i�
ation of
ommand exe
ution. The imperative model of

omputation is based on the idea of making a series of small
hanges to a

memory state. Commands
an be thought of as state transformers | the

basi
 a
tion being that of assigning a value to a program variable. More

omplex a
tions are built up from the elementary ones using
onstru
ts for

sequen
ing,
onditional exe
ution and iteration. For
onvenien
e, we in
lude

an identity transformation, namely the
ommand skip.

Let State
onsist of �nite domain fun
tions from X to V. For simpli
-

ity, we will assume that expression evaluation involves no \side-e�e
ts" that

hange the state of memory. State is, at least as a �rst approximation,

the same as Env. This valuable abstra
tion will get taken apart in mod-

eling other features. The set of
on�gurations in the transition system is

(State � Comm)

S

State. The big-step transition relation =)� (State �

Comm) � State is de�ned as the smallest relation
losed under the rules

given in Table 4.

skip leaves the state un
hanged. If an expression e evaluates to a value v

in a state � (given in terms of the big-step relation for expressions), the e�e
t

of an assignment x:=e results in a state that is identi
al to �, ex
ept that its

value at variable x is now v. If

1

transforms � to �

1

and

2

transforms �

1

to

�

2

, then their sequential
omposition a
hieves the
omposite transformation

of � to �

2

. The rules for the
onditional say that if e then

1

else

2

transforms � as would
ommand

1

(respe
tively

2

) depending on whether

e evaluates to true or false in state �. The while rules for the inde�nite

iterator are also intuitive { if the boolean
ondition e evaluates to false in

state �, the loop is not entered; if e evaluates to true then if the body
 of

the loop is exe
uted to rea
h state �

1

and if exe
uting the loop while e do

29

skip

h�; skipi =) �

assign

� ` e =)

e

v

h�; x:=ei =) �[x 7! v℄

seq

h�;

1

i =) �

1

h�

1

;

2

i =) �

2

h�;

1

;

2

i =) �

2

if

true

� ` e =)

e

true h�;

1

i =) �

1

h�; if e then

1

else

2

i =) �

1

if

false

� ` e =)

e

false h�;

2

i =) �

2

h�; if e then

1

else

2

i =) �

2

while

false

� ` e =)

e

false

h�; while e do
i =) �

while

true

� ` e =)

e

true h�;
i =) �

1

h�

1

; while e do
i =) �

2

h�; while e do
i =) �

2

Table 4: \Big-step" semanti
s for a simple imperative language

30

starting from �

1

yields state �

2

, then �

2

is the resulting state from exe
uting

the loop. Observe that this relational spe
i�
ation
orresponds to partial

orre
tness

4

.

The =) relation is deterministi
:

Proposition 3.1 If h�;
i =) �

1

and h�;
i =) �

2

then �

1

= �

2

.

There are some subtle te
hni
al issues about these rules that arise, e.g., in

formal
ompiler veri�
ation exer
ises. As noted in [Ast91℄, the rules for the

while e do
 yield an indu
tive de�nition, but one whi
h is not stru
tural.

The two while rules
an be
oales
ed into a single equivalent rule, whi
h too

is not stru
tural:

h�; if e then
;while e do
 else skipi =) �

0

h�; while e do
i =) �

0

Both these formulations involve a re
ursive de�nition, whi
h while being

on
ise and intuitive do not allow the use of stru
tural indu
tion. Fortu-

nately, there is an equivalent formulation for the while e do
 rule whi
h is

stru
tural; this formulation employs an auxiliary indu
tively de�ned relation

F � State � State.

h�; �

0

i 2 F

h�; while e do
i =) �

0

where F is de�ned indu
tively by:

� ` e =)

e

false

h�; �i 2 F

� ` e =)

e

true h�;
i =) �

00

h�

00

; �

0

i 2 F

h�; �

0

i 2 F

We
an now propose operational notions of equivalen
e and ordering be-

tween While programs:

De�nition 3.2 (Operational equivalen
e)

1

�

2

whenever for all �: h�;

1

i =) �

1

� h�;

2

i =) �

1

1

�

2

whenever for all �: h�;

1

i =) �

1

if and only if h�;

2

i =) �

1

.

4

In fa
t, it is possible to read the Hoare style axiomati
 semanti
s for While as being

a \ba
kwards" operational semanti
s on a non-standard kind of state.

31

These notions are instan
es of the
on
epts of De�nition 2.3 | the observable

behavior of a
ommand is how it transforms a given state to yield a resulting

state.

Example 3.3 Here are some equivalen
es and ordering relations that
an be

seen as
ode improvements.

1. skip � while false do
 for all
ommands
.

2. while true do
 �

0

for all
;

0

sin
e the former is non-terminating.

3. Let W � while e do
. Then W � if e then
;W else skip.

4.
;skip �
 � skip;
 for all
.

5. if true then

1

else

2

�

1

and if false then

1

else

2

�

2

.

Redu
tion semanti
s. We now move on to the redu
tion semanti
s for

While as a possibly more detailed des
ription on how to realize an imple-

mentation. The main di�eren
e now is the relation �!

1

� (State�Comm)�

((State�Comm)

S

State). The
anoni
al (normal) forms for this relation are,

naturally, those in State. Table 5 presents the redu
tion semanti
s.

The �!

1

relation is easy to understand. Rule skip

0

says skip does noth-

ing. Exe
uting an assignment �rst involves simplifying the expression e (re-

peatedly using rule assign

0

1

) down to a value v, whi
h is then asso
iated with

x (rule assign

0

2

). Exe
uting a sequential
omposition

1

;

2

involves exe
uting

the �rst
ommand

1

until it is exhausted (repeatedly using rule seq

0

1

), at

whi
h stage we start the exe
ution of

2

from the resulting state �

1

(rule

seq

0

2

). In evaluating a
onditional, we �rst evaluate the expression e to a

boolean value (repeatedly using rule if

0

1

). If that value is true, then

1

is

exe
uted (rule if

0

true

) and if it is false,

2

is exe
uted (rule if

0

false

). The

while

0

rule is, again, somewhat harder to formalize
on
isely, and relies on

the fa
t that skip is a \no op".

Proposition 3.4 The big-step and redu
tion semanti
s de�ne the same no-

tion of program exe
ution, that is, for all
 and �: h�;
i =) �

0

if and only

if h�;
i (�!

1

)

�

�

0

.

32

skip

0

h�; skipi �!

1

�

assign

0

1

� ` e �!

e

1

e

0

h�; x:=ei �!

1

h�; x:=e

0

i

assign

0

2

h�; x:=vi �!

1

�[x 7! v℄

seq

0

1

h�;

1

i �!

1

h�

1

;

0

1

i

h�;

1

;

2

i �!

1

h�

1

;

0

1

;

2

i

seq

0

2

h�;

1

i �!

1

�

1

h�;

1

;

2

i �!

1

h�

1

;

2

i

if

0

1

� ` e �!

e

1

e

0

h�; if e then

1

else

2

i �!

1

h�; if e

0

then

1

else

2

i

if

0

true

h�; if true then

1

else

2

i �!

1

h�;

1

i

if

0

false

h�; if false then

1

else

2

i �!

1

h�;

2

i

while

0

h�; if e then
;while e do
 else skipi �!

1

h�

0

;

0

i

h�; while e do
i �!

1

h�

0

;

0

i

Table 5: Redu
tion semanti
s for a simple imperative language

33

Remark 3.5 In fa
t, in [Plo81℄, Plotkin uses what Astesiano
alls a \mixed

step" semanti
s for bran
hing and iteration. For example, the rules for while

he gives are:

� ` e (�!

e

1

)

�

true

h�; while e do
i �!

1

h�;
;while e do
i

� ` e (�!

e

1

)

�

false

h�; while e do
i �!

1

�

His small step rules for the while
ommand involve the transitive
losure of

the small step redu
tion of expressions, equivalent to a big step expression

evaluation.

Re
all that a small-step semanti
s
an be thought of as moving \irrevo
a-

bly forward" albeit non-deterministi
ally, whereas big-step semanti
s
an eas-

ily in
orporate temporary undo-able
hanges in des
ribing sub-
omputations.

Constru
ts whi
h have a relatively simple big-step semanti
s but have diÆ-

ult small-step semanti
s usually ne
essitate additional data stru
tures su
h

as sta
ks for e�e
ting the temporary
hanges involved in sub-
omputations in

the abstra
t ma
hine.

Abstra
t ma
hine. The abstra
t ma
hine forWhile is a so-
alled SMC

ma
hine, with a Sta
k for evaluating expressions, a Memory or State
om-

ponent and a Code list. As illustrated by Plotkin [Plo81, pages 17-19℄, the

transition semanti
s is somewhat messy: the transition relation is not di-

re
tly in terms of synta
ti
 stru
ture, and the linearization of this abstra
t

syntax via a post-order traversal that worked well for expressions requires

\adjustments" for
onstru
ts involving bran
hing and iteration, wherein
on-

trol points need to be sta
ked for further use or disposal. The reason is that

exe
ution of a program is no longer isomorphi
 to traversal of the abstra
t

syntax tree, sin
e a transition sequen
e
an involve exe
uting
onstru
ts in

whi
h an entire subtree may be ignored (bran
hing and iteration), or may be

revisited repeatedly (iteration).

3.1 Non-determinism

Dijkstra's so-
alled guarded
hoi
e language is a quintessential imperative

language involving non-determinism.

 ::= : : : j if

n

i=1

e

i

.

i

� j do

n

i=1

e

i

.

i

od

Given below are the big-step and mixed step semanti
s for the new
onstru
ts.

We use the mixed step approa
h of Plotkin (or Astesiano) for redu
tion, sin
e

34

it yields a
ompa
t presentation (a pure small-step presentation is replete

with the problems mentioned above). The big-step rules are:

� ` e

j

=)

e

true h�;

j

i =) �

0

h�; if

n

i=1

e

i

.

i

�i =) �

0

(j 2 f1; : : : ; ng

� ` e

j

=)

e

true h�;

j

;do

n

i=1

e

i

.

i

odi =) �

0

h�; do

n

i=1

e

i

.

i

odi =) �

0

(j 2 f1; : : : ; ng

n

^

i=1

� ` e

i

=)

e

false

h�; do

n

i=1

e

i

.

i

odi =) �

and in the mixed-step formulation:

� ` e

j

(�!

e

1

)

�

true

h�; if

n

i=1

e

i

.

i

�i �!

1

h�;

j

i

(j 2 f1; : : : ; ng

� ` e

j

(�!

e

1

)

�

true

h�; do

n

i=1

e

i

.

i

odi �!

1

h�;

j

;do

n

i=1

e

i

.

i

odi

(j 2 f1; : : : ; ng

n

^

i=1

� ` e

i

(�!

e

1

)

�

false

h�; do

n

i=1

e

i

.

i

odi �!

1

�

In ea
h set, the �rst two rules are really families of rules (one for ea
h

hoi
e of j). The rule for guarded
hoi
e says that if any e

i

evaluates to true in

�, then the
orresponding

i

may be exe
uted from �. The rules for guarded

iteration say that if any e

i

evaluates to true in �, then the
orresponding

i

followed by the loop again may be exe
uted from �, whereas if all e

i

evaluate

to false,
ontrol exits the iteration
onstru
t.

An implementation (or abstra
t ma
hine) will have to use some me
h-

anism for evaluating the guard expressions down to values
hoosing some

order. In order to a
hieve some degree of fairness, a s
heduler may be used

to sele
t the order in whi
h guard expressions will be tried.

Parallel exe
ution. Many
on
urrent imperative languages allow parallel

exe
ution of threads, for instan
e in a
obegin-
oend
onstru
t.

 ::= : : : j

1

k

2

35

Consider the following big-step semanti
s:

h�;

1

i =) �

1

h�;

2

i =) �

2

h�;

1

k

2

i =) �

1

[

�

2

provided W (

1

)

T

W (

2

) = ;.

where W (

i

) denotes the set of variables
hanged in

i

. The proviso ensures

that the union is well-de�ned. Unfortunately, this semanti
s does not
or-

respond to our usual intuition of parallel
omputation. It is intuitive and

simple only when neither thread uses the
ontents of variables modi�ed by

the other (Bernstein's
onditions); otherwise it is diÆ
ult to implement.

The small-step semanti
s is simpler to implement (and less fussy to spe
-

ify!).

h�;

i

i �!

1

h�

0

;

0

i

i

h�;

1

k

2

i �!

1

h�

0

;

0

1

k

0

2

i

i 2 f1; 2g.

h�;

i

i �!

1

�

0

h�;

1

k

2

i �!

1

h�

0

;

3�i

i

i 2 f1; 2g.

What this suggests is that the granularity of abstra
tion that the big-step se-

manti
s seeks to impose in des
ribing the operational behavior is inappropri-

ate for
on
urrent
omputation. Also, using big-step semanti
s makes it dif-

�
ult to des
ribe visible side-e�e
ts of a
omputation during non-terminating

runs. Consequently, it is
ommon to �nd most frameworks for
on
urren
y,

e.g., [Mil80℄, using (generally labelled) redu
tion semanti
s.

3.2 Blo
ks and Variable De
larations

Imperative languages are blo
k-stru
tured, and employ s
oped de
larations

of \variables", whi
h are (often) initialized before any
ommand is exe
uted.

Moreover, we have not studied any
onstru
ts where imperative \variables"

(whi
h are really named storage
ells)
an have any stru
ture. A more general

treatment of imperative variables is to fa
tor the notion of State into two

maps, the �rst an environment
 2 Env = X !

�n

Lo
 and the se
ond

� 2 Store = Lo
 !

�n

V, where Lo
 is a set of storage addresses or lo
ations

and V is the set of (storable) values. Environments
an also be used to model

onstant de
larations by in
luding V in the
o-domain of Env. The
ommon

pra
ti
e is to have di�erent environment
omponents for
onstants, variables,

pro
edures, types,
lasses, modules | whatever distin
t nameable
on
epts

36

appear in the language. In what follows, we will assume that the appropriate

environment
omponent is being looked up.

We will ignore the issue of the types of the de
lared variables, sin
e they

are (usually) irrelevant for spe
ifying the dynami
 behavior. Consequently,

variable de
larations merely be
ome lists of variables.

 ::= : : : j var vd begin
 end vd ::= x j vd;vd

The big-step relations now are =)

e

� ((Env � Store) � Exp) � V for

expressions, =)

� Env � (Store � Comm) � Store for
ommands, =)

d

�

(Env�Store�De
l)�(Env�Store) for de
larations (this is a little more gen-

eral than we need but will allow variable initializations during de
larations,

and will be invaluable in the spe
i�
ation of pro
edures).

The previous rules for expressions will now be relative to a pair
; �, and

other than the variable lookup all other rules are otherwise un
hanged. All

the previous rules given for
ommands will now be relative to an environment

, and =) will be subs
ripted =)

. We now give the new and
hanged rules

for variable lookup variable de
larations, assignments and blo
ks (only for

the big-step
ase | we en
ounter the same issues in blo
ks as we did in lo
al

de
larations when attempting a small-step formalization)

; � ` x =)

e

v

where v = �(
(x)), if de�ned

; � ` e =)

e

v

 ` h�; x:=ei =)

�[
(x) 7! v℄

provided x 2 dom(
).

h
; �; xi =)

d

h[x 7! l℄; �[l 7! ?℄i

where l 62
odom(
)

S

dom(�)

h
; �; vd

1

i =)

d

h

1

; �

1

i h
[

1

℄; �

1

; vd

2

i =)

d

h

2

; �

2

i

h
; �; vd

1

;vd

2

i =)

d

h

1

[

2

℄; �

2

i

h
; �; vdi =)

d

h

1

; �

1

i
[

1

℄ ` h�

1

;
i =)

�

0

 ` h�; var vd begin
 endi =)

�

0

o dom(�)

In assignments, we now use
 to determine the lo
ation
orresponding

to x, whi
h is updated in the store. In variable de
larations, fresh lo
ations

are generated, and added to the store (initialized to an \unde�ned value"

?), and then bound to the variables in the environment. Observe that we

have (somewhat idiosyn
rati
ally) the environments returned be in
rements

37

(and hen
e undo-able), whereas the
hanges to the store be
umulative (i.e.,

persistent). This approa
h is appropriate for small or mixed step seman-

ti
s, and also for any extensions to pro
edures. At the abstra
t ma
hine

level, this hints that environments must ne
essarily to be implemented using

sta
ks (whereas stores
an be global, with
areful
ontrol on a

essibility of

lo
ations).

Note also that the returned state in the exe
ution of a blo
k purges all

omponents of the store that were
reated during exe
ution of the blo
k. This

is to avoid the o

urren
e of lo
ations ina

essible from the environment (i.e.,

garbage). Likewise, we have been
areful to avoid the possibility of dangling

referen
es, namely lo
ations a

essible from the environment but not present

in the domain of the store | whi
h
an o

ur if we have a
ommand free(x).

3.3 Pro
edures and parameter passing

We now introdu
e the possibility of de
laring and
alling pro
edures in the

language While. We
onsider only non-re
ursive pro
edures, with a single

variable. The extension to several variables and indeed to several variables

with several di�erent parameter-passing me
hanisms is at least intuitively

straightforward (though rather tedious to write as rules). The extension to

re
ursive pro
edures, however, is not quite trivial (it involves the
omputation

of �xed points by an iterative pro
ess akin to the
ase of thewhile
ommand).

Indeed, we have met some of the s
oping issues during our treatment

of blo
ks (via Tennent's prin
iple of
orresponden
e, where any parameter

passing me
hanism
orresponds to a de�nition me
hanism and
onversely).

The issues of managing
ontrol during
all and return are better treated in

a more general setting of �rst-
lass abstra
tions in x4.

Parameterless pro
edures. We �rst extend the language with fa
ilities

for de
laring and
alling pro
edures without parameters. It is then easy to

extend this further to various parameter-passing
onventions su
h as
all-by-

value and
all-by-referen
e.

d ::= : : : j sub P =

 ::= : : : j
all P

As in most programming languages, we assume that the body
 of the

pro
edure sub may refer to and modify non-lo
al (free) variables that are

visible by the usual rules of stati
 s
ope.

38

Semanti
ally a (parameter-less) pro
edure is merely a state transformer

with a name. Hen
e it is ne
essary to in
lude state transformers in the

o-domain of semanti
 environments:

Pro

0

= Store !

p

Store

Env = X !

�n

(Lo
 + Pro

0

+ : : :)

Operationally, however, a pro
edure identi�er merely represents suÆ
ient

information required to be able to exe
ute the
ode of the pro
edure. Lexi
al

s
oping requires that variables in the body of the pro
edure take their bind-

ings in the environment that the pro
edure was de
lared, rather than from

the
alling
ontext. Hen
e a pro
edure de
laration modi�es the environment

by asso
iating with the pro
edure name, the environment in whi
h the de
la-

ration o

urs and the body of the pro
edure. Su
h a data stru
ture is
alled

a pro
edural
losure. We will revisit
losures in x4 while dis
ussing fun
tion

all in lexi
ally s
oped fun
tional languages. As in the
ase of blo
ks and

de
larations, we assume that the state has two
omponents, an environment

, and a store �.

Sub

0

h
; �; sub P =
i =)

d

h
[P 7! pro
0h
;
i℄; �i

Call

0

h

1

; �;
i =)

�

0

h
; �;
all P i =)

�

0

(P) = pro
0h
;

1

i

Pro
edures with parameters. Extending the treatment to pro
edures

with parameters, we
onsider, for simpli
ity, only pro
edures with a single

parameter. We also
onsider only the
all-by-value and
all-by referen
e

me
hanisms. The extended language syntax is:

d ::= : : : j sub P (val x) =
 j sub P (var x) =

 ::= : : : j
all P (e)

We require that the expression e
an only be a variable symbol when the

pro
edure P uses a var parameter. The mathemati
al domains for pro
e-

dures of these kinds are:

Pro

v

= (Store � V)!

p

Store

Pro

r

= (Store � Lo
)!

p

Store

Pro
 = Pro

0

+ Pro

v

+ Pro

r

Env = X !

�n

(Lo
 + Pro
)

39

The
orresponding
losures used in the operational world now
arry the

formal parameters (marked with the name of the parameter-passing me
ha-

nism) in addition to the body of the pro
edure and its de�nition environment.

The operational rules for the new
onstru
ts are given below. In the rule

Call

v

,

1

is the environment of the de
laration of the pro
edure P . It is

ne
essary to allo
ate a new lo
ation l for the formal parameter x in whi
h

the value of the a
tual parameter obtained by evaluating e in the state h
; �i

is stored. Finally, of
ourse, the lo
ation l needs to be made ina

essible on

exit from the pro
edure. Hen
e the
on
lusion of the rule has the restri
tion

of �

0

to the domain of �. The presen
e of the binding for P in

2

is a simple

expedient to deal with re
ursion.

Sub

v

h
; �; sub P (val x) =
i =)

d

h[P 7! pro
hval x;
;
i℄; �i

Call

v

; � ` e =)

e

v h

2

; �[l 7! v℄;
i =)

�

0

h

;

�;
all P (e)i =)

�

0

o dom(�)

where

2

=

1

[P 7!
(P)℄[x 7! l℄

l 62
odom(
) [dom(�)

and
(P) = pro
hval x;
;

1

i:

In a similar vein we also de�ne the semanti
s of pro
edures that use a

referen
e parameter. Note that the formal parameter x is now asso
iated with

the lo
ation of the a
tual parameter y in invo
ation
all P (y). There are no

new lo
ations
reated, hen
e dom(�) = dom(�

0

). The e�e
t of updating the

formal parameter x within the pro
edure body, is dire
tly re
e
ted in the

ontents of the lo
ation of the a
tual parameter.

Sub

r

h
; �; sub P (var x) =
i =)

d

h[P 7! pro
hvar x;
;
i℄; �i

Call

r

h

2

; �;
i =)

�

0

h

;

�;
all P (y)i =)

�

0

where

2

=

1

[P 7!
(P)℄[x 7!
(y)℄

3.4 Run-time Allo
ation and Deallo
ation

One of the most nettlesome features of most programming languages is the

use of pointers { their
reation, a

ess and disposal. Pointers are a major

40

sour
e of problems for users, implementors and language designers alike. It

is therefore ne
essary to pre
isely de�ne the semanti
s of dynami
 memory

allo
ation and deallo
ation. This is also a feature easier to treat operationally

rather than denotationally.

Brie
y, one of the problems with pointers is aliasing. The problem of

aliasing is not an ex
eptional
ir
umstan
e, sin
e it is often the
ase that

distin
t dereferen
ing expressions refer to the same lo
ation on the heap.

Hen
e an assignment to one of the referen
es might alter the value of some

other seemingly unrelated expression. The se
ond major problem is that

it is fairly
ommon to work with several logi
ally distin
t data stru
tures

in heap, where there is sharing of
omponents. Thirdly, while dis
ussing

memory allo
ation and deallo
ation, it is important to treat de�nedness (a

major sour
e of run-time errors).

Re
ently, [CIO00℄ have built on some previous work of Morris [Mor82℄ and

Bornat [Bor00℄ to spe
ify the semanti
s of aliasing, memory allo
ation and

disposal. For simpli
ity, the store is assumed to
onsist of two
omponents {

a sta
k, whi
h holds the values of lo
al variables, and a heap whi
h
ontains

data that is dynami
ally
reated and destroyed. Naturally any a

ess to the

heap is from the sta
k. Any stru
ture that is ina

essible from the sta
k

is treated as garbage. The sta
k
an be extended by de
larations of lo
al

variables and variable values
an be modi�ed by assignments. The heap

on the other hand, is assumed to
onsist of only one kind of data stru
ture,

namely, re
ords, where ea
h re
ord has a �xed number of
omponents indexed

by tags.

We extend the language of expressions to in
lude re
ord
omponent a

ess

and update. The meta-variables a; b; : : : range over tags (re
ord
omponents).

An expression
an also be a null pointer or a

ess to a re
ord
omponent.

e ::= : : : j e:a

Correspondingly, the domain of denotable values for expressions is ex-

tended to in
lude lo
ations and a spe
ial value null. The
hanges that are

needed in the various domain de�nitions are listed below:

Tag = fa; b; : : :g

V = : : :+ Lo
 + fnullg

Sta
k = X !

�n

V

Heap = Lo
!

�n

(Tags ! V)

Store = Sta
k � Heap

41

A store � is a pair (st; hp),
ontaining a sta
k st and a heap hp. Both the

sta
k st and the heap hp are partial fun
tions. Their domains are denoted

dom(st) and dom(hp) respe
tively. dom(st) in
ludes only the variables in

the
urrent s
ope and dom(hp) in
ludes only the lo
ations allo
ated so far

and is �nite.

Two distin
t variables x and y
ould point to the same re
ord on the heap

i.e. x:a and y:a
ould be aliases. However, two distin
t variables
annot be

aliases sin
e variables are on sta
k and not on the heap. Moreover the \l-

values" of variables
annot be modi�ed. For any variable x whi
h may be a

pointer to a re
ord on the heap, x:a represents a

ess to a
omponent a.

Example 3.6 We restri
t ourselves to the two
onstru
tors for linked lists

| hd and tl respe
tively. For any list variable x (on sta
k) x:hd will denote

the \value" of the �rst element in the list (if the list is nonempty), whereas

x:tl will denote a lo
ation from whi
h the rest of the list is a

essible. Hen
e

x:tl:hd will be the value of the se
ond element of the list (if one does exist).

We also allow for a spe
ial value null to be stored in x (to denote the empty

list). Hen
e if the list (ML-style) [1, 2, 3℄ is the value of the variable x on

sta
k, then we require x 2 dom(st) and three lo
ations fl

1

; l

2

; l

3

g � dom(hp)

su
h that

st(x) = l

1

hp(l

1

)(hd) = 1 ; hp(l

1

)(tl) = l

2

hp(l

2

)(hd) = 2 ; hp(l

2

)(tl) = l

3

hp(l

3

)(hd) = 3 ; hp(l

3

)(tl) = null

Clearly it follows that x:tl:tl:hd = 3 where \:" is left asso
iative.

The operational rule for the new expression is given below. The rules

for other expressions are as given in Table 4. We use the meta-variable l to

range over Lo
 + fnullg, and v will range over \a
tual values" that are not

lo
ations.

ref

lo

(st; hp) ` e =)

e

l l 2 dom(hp)

(st; hp) ` e:a =)

e

hp(l)(a)

Sin
e it is now possible for assignment
ommands to allow the assignments

of pointer expressions, we require two rules for the assignment
ommand.

The �rst rule de�nes the assignment of values to variables on the sta
k.

42

Depending upon the type of the variable, it may either be an integer value

or a lo
ation

5

. We use the meta-variable vl to denote that it may be drawn

from either values or Lo
 + fnullg.

We use h[l:a 7! v℄ to abbreviate h[l 7! (h(l)[a 7! v℄℄. The rules for

assignment are shown below.

assign

var

(st; hp) ` e =)

e

vl

h(st; hp); x := e i =)

(st[x 7! vl℄; hp)

assign

ref

(st; hp) ` e

1

=)

e

l (st; hp) ` e

2

=)

e

vl l 2 dom(hp)

h(st; hp); e

1

:a := e

2

i =)

(st; hp[l:a 7! vl℄)

Having de�ned the semanti
s of referen
es, we are now ready to augment

the language with
ommands for allo
ation and deallo
ation of memory. We

then extend the language of
ommands to in
lude the two Pas
al-like
om-

mands.

 ::= : : : j new(x) j free(e)

new(x) will non-deterministi
ally sele
t a lo
ation not
urrently in dom(hp)

and initialize the re
ord with the value \?". We use hp[l:� 7!? �℄ to denote

that all
omponents of the re
ord hp(l) are initialized to ?. Similarly, free(e)

simply removes the lo
ation denoted by e from dom(h). The rules are given

below.

new

l 62 dom(hp)

h(st; hp); new(x)i =) (st[x 7! l℄; hp[l:� 7!? �℄)

free

(st; hp) ` e =)

e

l l 2 dom(hp)

h(st; hp); free(e)i =) (st; hp� l)

In the rule for free(e), h � l denotes the fa
t that the heap is no longer

de�ned for l (as opposed to being �lled with value \?").

The above rules give us a
avor of how operational rules may be used to

spe
ify implementation intuition to a large extent. In [CIO00℄, the authors

also show how these rules may be used to justify axiomati
 rules for reasoning

lo
ally about aliasing and dynami
 memory allo
ation and deallo
ation.

5

The issue of types is something that needs to be addressed by a stati
 semanti
s, as

pointed out elsewhere. It is not properly the domain of a dynami
 semanti
s. So we will

ontinue to believe that all the
onstru
ts we use are type-safe.

43

4 Fun
tions and higher-order forms

Applying the prin
iple of abstra
tion [Ten81℄ to expressions or
ommands

allows us to form abstra
ts that may be invoked, usually with di�erent pa-

rameters. These abstra
t forms are
alled fun
tions and pro
edures respe
-

tively. Abstra
t expressions (with a single parameter) are written as �x:e.

� binds the variable x within the s
ope of the \body" e. An abstra
t a
an

be invoked by \applying" it to an argument e, written as (a e); su
h
alls

belong to the synta
ti

ategory over whi
h the abstra
t is formed.

The situation be
omes more interesting in \higher-order languages" whi
h

admit su
h abstra
ts as �rst-
lass values { abstra
ts
an themselves be bound

to variables, passed as arguments and returned as results of other fun
tions.

The various issues related to fun
tions and pro
edures, in parti
ular the
or-

re
t formulation of lexi
al s
oping and of re
ursive fun
tion de�nitions,
an

be explored in a higher-order fun
tional language with only single parame-

ter fun
tions (the generalizations to pro
edures and multiple parameters is a

matter of detailing, but does not need very mu
h by way of new
on
epts).

Indeed, these two issues are of vital importan
e | early implementations of

Lisp implemented \dynami
 s
oping" be
ause of a rather simplisti
 imple-

mentation of re
ursion.

Exp is now extended to

e ::= : : : �x:e j (e

1

e

2

)

We look at an extremely simple quintessential fun
tional language,
alled

the �-
al
ulus. Indeed, Landin expli
ated the blo
k stru
tured features of

Algol by relating them to the �-
al
ulus. The operational semanti
s for the

�-
al
ulus is given in a purely synta
ti
 manner (involving no extra-synta
ti

onstru
ts su
h as environments). From these, various environment-based

formulations
an be
onstru
ted to realize the semanti
s in an eÆ
ient man-

ner.

4.1 �-
al
ulus

The syntax of the \pure" �-
al
ulus is:

e ::= x j �x:e

1

j (e

1

e

2

)

Expressions (or terms) are variables, abstra
tions on expressions, or appli-

ations of one expression (putatively a fun
tion) to another (an argument).

44

Other kinds of values and expressions su
h as those we have examined so

far
an be added together with their
omputation rules to obtain an applied

�-
al
ulus. While applied �-
al
uli raise interesting issues and problems, the

pure
al
ulus itself exhibits several important
on
epts. Plotkin's seminal

papers [Plo75, Plo77℄ are good examples of detailed studies of many of the

fundamental issues.

De�nition 4.1 (free and bound variables) An o

urren
e of a variable

x in a term e is bound if it appears in a sub-term �x:e

0

. All o

urren
es of

variables that are not bound or binding are free. The fun
tion fv returns the

set of free variables in a term.

fv(x) = fxg fv(�x:e) = fv(e)� fxg fv((e

1

e

2

)) = fv(e

1

)

[

fv(e

2

)

Bound variables may be systemati
ally renamed without altering the intended

meaning of an expression. By systemati
, we mean that two hitherto di�erent

variables are not suddenly identi�ed, in parti
ular that no previous free vari-

able is suddenly \
aptured" and bound. We identify expressions that di�er

only in the
hoi
e of names of bound variables, a notion
alled �-equivalen
e.

Expressions with no free variables are
alled
losed.

The major meta-operation for synta
ti
 manipulation in any �-
al
ulus

is substitution.

De�nition 4.2 (substitution) We write e[e

0

=x℄ to denote the term ob-

tained by substituting e

0

for all free o

urren
es of variable x in term e.

Substitution is de�ned using a
ase analysis on e

6

:

x[e

0

=x℄ = e

0

y[e

0

=x℄ = y y 6� x

(e

1

e

2

)[e

0

=x℄ = (e

1

[e

0

=x℄ e

2

[e

0

=x℄)

�y:e

1

[e

0

=x℄ = �z:(e

1

[z=y℄[e

0

=x℄) z 62 fv(e

1

)

S

fv(e

0

)

6

This version of the de�nition \fa
tors in" �-equivalen
e whereas most treatments do

not.

45

(�)

(�x:e

1

e

2

) �!

1

e

1

[e

2

=x℄

(�)

e �!

1

e

0

�x:e �!

1

�x:e

0

(op)

e

1

�!

1

e

0

1

(e

1

e

2

) �!

1

(e

0

1

e

2

)

(arg)

e

2

�!

1

e

0

2

(e

1

e

2

) �!

1

(e

1

e

0

2

)

Table 6: �-redu
tion in the �-
al
ulus

Sin
e substitution avoids
apture of free names, it perfor
e avoids the possi-

bility of a

idental dynami
 binding.

It is often
onvenient to use the notion of
ontexts in examining the stru
-

ture of a term.

De�nition 4.3 (
ontext) A
ontext is a �-term with a \hole" given by the

following abstra
t grammar:

C ::= [℄ j (C C) j �x:C j e

One-hole
ontexts are
hara
terized as

C

1

::= [℄ j (C

1

e) j (e C

1

) j �x:C

1

De�nition 4.4 (redu
tion) A redex is any term of the form (�x:e

1

e

2

).

Any term
ontaining a redex as a sub-term is
alled redu
ible. The �-

redu
tion rule is

C

1

[((�x:e

1

) e

2

)℄ �!

1

C

1

[e

1

[e

2

=x℄℄

where C

1

[℄ is any one-hole
ontext.

An alternative formulation of �-redu
tion is given in Table 6.

Some important results about �-redu
tion are:

46

Lemma 4.5 (Substitution and �-redu
tion) If e �!

1

e

0

then

e

1

[e=x℄ (�!

1

)

�

e

1

[e

0

=x℄ and e[e

1

=x℄ �!

1

e

0

[e

1

=x℄.

Proposition 4.6 (Lo
al
on
uen
e) �-redu
tion satis�es the weak dia-

mond property.

Theorem 4.7 (Chur
h-Rosser) �-redu
tion is
on
uent.

Theorem 4.8 (Standardization) If e(�!

1

)

�

e

0

then e(�!

standard

1

)

�

e

0

by al-

ways redu
ing the leftmost outermost redex at ea
h stage.

Proposition 4.9 (�xed points) There exists a
losed �-
al
ulus term Y ,

alled a �xed point
ombinator, su
h that (Y e) �!

�

1

(e (Y e)), for any e.

4.2 Relationship with fun
tional languages.

Almost all fun
tional languages disallow redu
tion \below" a � | redexes

appearing in terms of the form �x:e are not
onsidered. In other words,

su
h \weak redu
tion" does not have the �-rule. Hen
e, not all results (
on-

uen
e!) shown for the �-
al
ulus automati
ally transfer to fun
tional lan-

guages based on them. Moreover,
ertain results do not hold for typed frame-

works. For instan
e, �xed point
ombinators do not exist in simply typed

lambda
al
uli

7

. Finally, we should mention that programming languages

are
on
erned with
losed terms only.

Two
ommonly used strategies for redu
ing terms are (weak)
all-by-value

(or eager) and (weak)
all-by-name (or lazy)

8

. In what follows, we present

di�erent formulations of these two strategies and how they are realized.

Call-by-value. The basi
 notion in
all-by-value (
bv) is that arguments

to a fun
tion are evaluated before evaluation of the fun
tion body
ommen
es.

The notion of value is
ru
ial | they are merely all abstra
tions: v 2 Val ::=

�x:e. Values are irredu
ible, but not
onversely.

We �rst present the big-step formulation for
all-by-value redu
tion:

v =)

v

v

e

1

=)

v

�x:e

0

1

e

2

=)

v

v

2

e

0

1

[v

2

=x℄ =)

v

v

(e

1

e

2

) =)

v

v

In the small-step framework, this is formulated as shown in Table 7.

7

though they
an in languages with re
exive types or re
ursive types

8

Various resear
hers a
tually distinguish between
all-by-value and eager (or
all-by-

name and lazy) whi
h we gloss over here.

47

(�

v

)

(�x:e

1

v) �!

v

1

e

1

[v=x℄

(op)

e

1

�!

v

1

e

0

1

(e

1

e

2

) �!

v

1

(e

0

1

e

2

)

(arg

v

)

e

2

�!

v

1

e

0

2

(v e

2

) �!

v

1

(v e

0

2

)

Table 7: Call-by-value �-redu
tion

Alternatively, the
bv strategy
an be explained by using the �

v

redu
tion

rule in the following
bv evaluation
ontexts:

E

1

v

::= [℄ j (E

1

v

e) j (v E

1

v

)

Call-by-name. Call-by-name (
bn), in
ontrast, does not simplify argu-

ments before fun
tion
all. The big-step
bn rules are:

v =)

n

v

e

1

=)

n

�x:e

0

1

e

0

1

[e

2

=x℄ =)

n

v

(e

1

e

2

) =)

n

v

Note that arguments are not evaluated before substituting them for the for-

mal parameter in the fun
tion body. This may result in more than one
opy

of the same argument, whi
h may be evaluated multiple times. The advan-

tage of
bn over
bv is that arguments that are not needed are not evaluated.

An important stati
 analysis te
hnique is stri
tness analysis, in whi
h
bv

evaluation
an safely be used instead of
bn. An alternative formulation of

the
bn rules is given in Table 8.

Alternatively, the
bn strategy
an be explained by using the � rule in

the following
bn evaluation
ontexts:

E

1

n

::= [℄ j (E

1

n

e)

Context ma
hines. The notion of evaluation
ontext permits a simple

transformation, due to Felleisen and Wright [WF94℄ of redu
tion semanti
s

into an abstra
t ma
hine. We illustrate the idea for
bv redu
tion. A similar

ma
hine
an be
onstru
ted for
bn redu
tion.

48

(�)

(�x:e

1

e

2

) �!

n

1

e

1

[e

2

=x℄

(op)

e

1

�!

n

1

e

0

1

(e

1

e

2

) �!

n

1

(e

0

1

e

2

)

Table 8: Call-by-name �-redu
tion

We �rst
hara
terize basi
 evaluation
ontexts F

v

:

F

v

::= ([℄ e) j (�x:e [℄)

Using the fa
t that any non-trivial
bv evaluation
ontext
an be expressed

as the
omposition of basi
 evaluation
ontexts F

v

1

[F

v

2

[:::F

v

k

[℄:::℄℄, (the trivial

ontext [℄
an be
onsidered as
orresponding to the
ase where k = 0), we

de�ne a \
ontext sta
k ma
hine" as follows. The ma
hine has two
ompo-

nents | a sta
k of basi
 evaluation
ontexts FS, and the
urrent expression

e. Transitions are de�ned by
ases depending on the stru
ture of e and then

of FS:

h

$

([℄ e)

FS

%

; vi ��. h

$

(v [℄)

FS

%

; ei

h

$

((�x:e) [℄)

FS

%

; vi ��. h

j

FS

k

; e[v=x℄i

h

j

FS

k

; (e

1

e

2

)i ��. h

$

([℄ e

2

)

FS

%

; e

1

i

The ma
hine is started in
on�guration h

j k

; ei for any
losed e and ter-

minates with
ontext sta
k empty and value v.

Now if we de�ne fun
tion
run
h as:

run
hh

j k

; ei = e

run
hh

$

F

v

n

FS

%

; ei =
run
hh

j

FS

k

; F

v

n

[e℄i

49

it is easy to show that

h

j

FS

k

; ei ��.

�

h

j k

; vi if and only if
run
hh

j

FS

k

; ei =)

v

v

4.3 Closures and Environment ma
hines

As mentioned earlier in passing, substitution is an expensive operation, sin
e

it involves traversing the term in whi
h the substitution is being performed

(as well as �-
onversion to prevent name
apture). Environments are a
on-

venient an
illary stru
ture used to re
ord the bindings for variables in sub-

stitutions.

Closures. Suppose environments were, as before, represented by �nite

domain fun
tions from variables to \values". Suppose we
onsidered an en-

vironment
 in whi
h f was bound to �x:e and proposed a rule for fun
tion

all:

 ` e

1

=)

e

v

1

[x 7! v

1

℄ ` e =)

e

v

 ` f(e

1

) =)

e

v

The problem with this rule is that if e
ontains free variables other than x,

lexi
al s
oping may be violated if the binding for f was made in an environ-

ment other than
, sin
e in the
all, they will take their value (if they
an)

from
. While the problem is more a
ute in higher-order languages, it never-

theless exists in simple blo
k stru
tured pro
edures as well, whi
h is why we

disallowed nested pro
edures in x3.3. It is therefore ne
essary to \pa
kage"

in when making the binding for f the prevalent environment. Su
h a pair is

alled a
losure. We de�ne

Clos � Exp � Env Env = X !

�n

Clos

In an applied
al
ulus, there
an be other kinds of values apart from
losures.

Closures permit a
orre
t treatment of lexi
al s
ope, and thus remedy

the la
una in our treatment of pro
edures. They
an also
orre
tly handle

re
ursive fun
tions (and other re
ursive data stru
tures that are possible in

a lazy language). Let v
l range over
losures of the form � �x:e;
 �. We

give a big-step des
ription for
bn and
bv simpli�
ations of
losures, whi
h

are basi
ally restatements of the rules for =)

n

and =)

v

. Very roughly, the

judgments used for
losure evaluation under strategy X � e;
 � =)

X

l

v
l

50

orrespond to judgments
 ` e =)

X

v for expression evaluation, and where

value
losure v
l \unravels" to value v.

(x) =)

n

l

v
l

� x;
 � =)

n

l

v
l

� e

1

;
 � =)

n

l

� �x:e

0

;

0

� � e

0

;

0

[x 7!� e

2

;
 �℄� =)

n

v
l

l

� (e

1

e

2

);
 � =)

n

l

v
l

For
bv the rules are:

(x) =)

v

l

v
l

� x;
 � =)

v

l

v
l

� e

1

;
 � =)

v

l

� �x:e

0

;

0

� � e

2

;
 � =)

v

l

v
l

2

� e

0

;

0

[x 7! v
l

2

℄� =)

n

l

v
l

� (e

1

e

2

);
 � =)

n

l

v
l

It is also possible to formulate a
al
ulus of
losures [Cur91℄ and study

properties su
h as
on
uen
e of its redu
tion relation, whi
h is \weak" in

the sense that redu
tion does not o

ur below abstra
tions.

Abstra
t ma
hines. The big-step semanti
s suggests using a sta
k of

losures that are yet to be simpli�ed, or whi
h are awaiting their arguments.

Using this insight, environment ma
hines
an be developed, manipulating

losures.

An environment ma
hine for
bn due to Krivine is:

h� x;
 �;

j

S

k

i ��. h
(x);

j

S

k

i

h� (e

1

e

2

);
 �; Si ��. h� e

1

;
 �;

$

� e

2

;
 �

S

%

i

h� �x:e;
 �;

$

l

S

%

i ��. h� e;
[x 7!
l ℄�;

j

S

k

i

The ma
hine
on�gurations
onsist of a
urrent
losure to be simpli�ed and

a sta
k of
losures whi
h are (yet-to-be evaluated) arguments to the
urrent

term. The �rst rule is a look-up. The se
ond rule sta
ks the
losure
onsisting

51

of argument N together with the
urrent environment (in whi
h it should

be evaluated) onto the sta
k of yet-to-be-evaluated
losures. The third rule

starts the evaluation of the body in a
losure after extending the environment

with a binding of formal x to the argument
losure, whi
h is atop the sta
k.

The
orresponding environment ma
hine for
bv is:

h� x;
 �;

j

S

k

i ��. h
(x);

j

S

k

i

h� (e

1

e

2

);
 �;

j

S

k

i ��. h� e

1

;
 �;

6

6

6

6

4

&

� e

2

;
 �

S

7

7

7

7

5

i

hv
l ;

6

6

6

6

4

&

� e;
 �

S

7

7

7

7

5

i ��. h� e;
 �;

6

6

6

6

4

.

v
l

S

7

7

7

7

5

i

hv
l ;

6

6

6

6

4

.

� �x:e;
 �

S

7

7

7

7

5

i ��. h� e;
[x 7! v
l ℄�; Si

The
bvma
hine is not mu
h di�erent, ex
ept that both operator and operand

are to be evaluated before appli
ation. For this, two markers & and . are

used to indi
ate that the
losure below it on the sta
k is the argument and

operator respe
tively of an appli
ation. The third rule swaps the evaluated

operand and unevaluated operators between the
urrent-
losure and the top-

of-sta
k positions.

Both ma
hines are loaded with a
losure
onsisting of a
losed term and

empty environment, with an empty sta
k. The unload fun
tion involves

unfolding the resulting
losure, using the pa
kaged environment to obtain

the terms bound to variables (re
ursively unfolding
losures).

SECD Ma
hine. The prototypi
al ma
hine used for
bv evaluation of a

fun
tional language was the SECD ma
hine [Lan65a℄. This ma
hine works

with two sta
ks | S for already evaluated expressions and \dump" D for

managing
ontrol during fun
tion
all and return | an environment E and a

list of op
odes C. Sta
k S is used in mu
h the same way as the sta
k is used

for expression evaluation | the
losures to whi
h expressions evaluate are

pushed onto it. DumpD is used as a repository for storing the
alling
ontext

52

(the
urrent environment, the sub-expressions already evaluated prior to the

all, and the
ode to be evaluated after the
all) when a fun
tion
all is made;

this
ontext
an then be restored from the top of the dump on
ompletion of

a fun
tion
all. To avoid introdu
ing new symbols, we use (following [Plo75℄)

the �-terms themselves as op-
odes, with one additional op-
ode for fun
tion

appli
ation app.

h

$

l

S

%

;
; �;

$

hS

0

;

0

;

0

i

D

%

i ��. h

$

l

S

0

%

;

0

;

0

; Di

h

j

S

k

;
; x ::
;

j

D

k

i ��. h

$

(x)

S

%

;
;
;

j

D

k

i

h

j

S

k

;
; �x:e ::
;

j

D

k

i ��. h

$

� �x:e;
 �

S

%

;
;
;

j

D

k

i

h

j

S

k

;
; (e

1

e

2

) ::
;

j

D

k

i ��. h

j

S

k

;
; e

1

:: e

2

:: app ::
;

j

D

k

i

h

6

6

6

6

4

l

� �x:e;

0

�

S

7

7

7

7

5

;
; app ::
;

j

D

k

i ��. hb
;

0

[x 7!
l ℄; e;

$

hS;
;
i

D

%

i

The �rst rule des
ribes fun
tion return; it says that if the
urrent
all has no

remaining instru
tions, the
alling
ontext is restored from the dump | the

returned value pla
ed atop the
aller's sta
k, and the environment and
ode

list of the
aller are restored. The se
ond rule is a variable look up. The

third rule forms and pla
es a
losure atop the value sta
k. The fourth rule is

really a \
ompilation rule" whi
h evaluates operator and operand expressions

of an appli
ation (it is possible to separate the exe
ution and
ompilation

phases). The �fth rule is the a
tual fun
tion
all rule. It assumes that the

operand (argument)
losure
l sits above the operator (fun
tion)
losure atop

the sta
k.
l is bound to the formal argument x in the operator
losure's

environment, the operator
losure's
ode is now made the
ode list, and the

alling
ontext is pla
ed atop the dump. As indi
ated above, the
alling

ontext
onsists of the sta
k below the operator and operand
losures, the

alling environment and the remaining
ode list.

The SECD ma
hine has been used as a template for a variety of blo
k-

stru
tured languages, as we will dis
uss below. Plotkin [Plo75℄ has related the

53

abstra
t ma
hine semanti
s with the big-step and redu
tion semanti
s of an

applied
bv �-
al
ulus using standardization to establish the
orresponden
e.

Other abstra
t ma
hines. There are various other abstra
t ma
hine

implementations that we
annot des
ribe here. One su
h
lass of ma
hines is

based on a translation of the �-
al
ulus into
ombinatory logi
 and an imple-

mentation of these
ombinators [Tur79℄. A spe
ial
lass of implementations

are based on graph redu
tion (see [Jon87℄ and various referen
es therein for

an a

essible treatment of su
h implementations). The main operations of

these ma
hines involve performing rearrangements of a syntax tree (or graph)

a

ording to
ertain
ombinators or dire
tors [KS88℄. Also signi�
ant is the

Categori
al Abstra
t Ma
hine [CCM85℄ whi
h is based on operative features

of
ategori
al models of �-
al
uli, and the
losely related ma
hine derived by

Hannan and Miller [MH90℄.

4.4 Implementation issues related to environments

The abstra
t ma
hines seem rather pro
igate in the stru
tures they employ.

Fortunately, there are rather eÆ
ient implementations of environments, and

losures using sta
ks, pointers and allo
ation on sta
k and heap. The ob-

servation that the
alled fun
tion never looks at the
aller's sta
k in the

SECD ma
hine suggests that the value sta
k does not need storing, only the

(re)storing of the sta
k pointer. Likewise, entire
ode lists and environments

need not be stowed away on the dump, pointers to them will suÆ
e.

EÆ
ient environment implementation and management is
ru
ial. First,

the environment is maintained as a sta
k of referen
es to lo
al frames. Then,

variables are repla
ed by a fast indexing s
heme relative to a frame pointer

(
.f. de Bruijn indi
es in the �-
al
ulus).

Re
ursion. Spe
ial mention must be made about re
ursive fun
tions. As

mentioned above, simply typed languages
annot have a Y
ombinator, so

a spe
ial me
hanism is needed to build
losures for re
ursive fun
tions and

re
ursive data stru
tures. A simple idea is to build a
ir
ular referen
e into

the environment
omponent of the
losure for a re
ursive fun
tion. This

is a
hieved using two op-
odes introdu
ing a level of indire
tion in environ-

ments

9

. The �rst op
ode pla
es a referen
e to a dummy
losure. The
losure

9

whi
h is already there in most pointer-based implementations of environments

54

for the re
ursive fun
tion is
reated using this augmented environment, and

a se
ond op-
ode overwrites the referen
e to the dummy referen
e with a

pointer to the new
losure, thus building the
y
le (see [Hen80, Car84℄ for a

simple implementation).

Lo
al de�nitions. Lo
al de�nitions may be implemented in
orrespon-

den
e to the parameter-passing me
hanism, employing the equivalen
e

(�x:e

2

e

1

) � let x

def

= e

1

in e

2

or its generalization to more stru
tured de�nitions. However su
h a
rude

approa
h is rarely followed, sin
e it is ineÆ
ient. Exploiting the fa
t that

the environment used for e

2

is an extension of that used for e

1

, mu
h simpler

and dire
t methods are possible, in parti
ular, by employing �ner grain op-

odes that fa
ilitate sta
k manipulation and making de�nitions and re
ursive

de�nitions.

Extensions. The SECD framework is fairly robust, and
an easily be

extended to deal with a variety of language extensions, in
luding side e�e
ts.

Adding a store
omponent and related op-
odes [Car86a℄ allows support for

imperative features. Similarly, input and output streams
an be a

om-

modated, as also
an
ommuni
ation and
on
urren
y primitives (a general

hoi
e operator is diÆ
ult to in
orporate) [GMP89℄.

Pro
edures in imperative languages. By the prin
iple of abstra
-

tion, the notion of
losures
arries over to
ommand abstra
ts. Of
ourse,

there are some aspe
ts that are simpler (languages with higher-order pro-

edures are rare beasts), whereas issues pertaining to stores are somewhat

more involved. In parti
ular, showing that the allo
ation and deallo
ation of

lo
ations is done
orre
tly is an important part of proving that the language

and implementation are free of storage inse
urities.

The typi
al
all-sta
k management in traditional imperative languages

an be seen as an implementation where three di�erent sta
k stru
tures { S

for temporary
omputation, E for the environment and D for the dump |

are \multiplexed" onto one physi
al sta
k.

55

4.5 Control operators

We brie
y dis
uss here the operational semanti
s for an extension of the

�-
al
ulus with
ontrol operators that
an pass or throw away the
urrent

evaluation
ontext. Control operators allow fun
tional programs to handle

features like
on
urrent threads, ex
eptions,
all/

 et
. They support a

te
hnique used in modern
ompilers, namely that of passing
ontinuations

[App92℄. Moreover, the environment ma
hines given earlier have simple ex-

tensions to deal with these new
ontrol operators.

The syntax is extended with two new unary operations, whi
h are also

redexes:

e ::= : : : j Ce j Ae

whose redu
tion rules, stated in
ontextual form, are:

(C)

E[Ce℄ �!

e

1

(e (�x:AE[x℄))

x 62 fv(e)

(A)

E[Ae℄ �!

e

1

e

In the rule (A), the \abort" operator throws away the
urrent evaluation

ontext, whereas in the rule (C), the \
ontrol" operator passes an abstra
ted

form of the
urrent evaluation as an argument to the expression e.

Another well-known
ontrol operator is
all/

, \
all with
urrent
ontin-

uation", with the following operational rule:

(
all=

)

E[
all=

(�k:e)℄ �!

e

1

((�k:(k e)) (�x:AE[x℄))

x 62 fv(e)

an equivalent of whi
h
an be expressed in terms of (C) and (A).

Environment ma
hines for
ontrol operations. Re
all that the sta
k

omponent S of an environment ma
hine represents the
ontext E of the

urrent expression being evaluated. The
ontrol operators manipulate this

evaluation
ontext. Therefore, operations to en
apsulate and manipulate the

sta
k are introdu
ed: A new kind of
losure retr (S) is added that
orresponds

roughly to �x:AE[x℄.

56

The new rules for the Krivine ma
hine are:

h� Ce;
 �;

j

S

k

i ��. h� e;
 �;

j

retr(S)

k

i

h� Ae;
 �;

j

S

k

i ��. h� e;
 �;

j k

i

hretr(S);

$

l

S

0

%

i ��. h
l ;

j

S

k

i

The manipulations of the
ontext are fairly
lear: in the �rst rule, the
urrent

sta
k is en
apsulated and presented as an argument to the
losure
orrespond-

ing to e. The \abort" operator throws away the
urrent sta
k. In the third

rule, the en
apsulated sta
k is restored, in pla
e of the existing sta
k S

0

.

The
bv environment ma
hine uses the same rules as before with three

additional rules for manipulating the sta
k. Of these, the se
ond rule (for

abort) is the same as the rule in the extension of the Krivine ma
hine.

h� Ce;
 �;

j

S

k

i ��. h� e;
 �;

$

&

retr(S)

%

i

h� Ae;
 �;

j

S

k

i ��. h� e;
 �;

j k

i

hv
l ;

6

6

6

6

4

.

retr(S)

S

0

7

7

7

7

5

i ��. hv
l ;

j

S

k

i

If retr(S)
orresponds to �x:AE[x℄, and S

0

orresponds to
ontext E

0

[℄, then

the last rule
an be seen as implementing the redu
tion sequen
e

E

0

[(�x:AE[x℄ v)℄ �!

v

1

E

0

[AE[v℄℄ �!

v

1

E[v℄:

Translating the
ontrol operators away. An important result [Plo75,

FFKD87, Gri90℄ is that these
ontrol operators
an be translated away by so-

alled \CPS transformations" into purely fun
tional languages. We introdu
e

the idea here only to indi
ate how operational te
hniques are used in language

translations, sin
e a proper treatment of CPS is well beyond the s
ope of this

hapter. We present one su
h translation, whi
h lets us interpret
all-by-value

57

redu
tion as
all-by-name redu
tion [Plo75℄.

x = �k:(k x) (e

1

e

2

) = �k:(e

1

(�m:(e

2

(�n:((m n) k)))))

a = �k:(k a) Ce = �k:(e (�m:((m (�n:�d:(k n))) (�x:x))))

�x:e = �k:(k (�x:e)) Ae = �k:(e (�x:x))

Various interesting theorems
an be shown about this CPS translation.

For example:

Theorem 4.10 For any pure �-expression e: (e (�x:x)) =)

n

v if and only

if (e (�x:x)) =)

v

v

Theorem 4.11 For any �-expression e without
ontrol operators, and of

base type (not of a fun
tion type)

10

: e (�!

1

)

�

v if and only if (e (�x:x)) (�!

1

)

�

v.

5 LTSs and Intera
tive Programs

The formulations we have presented so far have used transition systems with-

out labels. We have till now
on
entrated on programs in isolation from their

operating environment. However, programs intera
t with their exe
ution en-

vironment, at the very least for input and output of data. Even in an isolated

omputer, there are various intera
tions with peripheral devi
es su
h as disks,

printers, �le systems and libraries. There are also intera
tions with forked

pro
esses, interrupt handlers et
.

The pi
ture we have so far presented
an be sustained when intera
tion

with the environment
an be
learly separated from
omputation. However,

programming nowadays is in
reasingly intera
tive, and all programming lan-

guages provide fa
ilities for intera
tion with the environment. In addition,

several languages provide features for
on
urrent and distributed exe
ution.

Intera
tions
an take the form of remote pro
edure
alls, or
ommuni
ation

in a network /
luster / distributed
omputing environment, interspersed in

10

su
h expressions
an be
onsidered \
omplete programs" in a typed �-
al
ulus. The

result depends on strong normalization of the typed lambda
al
ulus.

58

the
omputation. In other words, intera
tion be
omes an integral part of

omputation.

Central to this kind of intera
tive
omputing are the
on
epts of pro
ess

and
ommuni
ation (the texts [Hoa85, Hen88, Mil89℄ provide ex
ellent in-

trodu
tions to the area). A program and its environment
an be
onsidered

two pro
esses that
ommuni
ate with ea
h other. These two pro
esses may

themselves
onsist of
olle
tions of intera
ting pro
esses.

When integrating intera
tion into
omputation,
ertain issues arise in pro-

viding stru
tured operational des
riptions. Firstly, the Fregean prin
iple of

ompositionality should still be appli
able. Se
ondly, the fa
t that pro
esses

intera
t while exe
uting
on
urrently brings in its own
omplexity sin
e in-

tera
tions may alter the state of a program non-deterministi
ally. Thirdly,

the fa
t that a program operates
orre
tly only under
ir
umstan
es where

the environment ful�lls
ertain obligations implies that both the program

and its environment (regarded as a pro
ess)
ooperate in a
hieving
ertain

goals. Spe
i�
ations must
learly de�ne interfa
es of intera
tion that
on-

strain the kinds of inputs a pro
ess
an re
eive, the outputs it
an produ
e

and how it syn
hronizes with other
omponents in a system. Lastly, one

annot pla
e unreasonable restri
tions on the environment. For example, it

would be unreasonable to expe
t that a remote server operate at the same

speed as one or several of its
lients. Hen
e
on
urrent exe
ution in general,

implies that di�erent pro
esses exe
ute at di�erent speeds and intera
tions

are the only means of a
hieving
ertain syn
hronizations.

Labels and behavior. Labels are a
onvenient devi
e to indi
ate in-

tera
tion between a program and its environment during exe
ution. They

arry information about
ommuni
ation
apabilities of pro
esses and are of-

ten
ru
ial to the
hanges in state that pro
esses in
ur. They are also used to

determine and resolve non-deterministi

hoi
es in the exe
ution of a pro
ess

when it has the possibility of intera
ting with several other pro
esses at the

same time.

We saw in TSs that
on
uen
e, determina
y and termination were impor-

tant properties and that two sequential systems are
onsidered equal if they

ompute the same fun
tion between input and output states. Con
urrent

systems on the other hand, are generally non-deterministi
 (mostly non-

on
uent), and often in�nite-state, non-terminating systems; neither may

they be
omputing a parti
ular relation or fun
tion. So what are the
orre-

59

sponding notions of behavioral properties in LTSs? The
ru
ial properties of

su
h systems
on
ern their intera
tion
apabilities. Any equality relation on

su
h systems will naturally relate to the
ommuni
ation
apabilities of the

individual pro
esses that make up the system.

Various notions of behavior
an be asso
iated with an LTS, based on the

idea that the observable behavior of a pro
ess depends on the sequen
es of

labelled transitions it
an perform. However, there is little
onsensus yet on

what is the right notion of behavior. A simple, language-theoreti
 notion

of program behavior is the set of sequen
es (�nite or in�nite) of labels or

tra
es. A pro
ess p has tra
e & = l

1

l

2

: : : 2 L

!

= L

�

S

L

inf

if it
an perform

a sequen
e of labelled transitions p

l

1

�! p

1

l

2

�! p

2

: : :. Two pro
esses are

onsidered tra
e-equivalent if they have the same tra
es.

Other notions of behavior take into a

ount the
ommuni
ation
apabil-

ities (and in
apabilities) at ea
h intermediate state, thus being sensitive to

the possibility of deadlo
k { inability to perform a transition with a parti
u-

lar label { in some sequen
es of transitions (see examples 5.2 and 5.3 below).

We present only one su
h �ner notion,
alled bisimulation [Par81℄.

The intuition is that this notion of equivalen
e identi�es a pair of pro-

esses, if starting from equivalent states they have the same intera
tion pos-

sibilities, the su

ess of ea
h of whi
h puts them again in states that may be

onsidered equivalent.

De�nition 5.1 � A binary relation R on pro
ess
on�gurations is a sim-

ulation if whenever s

1

Rs

2

, for any l 2 L, if s

1

l

�! s

0

1

, then there exists

a
on�guration s

0

2

su
h that s

2

l

�! s

0

2

and s

0

1

Rs

0

2

,

� R is a bisimulation if R and R

�1

(the symmetri
 inverse of R) are

both simulations.

� The
olle
tion of bisimulation relations is
losed under inverse,
ompo-

sition and arbitrary union. The largest bisimulation
alled bisimilarity

is denoted � and is an equivalen
e relation.

Proving two labelled transitions systems are bisimilar involves proposing and

proving a parti
ular relation is a bisimulation. Bisimulation equivalen
e or

bisimilarity is a �ner notion of equivalen
e than tra
e equivalen
e, sin
e it

distinguishes more programs than tra
e equivalen
e does. In parti
ular, it

is sensitive to the potential for deadlo
k behavior | two pro
esses with the

60

same tra
es are distinguished if on some tra
e, one of them
an rea
h a

state where some parti
ular a
tions are possible whereas the other
annot

rea
h su
h a
orresponding state on that same tra
e. In fa
t, bisimilarity

is the �nest deadlo
k-sensitive equivalen
e relation on pro
esses obtained

from examining their observable behavior. In pra
ti
e, there are a variety

of notions that
an be
onsidered bisimulations, either for di�erent notions

of labelled transition, or whi
h di�er in the pre
ise
hara
terization of the

labelled a
tions, what exa
tly is observable, et
. There also may be di�erent

hara
terizations for a single notion of bisimulation, with alternative
hara
-

terizations supporting di�erent styles of reasoning. There are also a variety

of di�erent notions of equivalen
e that lie between tra
e equivalen
e and

bisimulation, some of whi
h are fairly natural notions of equivalen
e to work

with. A full exploration of these issues is beyond the s
ope of this
hapter;

a qui
k introdu
tion is provided in [AFV00℄.

5.1 CSP

We illustrate the use of LTSs in semanti
 spe
i�
ation through a language

based on CSP (Communi
ating Sequential Pro
esses) due to Hoare [Hoa78,

Hoa85℄. The language extends the language of guarded
hoi
e (whi
h already

in
ludes non-determinism) with new
onstru
ts for
ommuni
ation and
on-

urrent exe
ution. The semanti
s we give here is a simpli�
ation of a pre-

sentation due to Plotkin [Plo83℄.

We must mention here that it is often diÆ
ult to present purely big-step

or purely small-step semanti
s for intera
tive programming languages, whi
h

in
orporate internal evaluation of expressions. This is be
ause
ommuni-

ating
on
urrent systems are best des
ribed using small-step des
riptions,

sin
e they
an a

ount for interleavings and intera
tions from intermediate

states (parti
ularly important in notions of behavior sensitive to deadlo
k),

whereas expressions are evaluated in entirety (and
an easily be spe
i�ed in

a big-step).

The syntax for CSP is as follows:

io ::= P ?in j Q!out

g ::= e j e; io

 ::= x := e j P ?in j Q!out j
;

j if

n

i=1

g

i

.

i

� j do

n

i=1

g

i

.

i

od

S ::= [k

n

i=1

P

i

::

i

℄

61

io stands for input/output
ommuni
ation statements, g for \guards", whi
h

are boolean expressions, optionally followed by a
ommuni
ation. Commands

are
ommuni
ation statements, assignments, and the guarded
hoi
e and it-

eration
onstru
ts. A program S
onsists of a
olle
tion of named pro
esses.

For simpli
ity we assume that
on
urrent exe
ution takes pla
e only at the

topmost level, i.e., pro
esses
annot have subpro
esses that themselves ex-

e
ute
on
urrently. Every pro
ess has a name that is known to other pro-

esses. Communi
ation between pro
esses is by syn
hronized handshaking or

rendezvous, wherein two named pro
esses that need to ex
hange values wait

at mat
hing input and output
ommands respe
tively before
onsummating

the
ommuni
ation. The
ommand P ?in denotes that the
urrent pro
ess

will wait to input a value from the pro
ess named P , and Q!out represents a

desire to output a value out to the pro
ess named Q; the sending pro
ess is

willing to wait till Q is ready to input the value.

Example 5.2 Assume there is a printer shared by two pro
esses P

1

and P

2

.

Both pro
esses and the printer are modeled as CSP pro
esses, whi
h together

form a \
losed" system.

[P

1

:: do :done

1

. lo
al

1;1

;PR!e od;PR!eot; lo
al

1;2

k P

2

:: do :done

2

. lo
al

2;1

;PR!e;odPR!eot; lo
al

2;2

k PR :: do

2

i=1

true;P

i

?v . do v 6= eot . print(v);P

i

?v; od od

℄

The printer pro
ess PR waits till one of the two pro
esses P

1

, P

2

, is ready to

begin transmission, with the �rst value. In
ase both pro
esses want to output

to the printer, PR has to make a
hoi
e. Having
hosen to
ommuni
ate

with one of them, the printer does not serve the other pro
ess till the
hosen

one sends an end-of-transmission (eot) signal. The printer pro
ess never

terminates sin
e it keeps waiting inde�nitely for P

1

or P

2

to
ommuni
ate

with it

11

. It is possible for one pro
ess to monopolize the printer and prevent

the other pro
ess from ever gaining a

ess.

11

This interpretation is at varian
e with the so-
alled distributed termination
onven-

tion that Hoare originally proposed in the language. However we �nd our interpretation

more suitable for server pro
esses. It also illustrates that we are now in an arena where

we deal with systems that do not ne
essarily always terminate. Indeed in
on
urrent

systems, guaranteeing properties su
h as deadlo
k-freedom, non-termination and freedom

from starvation may be more important.

62

Ea
h pro
ess has its own state and the states of the di�erent pro
esses are

disjoint. All
hanges in state �

i

of a pro
ess P

i

are due to lo
al assignments

or re
eipt of input from another pro
ess. The set of global states de�ned as

State =

n

O

i=1

State

i

is the Cartesian produ
t of the sets of the states of individual pro
esses.

where State

i

is the set of states of the pro
ess P

i

. The metavariable �� denotes

the global state and ea
h �

i

stands for the state of pro
ess P

i

. The labels we

use for our LTS
onsist of the set of possible
ommuni
ations, de�ned as

Inputs = fP ?v j P is a pro
ess name and v 2 Vg

Outputs = fP !v j P is a pro
ess name and v 2 Vg

L = Inputs [Outputs [f"g

The label " signi�es lo
al
omputation that involves no intera
tion with other

pro
esses. � is a meta-variable that ranges over L.

The semanti
s of the
ommands in a pro
ess P

i

are given in Table 9. We

will assume below that j 6= i. The Input rule says that pro
ess P

i

attempting

to re
eive a value from pro
ess P

j

an, on re
eipt of any value v from P

j

, bind

v to a variable x in its lo
al state. Expression e is evaluated to a value v before

the pro
ess attempts to send it to P

j

, the statement terminating if and when

P

j

a

epts this
ommuni
ation. Assignment is
onsidered an internal a
tion

that does not a�e
t other pro
esses, and the transition is labeled with ". In

the rules Seq and Int we abstra
t from the internal
omputations of a pro
ess

by
oales
ing lo
al
hanges of state (labelled with ") into a single labelled

transition. The last rule abstra
ts from lo
al
omputations and highlights

an intera
tion, whenever there is one. Observe that the Int rules are not

syntax-dire
ted.

We now deal with the parallel
omposition of pro
esses. The transitions

of pro
esses (as opposed to
ommands) are also labelled (e.g.,

�

�!

p

) and have

a subs
ript p to distinguish them from the transition relation �! (used in

Table 9) for
ommand transitions.

For readability, we follow the following notational
onvenien
es in Table

10.

� For any global state ��, �

k

will denote the k-th
omponent of the n-tuple

(1 � k � n).

� For ea
h k, 1 � k � n, p

k

� P

k

::

k

and p

0

k

� P

k

::

0

k

.

63

Input

h�

i

; P

j

?xi

P

j

?v

�! �

i

[x 7! v℄

Output

�

i

` e =)

e

v

h�

i

; P

j

!ei

P

j

!v

�! �

i

Assign

�

i

` e =)

e

v

h�

i

; x := ei

"

�! �

i

[x 7! v℄

Seq

h�

i

;

1

i

"

�! �

0

i

h�

0

i

;

2

i

"

�! �

00

i

h�

i

;

1

;

2

i

"

�! �

0

i

Int

1

h�

i

;
i (

"

�!)

�

�

�! (

"

�!)

�

h�

0

i

;

0

i

h�

i

;
i

�

�! h�

0

i

;

0

i

� 6= "

Int

2

h�

i

;
i (

"

�!)

�

�

�! (

"

�!)

�

�

0

i

h�

i

;
i

�

�! �

0

i

� 6= "

Table 9: Mixed-step semanti
s for CSP
ommands

� In rules Par

interleave

and Par

syn

,

S � [k

n

k=1

p

k

℄ ; S

0

� [k

n

k=1

p

0

k

℄

� In rule Par

interleave

,

�

0

k

=

(

�

0

i

if k = i

�

k

otherwise

;

0

k

�

(

0

i

if k = i

k

otherwise

� In rule Par

syn

�

0

k

=

8

>

<

>

:

�

0

i

if k = i 6= j

�

0

j

if k = j 6= i

�

k

otherwise

;

0

k

�

8

>

<

>

:

0

i

if k = i 6= j

0

j

if k = j 6= i

k

otherwise

64

Pro
ess

i

h�

i

;

i

i

�

�! h�

0

i

;

0

i

i

h�

i

; p

i

i

�

�!

p

h�

0

i

; p

0

i

i

Par

interleave

h�

i

; p

i

i

"

�!

p

h�

0

i

; p

0

i

i

h��; Si

"

�!

p

h

�

�

0

; S

0

i

Par

syn

h�

i

; p

i

i

P

j

!v

�!

p

h�

0

i

; p

0

i

i h�

j

; p

j

i

P

i

?v

�!

p

h�

0

j

; p

0

j

i

h��; Si

"

�!

p

h

�

�

0

; S

0

i

Table 10: Big-step semanti
s for CSP
ommands

In Table 10:

� The rule Par

syn

treats a \
losed" system of pro
esses. Hen
e all
om-

muni
ations between
omponents of the system are internal to the sys-

tem.

� The system of pro
esses terminates only if every pro
ess in the system

terminates. In other words,
on�gurations of the form h��; [k

n

k=1

P

k

::

Æ ℄i (where \Æ" denotes an empty
ontinuation) are the only terminal

on�gurations.

� If the system rea
hes a stu
k
on�guration, then it is said to be dead-

lo
ked. In other words, a
on�guration h�; Si, whi
h is not terminal

and su
h that h��; Si 6

"

�!

p

is deadlo
ked.

Table 11
ontains the rules for guards using yet another labelled transition

system, whi
h is then used in giving the semanti
s of the
onditional and

iterations
onstru
ts. (Table 12).

The following example illustrates some of the distin
tions that
an arise

due to non-determinism.

Example 5.3 Compare the pro
ess PR in Example 5.2 with the following

alternative version.

PR

0

:: do

2

i=1

true . P

i

?v;do v 6= eot . print(v);P

i

?v; od od

The major di�eren
e between PR and PR

0

is in their deadlo
k behavior.

Whereas PR may wait till one of the pro
esses is ready to
ommuni
ate with

65

� ` e

j

=)

e

true

h�; e

j

.

j

i

"

�!

g

�

� ` e

j

=)

e

true h�; io

j

i

�

�! �

0

h�; e

j

; io

j

i

�

�!

g

�

0

Table 11: Mixed step semanti
s for guards

it, PR

0

is for
ed to make a
ommitment to wait on one of the two pro
esses

say P

1

, regardless of whether P

1

wants to
ommuni
ate with it. PR

0

learly

exa
erbates the possibilities of deadlo
k in the system. Therefore, PR and

PR

0

annot be
onsidered equivalent as pro
esses.

5.2 Extensions

We
on
lude this dis
ussion with some language features that
an easily be

modeled in the framework of LTSs.

Input and output. Commands are extended with input and output

primitives:

 ::= : : : j read(x) j write(e)

Input and output are really spe
ial
ases of
ommuni
ation, but instead of

intera
ting with a named pro
ess, values are taken from and added to stream

data stru
tures. The
ommand level rules are (following the
onvention men-

tioned above):

Read

h�

i

; read(x)i

?v

�! �

i

[x 7! v℄

Write

�

i

` e =)

e

v

h�

i

; write(e)i

!v

�! �

i

Two new kinds of labels are added, for reading and writing:

l 2 L ::= : : : j !v j ?v

66

h�; g

j

i

�

�!

g

�

0

h�; IFi

�

�! h�

0

;

j

i

(j 2 f1; : : : ; ng)

h�; g

j

i

�

�!

g

�

0

h�; DOi

�

�! h�

0

;

j

; DOi

(j 2 f1; : : : ; ng)

n

^

i=1

� ` e

i

=)

e

false

h�; DOi

"

�! �

Let IF � if

n

i=1

g

i

.

i

�

and DO � do

n

i=1

g

i

.

i

od

Table 12: Semanti
s of if � � and do� od

At the global
on�guration level, (global) input and output streams are

added. The labels generated at the
ommand level are \dis
harged" at the

top level, with the
orresponding manipulations of the I/O streams &

i

; &

o

Rd

h�

i

;

i

i

?v

�! h�

0

i

;

0

i

i

h�

i

; p

i

; v&

i

; &

o

i

"

�!

p

h�

0

i

; p

0

i

; &

i

; &

o

i

Wrt

h�

i

;

i

i

!v

�! h�

0

i

;

0

i

i

h�

i

; p

i

; &

i

; &

o

i

"

�!

p

h�

0

i

; p

0

i

; &

i

; &

o

vi

Dynami
 Pro
ess Creation. Consider a
ommand fork(P;
), whi
h

dynami
ally
reates a new pro
ess named P exe
uting the
ommand
. At

the
ommand level, the e�e
t of this
ommand returns the state un
hanged,

but generates a new kind of label �(h�

i

; P ::
i). The state �

i

is
loned and

pa
kaged into the label.

h�

i

; fork(P;
)i

�(h�

i

; P ::
i)

�! �

i

where P is a new pro
ess name

67

At the global
on�guration level, the label �(h�

i

; P ::
i) is \dis
harged",

by
reating a new pro
ess with its own lo
al state.

h�

i

; p

i

i

�(P ::
)

�!

p

h�

0

i

; p

0

i

i

h��; Si

"

�!

p

h

�

�

00

; S

00

i

S

00

= [(k

n

k=1

p

0

k

) j P ::
 ℄ and

�

�

00

=

�

�

0

 �

i

, where we
ontinue with the

notational
onvention mentioned above. That is, the ve
tor of pro
ess
ode

has a n+1

th

omponent P ::
 the lo
al state of whi
h has a fresh
opy of �

i

as its initial lo
al state. The rule applies only under the assumption that P

is a globally fresh pro
ess name.

6 Con
lusion

We have seen the use of stru
tural operational semanti
s both as a
on
ise

formalism and as a method of pre
isely de�ning the dynami
 semanti
s of

programming language
onstru
ts. The
on
iseness of the formalism makes

it far easier to study and
omprehend the potential bottlene
ks that an im-

plementor is likely to fa
e. Sin
e the semanti
s is syntax-driven and the rules

are essentially synta
ti
, it is also possible in many
ases, to generate pro-

totypi
al implementations of new and so far untried
onstru
ts qui
kly with

the help of s
anning and parsing tools. One su
h tool for
on
urrent systems

is the Pro
ess Algebra
ompiler of North Carolina [CMS95℄.

In the
ase of both imperative and fun
tional languages, we have
hosen

the semanti
s of a small
ore and built up new
onstru
ts and features and

given them meaning. However, in general, an existing programming language

annot be extended by adding new features to it, without �rst
onsidering

how the existing features of the language intera
t with the new ones.

In many
ases, the implementation strategies be
ome
learer through

su
h a rule-based exposition of the semanti
s. In
ertain
ases, of
ourse,

we have
hosen to de�ne rules that are
onsistent with and model
urrent

implementation strategies.

We have not treated the semanti
s of stru
tured data in general. We have

also not treated the semanti
s of types or stati
 semanti
 analysis. While this

is a major omission and is important for
ompiling, it would have taken us too

far a�eld. Another signi�
ant omission is the semanti
s of modules,
lasses

and obje
ts mu
h of whi
h is still an area of a
tive resear
h. The bibliography

68

ontains several referen
es whi
h the reader may
onsult to learn more about

the work in the area.

Referen
es

[AC98℄ R. M. Amadio and P.-L. Curien. Domains and lambda-
al
uli.

Cambridge University Press, 1998.

[AFV00℄ L. A
eto, W. Fokkink, and C. Verhoef. Stru
tural operational

semanti
s. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,

Handbook of Pro
ess Algebra. Elsevier, Amsterdam, 2000.

[ANB

+

86℄ E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fante
hi,

A. Giovini, P. Inverardi, E. Karlsen, F. Mazzanti, G. Reggio,

and E. Zu

a. The Trial De�nition of Ada, Deliverable 7 of the

CEC MAP proje
t: The Draft Formal De�nition of ANSI/MIL-

STD 1815 Ada. CEC MAP, 1986.

[App92℄ Andrew W. Appel. Compiling with Continuations. Cambridge

University Press, 1992.

[Ast91℄ E. Astesiano. Indu
tive and Operational Semanti
s, pages 53{

134. Formal Des
ription of Programming Con
epts. Springer-

Verlag, 1991.

[Bar84℄ H.P. Barendregt. The Lambda Cal
ulus, Its Syntax and Seman-

ti
s, volume 103 of Studies in Logi
 and the Foundation of Math-

emati
s. North Holland, Amsterdam, 1984.

[BC84℄ G. Berry and L. Cosserat. The Esterel syn
hronous program-

ming language and its mathemati
al semanti
s. In S.D. Brookes,

A.W. Ros
oe, and G. Winskel, editors, Seminar on Con
urren
y,

volume 197 of Le
ture Notes in Computer S
ien
e, pages 389{

448. Springer-Verlag, 1984.

[BG92℄ G. Berry and G. Gonthier. The Esterel syn
hronous program-

ming language: design, semanti
s, implementation. S
ien
e of

Computer Programming, 19(2):87{152, 1992.

69

[BH87℄ R. Burstall and F. Honsell. A natural dedu
tion treatment of op-

erational semanti
s. In Pro
eedings of FST and TCS 8, Founda-

tions of Software Te
hnology and Theoreti
al Computer S
ien
e,

Pune India, volume 287 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, 1987.

[Bor00℄ Ri
hard Bornat. Proving pointer programs in Hoare Logi
. In

Mathemati
s of Program Constru
tion, pages 102{126, 2000.

[BS90℄ Egon Borger and Peter H. S
hmitt. A formal operational se-

manti
s for languages of type prolog III. In CSL, pages 67{79,

1990.

[Car84℄ L. Cardelli. Compiling a fun
tional language. In Pro
eedings

of 1984 Symposium on LISP and Fun
tional Programmin, pages

208{217, 1984.

[Car86a℄ L. Cardelli. Amber. In G. Cousineau, P-L. Curien, and B. Robi-

net, editors, Combinators and Fun
tional Programming Lan-

guage, volume 242 of LNCS. Springer, 1986.

[Car86b℄ L. Cardelli. The amber ma
hine. In G. Cousineau, P-L. Curien,

and B. Robinet, editors, Combinators and Fun
tional Program-

ming Languages, volume 242 of LNCS. Springer, 1986.

[CCM85℄ G. Cousineau, P. Curien, and M. Mauny. The Categori
al Ab-

stra
t Ma
hine. In J.-P. Jouannaud, editor, Fun
tional Pro-

gramming Languages and Computer Ar
hite
ture, volume 201 of

Le
ture Notes in Computer S
ien
e, pages 50{64, Berlin, 1985.

Springer-Verlag.

[CIO00℄ Cristiano Cal
agno, Samin Ishtiaq, and Peter W. O'Hearn. Se-

manti
 analysis of pointer aliasing, allo
ation and disposal in

Hoare logi
. In Maurizio Gabbrielli and Frank Pfenning, editors,

Pro
. 2nd International Conferen
e on Prin
iples and Pra
ti
e

of De
larative Programming, Montreal, Canada. ACM, 2000.

[CKRW99℄ Pietro Cen
iarelli, Alexander Knapp, Bernhard Reus, and Mar-

tin Wirsing. An Event-Based Stru
tural Operational Semanti
s

of Multi-Threaded Java. In Formal Syntax and Semanti
s of

Java, pages 157{200, 1999.

70

[CMS95℄ R. Cleaveland, E. Madelaine, and S. Sims. A front-end genera-

tor for veri�
ation tools. In E. Brinksma, R. Cleaveland, K.G.

Larsen, and B. Ste�en, editors, Tools and Algorithms for the

Constru
tion and Analysis of Systems, volume 1019 of LNCS,

pages 153{173. Springer Verlag, 1995.

[Cur91℄ Pierre-Louis Curien. An abstra
t framework for environment

ma
hines. Theoreti
al Computer S
ien
e, 82(2):389{402, 1991.

[dS92℄ Fabio Q. B. da Silva. Corre
tness Proofs of Compilers and De-

buggers: an Approa
h Based on Stru
tural Operational Seman-

ti
s. PhD thesis, Laboratory for Foundations of Computer S
i-

en
e, Computer S
ien
e Department, Edinburgh University, Ed-

inburgh, EH9 3JZ, S
otland, September 1992. Available as LFCS

Report Series ECS-LFCS-92-241 or CST-95-92.

[FFKD87℄ M. Felleisen, D. Friedman, E. Kohlbe
ker, and B. Duba. A syn-

ta
ti
 theory of sequential
ontrol. Theoreti
al Computer S
i-

en
e, 52(3):205{237, 1987.

[GMP89℄ A. Gia
alone, P. Mishra, and S. Prasad. Fa
ile: A symmetri

integration of
on
urrent and fun
tional programming. Interna-

tional Journal of Parallel Programming, 18(2):121{160, 1989.

[Gon88℄ G. Gonthier. S�emantiques et Mod�eles d'Ex�e
ution des Lan-

gages R�ea
tifs Syn
hrone; Appli
ation �a Esterel. Th�ese

d'informatique, Universit�e d'Orsay, 1988.

[Gri90℄ Timothy G. GriÆn. The formulae-as-types notion of
ontrol.

In Conf. Re
ord 17th Annual ACM Symp. on Prin
iples of Pro-

gramming Languages, POPL'90, San Fran
is
o, CA, USA, 17{

19 Jan 1990, pages 47{57. ACM Press, New York, 1990.

[Gun92℄ Carl A. Gunter. Semanti
s of Programming Languages: Stru
-

tures and Te
hniques. Foundations of Computing. MIT Press,

1992.

[Gur93℄ Yuri Gurevi
h. Evolving algebras: An attempt to dis
over se-

manti
s. In G. Rozenberg and A. Salomaa, editors, Current

Trends in Theoreti
al Computer S
ien
e, pages 266{292. World

S
ienti�
, 1993.

71

[Han91℄ John Hannan. Making abstra
t ma
hines less abstra
t. In

J. Hughes, editor, Fun
tional Programming Languages and Com-

puter Ar
hite
ture, 5th ACM Conferen
e, volume 523, pages

618{635. Springer-Verlag, Berlin, Heidelberg, and New York,

1991.

[Han94℄ J. Hannan. Operational semanti
s-dire
ted
ompilers and ma-

hine ar
hite
tures. ACM Transa
tions on Programming Lan-

guages and Systems, 16(4):1215{1247, 1994.

[Hen80℄ P. Henderson. Fun
tional Programming: Appli
ation and Imple-

mentation. Prenti
e Hall International, 1980.

[Hen88℄ M. Hennessy. Algebrai
 Theory of Pro
esses. MIT Press, Cam-

bridge, Massa
husetts, 1988.

[HJP92℄ Seif Haridi, Sverker Janson, and Catus
ia Palamidessi. Stru
-

tural operational semanti
s of AKL. Future Generation Com-

puter Systems, 1992.

[HL74℄ C.A.R. Hoare and P.E. Lauer. Consistent and
omplementary

formal theories of the semanti
s of programming languages. A
ta

Informati
a, 3:135{153, 1974.

[Hoa69℄ C.A.R. Hoare. An axiomati
 basis for
omputer programming.

Communi
ations of the ACM, 12(10), 1969.

[Hoa78℄ C.A.R. Hoare. Communi
ating sequential pro
esses. Communi-

ations of the ACM, 21(8):666{677, 1978.

[Hoa85℄ C.A.R. Hoare. Communi
ating Sequential Pro
esses. Prenti
e

Hall International, Englewood Cli�s, 1985.

[HP92℄ J. Hannan and F. Pfenning. Compiler veri�
ation in lf. In Sev-

enth Annual IEEE Symposium on Logi
 in Computer S
ien
e,

pages 407{418. IEEE, 1992.

[Jon87℄ Simon L. Peyton Jones. The Implementation of Fun
tional Pro-

gramming Languages. Prenti
e Hall International, London, 1987.

72

[Kah87℄ G. Kahn. Natural semanti
s. In F.J. Brandenburg, G. Vidal-

Naquet, and M. Wirsing, editors, Pro
eedings of STACS'87, vol-

ume 247 of Le
ture Notes in Computer S
ien
e, pages 22{39.

Springer-Verlag, 1987.

[KS88℄ Ri
hard Kennaway and Ronan Sleep. Dire
tor strings as
om-

binators. ACM Transa
tions on Programming Languages and

Systems, 10(4):602{626, 1988.

[Lan64℄ P.J. Landin. The Me
hani
al Evaluation of Expressions. Com-

puter Journal, 6(5):308{320, 1964.

[Lan65a℄ P. J. Landin. An abstra
t ma
hine for designers of
omputing

languages. In Pro
. IFIP Congress, pages 438{439, 1965.

[Lan65b℄ P.J. Landin. A
orresponden
e between ALGOL 60 and Chur
h's

lambda-notation: Part I. Communi
ations of the ACM, 8(2):89{

101, 1965.

[Lau68℄ L.P. Lauer. Formal de�nition of Algol 60. Te
hni
al Report

TR.25.088, IBM Lab. Vienna, 1968.

[Lei01℄ J. J. Leifer. Operational Congruen
es for Rea
tive Systems. PhD

thesis, University of Cambridge Computer Laboratory, 2001.

[M
C63℄ J. M
Carthy. Towards a mathemati
al s
ien
e of
omputation.

In C.M. Popplewell, editor, Information Pro
essing 1962, pages

21{28, 1963.

[MH90℄ D. Miller and J. Hannan. From operational semanti
s to abstra
t

ma
hines: Preliminary results. In Pro
eedings of the 1990 ACM

Conferen
e on Lisp and Fun
tional Programming. ACM, 1990.

[Mi
94℄ Marino Mi
ulan. The expressive power of stru
tural operational

semanti
s with expli
it assumptions. In Henk Barendregt and

Tobias Nipkow, editors, Types for Proofs and Programs, pages

263{290. Springer-Verlag LNCS 806, 1994.

[Mil73℄ R. Milner. Pro
esses: A mathemati
al model of
omputing

agents. In H.E. Rose and J.C. Shepherdson, editors, Pro
eed-

ings Logi
 Colloquium 1973, Bristol, UK, pages 158{173. North-

Holland, 1973.

73

[Mil76℄ R. Milner. Program semanti
s and me
hanized proof. In K. R.

Apt and J. W. de Bakker, editors, Foundations of Computer

S
ien
e II, pages 3{44. Mathemati
al Centre, Amsterdam, 1976.

[Mil80℄ R. Milner. A Cal
ulus of Communi
ating Systems, volume 92 of

Le
ture Notes in Computer S
ien
e. Springer Verlag, 1980.

[Mil89℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall In-

ternational, Englewood Cli�s, 1989.

[Mor82℄ J. Morris. A general axiom of assignment and linked data stru
-

ture. In M. Broy and G. S
hmidt, editors, Theoreti
al Founda-

tions of Programming Methodology, pages 25{41. ??, 1982.

[Mor88℄ James Morris. Algebrai
 operational semanti
s for Modula 2.

PhD thesis, University of Mi
higan, 1988.

[Mos92℄ P. D. Mosses. A
tion Semanti
s, volume 26 of Cambridge Tra
ts

in Theoreti
al Computer S
ien
e. Cambridge University Press,

1992.

[MS96℄ D. Le Metayer and D. S
hmidt. Stru
tural operational semanti
s

as a basis for stati
 program analysis. ACM Computing Surveys,

28:340{343, 1996.

[MTHM97℄ Robin Milner, Mads Tofte, Robert Harper, and David Ma
-

Queen. The De�nition of Standard ML (Revised). MIT Press,

1997.

[Ong99℄ C.-H. L. Ong. Corresponden
e between Operational and Deno-

tational Semanti
s: The Full Abstra
tion problem for PCF. In

S. Abramsky, editor, Handbook of Theoreti
al Computer S
ien
e,

volume 3. Oxford University Press, 1999.

[Pal92℄ Jens Palsberg. A provably
orre
t
ompiler generator. In Bernd

Krieg-Bru
kner, editor, ESOP '92, 4th European Symposium on

Programming, Rennes, Fran
e, February 1992, Pro
eedings, vol-

ume 582, pages 418{434. Springer-Verlag, New York, NY, 1992.

74

[Par81℄ D. Park. Con
urren
y and automata on in�nite sequen
es. In

P. Deussen, editor, 5th GI Conferen
e, Karlsruhe, Germany, vol-

ume 104 of Le
ture Notes in Computer S
ien
e, pages 167{183.

Springer-Verlag, 1981.

[PL/86℄ PL/I De�nition Group. Formal de�nition of PL/I version 1.

Report TR25.071, Ameri
an Nat. Standards Institute, 1986.

[Plo75℄ G.D. Plotkin. Call-by-name,
all-by-value and the lambda-

al
ulus. Theoreti
al Computer S
ien
e, 1:125{159, 1975.

[Plo77℄ G.D. Plotkin. LCF
onsidered as a programming language. The-

oreti
al Computer S
ien
e, 5:223{256, 1977.

[Plo81℄ G.D. Plotkin. A stru
tural approa
h to operational semanti
s.

Report DAIMI FN-19, Computer S
ien
e Department, Aarhus

University, 1981.

[Plo83℄ G.D. Plotkin. An operational semanti
s for CSP. In D. Bj�rner,

editor, Pro
eedings IFIP TC2 Working Conferen
e on For-

mal Des
ription of Programming Con
epts { II, Garmis
h-

Partenkir
hen, pages 199{225. North-Holland, 1983.

[San97℄ David Sands. From SOS rules to proof prin
iples: An opera-

tional metatheory for fun
tional languages. In Conferen
e Re
ord

24th ACM Symposium on Prin
iples of Programming Languages,

pages 428{441, Paris, Fran
e, 1997.

[S
h86℄ D. A. S
hmidt. Denotational Semanti
s: A Methodology for Lan-

guage Development. Allyn and Ba
on, 1986.

[Sew98℄ P. Sewell. From rewrite rules to bisimulation
ongruen
es. In

Pro
eedings of CONCUR'98, volume 1466 of LNCS, pages 269{

284. Springer Verlag, 1998.

[Sto77℄ J. Stoy. Denotational Semanti
s: the S
ott-Stra
hey approa
h to

Programming Language Theory. MIT press, 1977.

[Ten81℄ R. D. Tennent. Prin
iples of Programming Languages. Prenti
e-

Hall International, 1981.

75

[Tin01℄ Simone Tini. An axiomati
 semanti
s for Esterel. Theoreti
al

Computer S
ien
e, 269, 2001.

[Tur79℄ D. A. Turner. A new implementation te
hnique for appli
ative

languages. Software Pra
ti
e and Experien
e, 9(1):31{49, 1979.

[War83℄ D. H. D. Warren. An abstra
t Prolog instru
tion set. Te
hni
al

Note 309, SRI International, Menlo Park, California, 1983.

[Wat90℄ D.A. Watt. Programming Con
epts and Paradigms. Prenti
e

Hall, 1990.

[WBB92℄ S. Weber, B. Bloom, and G. Brown. Compiling Joy to sili
on:

A veri�ed sili
on
ompilation s
heme. In Pro
eedings of the Ad-

van
ed Resear
h in VLSI and VLSI and Parallel Systems Con-

feren
e, Providen
e, RI, 1992.

[WF94℄ Andrew Wright and Matthias Felleisen. A synta
ti
 approa
h

to type soundness. Information and Computation, 115(1):38{94,

1994.

[Win93℄ G. Winskel. The Formal Semanti
s of Programming Languages:

An introdu
tion. Foundations of Computing S
ien
e. MIT Press,

1993.

[WO92℄ Mit
hell Wand and Dino P. Oliva. Proving the
orre
tness of

storage representations. In Pro
eedings of the 1992 ACM Con-

feren
e on LISP and Fun
tional Programming, pages 151{160,

New York, 1992.

76

