An Introduction to Operational Semantics

Sanjiva Prasad S. Arun-Kumar

February 4, 2002

Abstract

The objective of this chapter is to introduce to compiler developers
the rudimentary concepts of operational semantics used in specifying
the operational behavior of programs and systems, and for reason-
ing about them. There are already various excellent comprehensive
introductions to syntax-directed approaches to operational semantics,
most notably the seminal papers by Plotkin [Plo81] and Kahn [Kah87].
Some of that material has already been incorporated in standard text
books on the semantics of programming languages and concurrency,
such as those by Winskel [Win93|, Gunter [Gun92], Watt [Wat90] and
Hennessy [Hen88|. Yet, though the concepts and techniques employed
are mathematically simple and accessible, many compiler developers
have not been exposed to them.

The material presented here is largely based on the seminal work
mentioned above, and is aimed at presenting the ideas in an inte-
grated form. It is tutorial in nature, oriented towards those interested
in relating language specification to compiler design. There are also
several excellent surveys and references on research aspects in opera-
tional semantics, particularly in the context of semantics of computa-
tion [Ong99] and of process algebra [AFV00], intended for those who
are already familiar with semantics issues in programming languages
and concurrency.

Contents

1

2

Introduction

Preliminaries

2.1 Transition Systems L. Lo
2.2 Structural Operational Semantics for Expressions
2.3 Private definitions oo

Imperative Languages

3.1 Non-determinism
3.2 Blocks and Variable Declarations
3.3 Procedures and parameter passing
3.4 Run-time Allocation and Deallocation

Functions and higher-order forms

4.1 A-caleulus
4.2 Relationship with functional languages.
4.3 Closures and Environment machines
4.4 Implementation issues related to environments
4.5 Control operators

LTSs and Interactive Programs
51 CSP . . . e
5.2 Extensions. e

Conclusion

1 Introduction

10
10
13
25

28
34
36
38
40

44
44
47
50
o4
o6

58
61
66

68

Operational Semantics involves giving a precise description of the behavior
of a program or a system, namely, how it may execute or operate. As in any
semantic enterprise, the intention in developing operational semantics is to
give behavioral descriptions in rigorous mathematical terms, in a form that
supports understanding and reasoning about the behavior of the systems un-
der consideration. A mathematical model serves as the basis for analysis and
verification. In fact, the very act of formalization can help remove miscon-
ceptions and focus attention on subtleties that may be glossed over in an
informal description.

A clear operational semantics is an invaluable reference while develop-
ing language implementations, as was recognized over a quarter of a cen-
tury ago by McCarthy [McC63], Landin [Lan64, Lan65b], Hoare and Lauer
[HL74], Milner, Plotkin and various other researchers. Early examples of
real-world languages being provided formal operational semantics include
Algol 60 [Lau68] and PL/I [PL/86].

Formalism, per se, is not the only goal; defining the meaning of a pro-
gramming language as the behavior induced by a particular implementation
s a formal treatment. However, such an approach is not particularly sat-
isfactory since the intention is to provide behavioral descriptions at a high
level, divorced from implementation details to as great an extent as possi-
ble. Moreover, the high-level formalism should be readily accessible. Indeed,
the attraction of using operational semantic approaches to programming lan-
guages is the relative simplicity of the formal mathematics and the associated
techniques.

The past twenty or so years has seen, following seminal contributions
by Plotkin [Plo81], Milner [Mil73, Mil76], Kahn [Kah87], Hoare [Hoa85] and
others, the development of syntax-directed “structural” frameworks that pro-
vide, to quote Plotkin, a “simple and direct method for specifying the se-
mantics of programming languages”, which require very little mathematical
background, that yet provide “concise, comprehensible semantic definitions”.
The definition of the mostly functional language Standard ML in a wholly
operational semantic framework [MTHM97] is an excellent example of the
power and versatility as well as the relative accessibility of these operational
techniques. Other languages which have complete operational descriptions
are Esterel [BC84, Gon88, BG92] and Ada ([ANB™86] contains an early def-
inition that employs the main ideas discussed here in a rigorous algebraic
framework).

While formalization is clearly important for research in programming lan-
guage semantics, the aim of this chapter is to make modern approaches to
operational semantics accessible to those involved in compiler design and
development. It is therefore worthwhile to reiterate here why formal op-
erational descriptions are important in the context of compiler design and
implementation. As mentioned above, such descriptions provide an unam-
biguous definition of a language, which can serve as a reference for imple-
mentations. A structural operational semantics (SOS) style seems to be an
increasingly favored style of providing a comprehensive and comprehensible
formal definitions of programming languages. Apart from the examples of

Standard ML and Esterel cited above, SOS semantics have been provided
for several languages including Java [CKRW99] and logic programming lan-
guages based on Prolog [HJP92]. Secondly, these formal descriptions allow
us to develop theories such as program equivalence or orderings, which serve
as a semantically sound basis for assessing proposed program optimizations
and static analysis techniques. While it may be naive to expect the algebraic
laws of equivalence (or ordering) to suggest optimizations, it is nevertheless
expected that any optimization preserves the operational behavior of a pro-
gram (or at least the important behavioral properties needed in the context
of a particular computation). Thirdly, the operational descriptions give us a
framework in which compiler verification can be formulated and carried out
[dS92]. Finally, operational frameworks allow us to explore novel, alternative
implementation techniques — by studying different abstract implementations
that realize the same specifications. A noteworthy approach in this respect
is that of Hannan and his collaborators [Han94].

Structural operational techniques have been successfully employed with
great success for studying the correctness of compiler techniques and hard-
ware implementations [Tin01, WBB92, W092], for compiler verification [dS92,
HP92|, for establishing type soundness following the work of Wright and
Felleisen [WF94], for static program analysis [MS96] and deriving proof rules
for functional languages [San97].

We also should mention that there are areas of crucial importance to
compiler developers where operational techniques have not been seriously
applied. An example is floating-point computation, where to our knowledge,
the intricacies of the numerical models proposed and used have not been
adequately addressed in an operational framework.

Operational descriptions at different levels of abstraction. Formal
operational descriptions of program execution can be presented in several dif-
ferent ways. In fact, having different descriptions may serve a useful purpose,
especially since they are usually presented at varying levels of abstraction.
In the following paragraphs, we give a brief overview of three broad levels of
operational description, which have historically tended (roughly) to go from
“low-level” to “high-level” descriptions for the same language, though there
have been notable exceptions where implementations have been guided by
higher-level specifications.

The very first step in providing a description of a language independent

of any particular implementation is to concentrate on the abstract syntactic
structure of programs in the language rather than on the concrete syntax.
This also has the advantage of being able to abstract over different concrete
renderings of a concept in different languages, e.g., the syntax used for as-
signment in Pascal versus that used in C. A relatively higher level semantic
description than a particular implementation is achieved by translation of
the abstract syntax into instructions of a simple machine, the description of
which is given in abstract terms, typically as a finite collection of rules. Such
an idealized machine is called an abstract machine.

Reasoning about programs using abstract machine descriptions consists
of reasoning about the process of translation, and then reasoning about ex-
ecution sequences of the abstract machine. A significant observation that
greatly simplified the first aspect was the following: The abstract syntax of
most languages is inductively characterized, and the translation to the ma-
chine instructions tends to be a mapping that preserves the abstract syntactic
structure, often a homomorphic function.

A good early example of this kind of operational description is Landin’s
use of the so-called SECD machine to specify the operational semantics of
a quintessential (call-by-value) functional language ISWIM [Lan65a]. Also
well known is the Warren Abstract Machine (WAM) [War83], used to specify
the execution machinery for Prolog. Abstract machines are a popular (and
often the first) method for specifying the execution semantics of a proposed
language as well as for outlining an implementation. For instance, abstract
machines were used in presenting the first formal operational descriptions of
various extensions to the functional paradigm such as integrations of func-
tional programming with concurrent programming models based on ideas
from process algebra [Car86a, Car86b, GMP89].

Although abstract machines provide higher-level, implementation inde-
pendent specifications of program execution, it is not always clear how ef-
fective such techniques are in proving program properties, notions of pro-
gram equivalence and developing a semantically-justified algebra of programs.
Moreover, proofs about program execution are (often tedious and cumber-
some) induction arguments on execution sequences, using case analyses on
which rule is employed at each step, with little reference to the original source
programs and their structure.

A second and novel step was the development of structural operational se-
mantics, or “SOS”, where program behavior was expressed directly in terms
of the source programs (and perhaps a few ancillary data structures) without

any intervening translation to an abstract machine. The structural approach
consists of providing an inductive definition of a relation describing program
execution, which follows the inductive structure of the abstract syntax. Thus,
in the operational setting, the approach adheres to a compositionality princi-
ple associated with Frege that “the meaning of a phrase can be obtained from
the meaning of its components in a well-defined way”, a feature of the Scott—
Strachey style of denotational semantics. The standard presentation of the
inductively defined relation is by using inference rules. The consequent of a
rule defines a transition from a compound expression, which depends on the
transitions for one or more of its components specified in the rule antecedent.
This inductive approach based on abstract syntactic structure is also appro-
priate for formulating static semantics. An added bonus of using relations
is that features such as non-termination and partiality, non-determinism, er-
ror configurations and various others can easily be accommodated into the
framework without having to resort to more difficult mathematical concepts.

The associated proof techniques are based on induction on the proof trees
built using the inference rules, or equivalently — since the inference rules are
presented in a syntax-directed manner — on the structure of the source
program. Notions of program equivalence or ordering are stated directly in
terms of the source programs rather than via any other machinery, and thus
the development of an algebra of programs gets facilitated. It is this aspect
of structural induction that justifies the moniker “structural”, since the other
techniques also ultimately depend on program structure.

The pioneering works where the structural approach is articulated are
those of Plotkin [Plo81, Plo83], Milner [Mil80] and Kahn [Kah87], although
instances of the structural approaches predate these publications — most
notably, the operational semantics of various A-calculi [Bar84]. Structural
semantics comes in a variety of flavors, and we broadly classify them as:
(i) “big-step”, often called “natural” due to its connections with normal-
ization in Natural Deduction proof systems [Kah87, BH87], and sometimes
relational [MTHM97] or proof-theoretic [MH90]; and (ii) “small-step”, which
is often called “reduction” following the terminology used in the A-calculus
[Plo81]. Big-step semantics justify a complete execution sequence using a
tree-structured proof whereas small-step semantics provide tree-structured
justifications for each step of the sequence. There are, however, situations
where a “mixed-step” formulation is convenient. In contrast, abstract ma-
chine semantics consists of a sequence of steps, each justified as being an
instance of a conditional rewrite rule.

Yet another dimension in the varieties of structural operational semantics
is the use of labelled relations that allow the specification of the interaction
between a program and its environment during execution. Most examples of
labelled relations are in a small-step style, and abstract machines rarely use
labelled relations at all.

One of the aims of this chapter is to convey to the reader the rudiments of
these three kinds of operational semantics and their inter-relationships and
important syntactic properties, such as confluence and standardization. We
endeavor to present these notions in frameworks that are as simple and fa-
miliar as possible, and assuming minimal concepts. Various aspects of these
connections have been studied in great detail elsewhere, assuming varying de-
grees of familiarity with the concepts. Plotkin [Plo81] covers a large variety of
constructs in the reduction semantics framework. Some subtle issues arising
in relating the big-step and small-step formulations are explored in [Ast91].
Winskel’s book [Win93] studies the relation between big-step and denota-
tional semantics for simple imperative and functional languages. Hannan
and Miller [MH90] present a framework for constructing abstract machines
from big-step semantics for functional languages via a series of correctness
preserving transformations. Hannan further explores concrete realizations
of the machines [Han91]. Plotkin [Plo75] studies the connection between
the reduction semantics of the call-by-value A-calculus and its abstract ma-
chine (and respectively for call-by-name), as well as how the calculi relate to
one another by continuation-passing style (CPS) translations. An excellent
reference covering much of this material in detail is [AC98].

Disclaimers. This chapter does not attempt to survey the variety of oper-
ational semantics frameworks used in the specification and implementation
of programming languages. In particular, two major approaches have been
neglected — those of Action Semantics [Mos92] and Ewvolving Algebras or
Abstract State Machines [Gur93]. Action Semantics is based on ideas from
universal algebra, and seeks to combine the salient strong features of denota-
tional and operational approaches, without their weaknesses. The semantic
specification is given round the basic actions in a system, and the approach
addresses the important issues of readability and modularity of semantics
frameworks. In the sequel, we will see that even small language extensions
necessitate major changes in the semantic rules. Action semantics has been
successfully used in diverse applications, a very significant one in the area of

compilation being the work of Palsberg on provably correct compiler gener-
ation [Pal92].

Evolving algebras, or abstract state machines as they are called now, are
based on the idea of interpreting the dynamic semantic actions of a system as
operators of an algebra that evolves during execution. The approach is very
general and permits specification of a system at different levels of abstraction.
The operational framework is closely related to conditional rewriting systems,
and the theory also addresses the mathematical issue of algebraic models for
rules. Furthermore, abstract state machine descriptions admit parallelism
(concurrency) in an extremely natural way. They have been used extensively
for describing a variety of systems and languages, such as Prolog [BS90]
and Modula-2 [Mor88|, apart from being used as a vehicle for understanding
various concurrency features of Ada and other such intricacies.

We have also concentrated on only three paradigms — imperative, func-
tional and concurrent — and not addressed issues in logic programming and
object-oriented programming. Nor have we examined seriously the issues
that arise when different such paradigms are integrated in a single language.

Relationship with other kinds of semantics. An alternative to oper-
ational techniques for specifying the semantics of programming languages is
providing mathematical models, i.e., denotational semantics (well known text
books on denotational semantics are [Sto77, Sch86]). Denotational frame-
works are also specified inductively on abstract syntax. The attraction of
denotational methods is that they provide rich mathematical theory for rea-
soning about programs. Moreover, when the denoted objects are readily
constructible in a computational framework, the semantics can be viewed as
providing an immediate implementation of the language.

However, two questions immediately arise when providing a language with
a denotational model: First, whether such a model is in (complete) agree-
ment with operational intuition. Milner was the first to propose a criterion,
called full abstraction, which formalizes this notion of “complete agreement”
between the two forms of semantics. He convincingly argues that it is the
operational semantics that should be the reference (the “touchstone”) for
assessing mathematical models, rather than the converse, since operational
models are (usually) set up with minimal preconceptions. The second ques-
tion is whether there is indeed a unique mathematical model. Milner points
out that any mathematical model can capture only some aspects of the opera-

tional behavior, whereas there may be diverse aspects that can be of interest
— especially in non-deterministic computations. Operational frameworks,
being relational, can easily accommodate aspects such as non-determinism,
partiality, erroneous computations, etc., with minimal reworking of defini-
tions, whereas these may necessitate significant changes to the mathematical
models used in a denotational description.

Another alternative to the operational approach is the so-called aziomatic
semantics [Hoa69] in which the meaning of a programming construct is given
using proof rules within a program logic. The orientation of the approach is
towards proving program correctness with respect to logical specifications.
Again, one could argue for the primacy of operational techniques to interpret
and justify the soundness of the logical rules. Moreover, the formulation of
operational semantics using inference rules in the SOS approaches together
with the induced algebraic notions of equivalence or ordering on programs
incorporate many aspects of the axiomatic approach into operational ones
— compositionality, syntax-orientation and proof theory in particular.

[t must be noted, however, that the three approaches are not mutually
exclusive or conflicting. Each finds use when reasoning about programs, and
often while employing a particular kind of approach, one may resort to an-
other. For instance, while reasoning about the operational semantics (proving
meta-theorems) it may be convenient to use results from the denotational se-
mantics since this enables one to abstract away irrelevant operational details
and to use abstract mathematical concepts.

Structure of this chapter. The rest of the chapter is structured as
follows. In §2, we introduce various important rudimentary concepts used
in describing the operational behavior of systems. We start with the notion
of transition systems, and then proceed to providing meaning to abstract
syntax trees. We use a simple language of expressions to illustrate three
different levels of operational description. We enrich the language with vari-
ables and then scoped local definitions. §3 presents the operational semantics
for a simple imperative language. A variety of extensions of this language to
incorporate non-determinism and parallel execution, block structure, simple
procedures and storage allocation are discussed. In §4, we discuss descrip-
tions of higher-order functions, referring to the A-calculus and two evaluation
strategies — call-by-name and call-by-value, together with environment ma-
chines for implementing these calculi. Then, in §5, we mention features of

languages involving concurrency and interaction that are naturally modeled
using labelled transitions, before concluding in §6.

2 Preliminaries

2.1 Transition Systems

The primary task involved in providing an operational description of a sys-
tem is to specify the configurations of the system and the possible transitions
between configurations. A transition system consists of a collection (usually
a set) S of configurations and a binary relation on configurations —C Sx S
called the transition relation. We use the metavariable s to range over config-
urations. In most applications, a subset Z C &, called initial or starting con-
figurations, is distinguished. Terminal configurations are those from which
a transition is not possible — {s € § | As': s — s'}. We denote the
transitive closure of the transition relation by —* and its reflexive transi-
tive closure by —*. Termination arguments often require showing that the
transition relation is well-founded.

A closely related notion is that of a labelled transition system (LTS).
Let £ be a set of labels, with [a typical label. An LTS consists of a set
of configurations S, the label set £, and a relation . — _ C S x L x S

called the labelled transition relation. We write s —— s’ to mean that
(s, I, 'Y € _— _. Often a LTS is presented as a collection of TSs sharing
the same configurations &, but with one transition relation for each label.

Example 2.1 (Lexical Analysis) Lezical analysis can be cast as a transi-
tion system. Let M = (Q,q € @Q,0 C Q x X x Q,F C Q) be a finite state
automaton recognizing a language over alphabet ¥, and let ¢ € X* be any
string over that alphabet. Let € denote the empty string, and let as denote
the string starting with letter a followed by the suffiz string <.

Let § = Q x ¥* and let — be defined as (q, a s) — (¢, <) if and only
if (¢,a,q") € 0. T = {{qo, <) | < € £*} is the set of initial configurations.
Terminal configurations are of two kinds: those in F x {e} are “accepting”
whereas those in (Q — F x {e})U{{q, b<) | =3¢ : (¢,b,q¢") € 6} are “non-

accepting”.

Example 2.2 (An automaton is an LTS) Finite State (and indeed other)
Automata are examples of labelled transition systems, with the configurations

10

S being the states, labels being ¥ and § being the labelled transition relation.

The example of automata also motivates a bunch of concepts important
in operational semantics. We usually associate a notion of observation with
a transition system (e.g., consumption of a string and terminating in an ac-
cepting state in a finite state automaton), with respect to which transition
systems are ascribed observable behaviors (e.g., strings accepted by the au-
tomaton). There can be different notions of what is observable for even the
same transition system. Any given notion of observability yields a corre-
sponding notion of equivalence or ordering between two transition systems
based on their observable behaviors.

Definition 2.3 (observational equivalence and ordering) 7'S; is said
to be observably simulatable by T'Ssy, written T'S, < TS,, if every observable
behavior possible of T'S: is also possible of T'Sy. T'S1 and T'Sy are considered
equivalent, denoted T'S, = T'Ss, if both have the same observable behaviors.

Equivalence of two systems does not necessarily imply that one can be
replaced by the other in any context, since some notions of equivalence may
not be preserved under each and every construction possible in a class of
transition systems.

The automata example also give an idea of how a LTS can relate to a TS.
The automaton LTS describes the control aspect of the transition system in
abstraction from the data (the string ¢) on which it is run. The dichotomy
between control and data is not the central issue, and is indeed relevant to
this and some other examples. Rather, labels are used to indicate interaction
between a component of a larger system with its context. This interaction
can be of a variety of kinds, and hence there are diverse uses of labelled
transition systems. For example, a process receiving signals and performing
some computation in response can be specified separately from the processes
sending it signals. The use of labelled transitions permits the description of
a component’s behavior separately from that of its context, with the labels
specifying the interaction capabilities. Very crudely, a labelled transition
system can be turned into a corresponding unlabelled one by by providing
within the system “enough context” — thus “closing up” a description of an
open system. Conversely, contexts can be used to label transitions. The main
issue is to characterize interesting decompositions of systems into program
fragment and context. This is still very much the subject of active research,
with some recent promising results in this direction [Lei01, Sew98].

11

Example 2.4 (Parsing) We also encounter a transition system in parsing.
String generation can be thought of as a transition system as follows. Let
G =(N,T,P,S € N) be a context-free grammar. Let the configurations S =
(NUT)* and let the transition relation — be defined as s — s if and only
if there exists a production r € P such that r = X — w for some X € N
and w € (NUT)*, s = $1Xsy and s' = sywsy. S is the unique starting
configuration, and those terminal configurations that are in T and reachable
from S are the “generated” strings.

This transition system can be “reversed” to yield a transition system for
parsing. The production rules are used in the reverse direction; T = T* is the
set of initial configurations, there is a single “accepting” final configuration
S, and possibly many other terminal configurations that are “non-accepting”.

Remark 2.5 Plotkin’s seminal paper [Plo81, chapter 1] lists several different
examples of transition systems or labelled transition systems that one encoun-
ters in computer science — finite state automata, transducers, grammars of
different types, k-counter machines, stack machines, Petri Nets, Turing Ma-
chines, Semi-Thue systems, Post systems, L-systems, Conway’s Game of
Life, push down automata, tree automata, cellular automata, neural nets. In
addition, many dynamic systems we encounter in daily life may be modeled
as transition systems. Games are good examples of transition systems.

Properties. Transition systems provide a framework on which we can
drape various formal verification exercises. Many of these involve establishing
that a particular transition system satisfies various kinds of properties. One
such important property is totality. A transition system is total if it has
no terminal configurations, i.e., for every s € S there exists s’ € S such
that s — s’. Another common property is determinism: for every s € S,
[{s" | s — s’}| < 1. These notions can also extend to labelled transitions,
either “per-label” or “across labels”.

A crucial property in the above examples for lexical and grammatical
analysis is reachability from designated initial configurations. Reachability is
also used in proving safety properties of systems — no “bad” configuration
is reachable from specified initial configurations.

Another property is what we call properly terminating, where all terminal
configurations are “good”. This is an example of a liveness property — that
“something good can eventually happen”.

12

Another important meta-property is confluence: for any s,s;,s9 € S,
whenever s —* s; and s —* sy, then there exists s3 € S such that
s; —* s3 and sy —* s3. Stronger confluence properties are the so-called
“diamond” properties. A transition system exhibits the “strong diamond’
property if for any s, s1, sy € S, whenever s — s; and s — s5 and s # 9,
then there exists s3 € S such that s; — s3 and s, — s3. The transition
system has a “weak diamond’ property if whenever s — s; and s — s9
and s; # so, then s3 is reachable from s; and ss via the reflexive transitive
closure of the transition relation, that is, s; —* s3 and sy —* s3.

Various properties follow from certain finiteness constraints on transition
systems. A TS (or LTS) is called

e finitely branching if for every s € S, the set {s' | s — s’} is finite.
e finite if it is finitely branching and — is a well-ordering.

e reqular if it is finitely branching and for each s € S, the set {s' | s —*
s'} is finite, where —* is the reflexive transitive closure of —.

In general, transition systems whose transition relation can be character-
ized in a concise but abstract manner (usually as a set of rules) are of inter-
est, since they usually admit effective techniques for establishing properties
of those systems. Finite or inductively characterized transition systems are
extremely common, with induction and case analysis on (linear) sequences of
transitions being the most widely wielded proof methods for reasoning about
execution sequences or, at a higher level, observable behavior.

2.2 Structural Operational Semantics for Expressions

Abstract syntax. It is the abstract rather than the concrete syntax of a
language that is of interest while specifying the meaning of programs. Op-
erational semantics descriptions manipulate these abstract syntactic objects
and work wholly within syntax. For convenience, however, it may be neces-
sary to augment the syntax with “extra-syntactic” data structures, but these
entities can be shown to correspond in some obvious way to purely syntactic
entities. The abstract syntax of programs can be inductively characterized,
e.g., as trees. We will use abstract grammars as a handy notational device
for describing abstract syntactic categories.

13

We present three different kinds of operational description for an ex-
tremely simple language Ezp; the presentation can be adapted to any lan-
guage of first-order expressions.

Example 2.6 (Simple arithmetic expressions) Let Num denote the de-
numerable set of numerals (in some radiz), and let X be a denumerable set
of variables, with x,y,z typical meta-variables ranging over X. FExp can
be presented using the following abstract grammar, where e, e1, es are meta-
variables ranging over Exp, and n ranges over Num.

e€ Exp == x|n]| (e + e)

Expression evaluation consists of simplifying a given expression to a form
that cannot be further simplified, hopefully to an element in a set of “good”
canonical forms that we loosely call “values” (there are a variety of notions of
“value” depending on the language). The first task in presenting operational
semantics for expressions is to identify the set V of values. In the next few
examples the set V will be the set of numerals Num. The meta-variable v
ranges over V.

For expressions containing variables, we need to know what the variables
stand for in order to simplify them to values. Accordingly, we present the
operational semantics with respect to a finite domain function called an enwvi-
ronment v : X —5, V, that maps variables to values. Let Env denote the set
of such finite domain functions from variables to values'. Environments are
an example of “extra-syntactic” constructions we employ in our operational
description. We write dom(7y) to mean the set {x € X' | y(z) defined}. We
work with finite domain functions since it is inappropriate to frame essen-
tially syntactic ideas in terms of infinite structures. If 7, and v, are finite
domain functions, we denote by 7[72] the finite domain function with domain
dom(v1) U dom(vs) defined as

Y2() if z € dom(vz)

[v2)(r) =4 () if x € dom(vy,) — dom(72)
undefined otherwise

Tt is also possible to work with environments which are finite domain functions from
variables to variable-free expressions rather than to values. The nature of the rules and
results does not change, except perhaps in some minor details.

14

(var) e where z € dom(v)
(num) vEn =.n

- -
(add) Yo ==em TV & e M o ng = ADD(ny,ns)

v F o(e1 + e) = n3
Table 1: “Big-step” semantics for evaluating simple expressions

Big-step or Natural Semantics We first present a “big-step structural
operational semantics” or “natural semantics” for Ezp.

The “big-step” transition relation =, C FEnv x Ezp x V(= Num) is
defined inductively as the smallest relation closed under the inference rules
given in Table 1. We read the relation v - e =, n as “given environment
v, expression e can evaluate to value n”. When the environment v is not
needed, and so can be arbitrary, we sometimes omit writing “vy .

This relation can be viewed as a transition system with configurations
S = (Env x Ezp). A transition v - e =, v is understood as a transition
(v, €) — (v, v), highlighting the fact that transitions leave v unchanged.

The way these rules are used is that if we have an expression that matches
the left side of the consequent (“denominator”) of a rule via a substitution
p for the schematic variables, and if using the same substitution p, all the
antecedents (statements in the “numerator”) can be inductively established
while also respecting any side-conditions, then the expression can evaluate to
an expression of the form given on the right side of the consequent instanced
using p. Used in this manner, the rules can be seen as forming tree-structured
justifications or proof trees of why an expression e can evaluate to a value
n — the goal judgment (¢ =, n in this case) is at the root, the leaves
are axiom instances, and internal nodes correspond to rule instances with a
branch for each antecedent.

The use of proof rules to specify transition systems is itself an area of
research. [AFV00] contains an excellent summary of rule specifications, the
meanings of the transition systems they specify and of various formats and
the formal properties they guarantee (see also [Mic94]).

Observe that the rules are syntaz-directed, in that there is a rule for each

15

syntactic case. Further, in rules with antecedents, the consequent of the rule
describes the evaluation of a compound expression; this evaluation depends
on the evaluation of the component subexpressions, described in the rule’s
antecedents. The base cases of the relation =, are the axioms (num) and
var, which state(respectively) that any numeral evaluates to itself, since it is
in canonical form, and that a variable evaluates to the value associated with
it in the environment. Note, however, that instances of the rule var apply
only when the side condition or proviso x € dom(vy) holds. The induction
case is the rule (add). The rule may be read as “given vy, expression (e; + e2)
can evaluate to numeral nj if expression e; can evaluate to a numeral n; with
respect to 7, and ey to ny also with respect to gamma, and where adding
numerals n; and ny yields numeral n3. We assume there is a syntactic routine
ADD for adding numerals.

Note that the big-step relation is reflexive on values. The relation is not
total on environments and Ezp, because the var rule does not specify how to
evaluate a variable y ¢ dom(7).

Typical exercises involve studying various properties of this relation. For
instance, assuming that the procedure ADD is functional and total, we can
show that the relation =, is indeed a partial function:

Hn |y F e = n}| <1 forall v€ Env and e € Exp.

If vars(e) is the set of variables in e, we can show:

Proposition 2.7 For any e € Exp, v € Env, if vars(e) C dom(y), there
exists n € Num such that v F e =, n.

Proof of this proposition is by induction on the structure of the proof tree of
v F e =, n, which amounts to induction on the structure of e, since the
relation is syntax-directed.

Further, we can show that the big-step operational semantics agrees with
any “standard” denotational semantics if the procedure ADD behaves in
accordance with the corresponding mathematical operation. Let p be an
assignment of values to variables, let [n] denote the number represented by
numeral n, and let [e]p be the denotation of e with respect to p.

Proposition 2.8 For any e € Ezp, v, p such that vars(e) C dom(v) and for
all x € dom(7), p(x) =[y(x)]: v F e =>¢ n if and only if [e]p = [n].

This result too is proven by induction on the structure of e.

16

Small-step or Reduction Semantics. The big-step relation specifies
what normal forms an expression may have. It is a high-level specification,
possibly non-deterministic, and does not detail how the computation may be
performed. It is inherently parallel; for example, in simplifying (e; + €3), no
indication is given as to whether to simplify e; before e, or otherwise. Nor
is any hint given on how to implement the relation with finite resources.

In contrast, a small-step or reduction relation is used to specify not merely
what an evaluation may return, but also a strategy to achieve it. This ap-
proach is essentially the step-wise rewriting approach followed, for example,
in junior school when teaching children to simplify arithmetic expressions,
with the strategy specifying which subexpressions may be simplified at any
stage.

Again, configurations are simple arithmetic expressions: S = Env X Ezp
and V = Num. The small-step relation —{C Env x Ezp x Ezp, is between
two expressions, given an environment. The important difference with big-
step semantics us that expressions do not simplify “in one go” to a value, but
rather simplify one step at a time to other expressions, and perhaps finally
to values. The reduction relation is also defined inductively, using inference
rules, which are syntaz-directed, but in a sense slightly different from that in
the big-step semantics. There may be several rules for the same syntactic
construct, and some constructs may have no associated rules. Moreover, the
case analysis is not strictly on syntactic structure but rather on an analysis
of where in an expression simplification can take place. Small-step reduction
relations are seldom transitive and are usually irreflexive.

Table 2 displays a reduction relation for evaluating simple arithmetic
expressions. The rule (vbl) says that variables are simplified to the value
specified in the given environment. As expected, the rule has a proviso
requiring that the variable be in the environment’s domain. Note there is no
rule for numerals! The rule (addy) can be understood as saying “(n; + n2)
simplifies to the result of ADD(ny,n3)”. The rules (add;) and (add,) are
symmetric; the former says that if e; can simplify to €}, then (e; + es) can
simplify to (e} + ey) in a single step (similarly for simplifying e, first). Note
that the relation is non-deterministic, and involves localized rewriting.

Observe that it is possible for an expression, such as ((7 + 21) + y) where
y & dom(y) for a given environment 7, to be reduced a few steps before it
gets “stuck”. This is in contrast to the big-step situation where no transition
is possible for that expression with respect to such an environment ~.

An expression of the form (n; + ny), an instance of the left side in an

17

provided = € dom(7).

dd h = ADD
(addy) T it — where ng (1, ny)
v E e — €]
add
(l) vy F (61 + 62) —)T (611 + 62)
(add,) v F e —7 €,

Y F (61 + 62) —)‘13 (61 + 6’2)
Table 2: “Small-step” semantics for arithmetic expressions

axiom, is called a reder. Any reducible expression can be shown to contain
a redex. Different small-step relations may be proposed that differ in which
redex should be selected first for reduction.

Typical results about small-step semantics usually pertain to the reflexive
transitive closure of the reduction relation. For instance, we can show the
agreement with the big-step semantics:

Proposition 2.9 Foralle € Ezp, v € Env andn € Num: v F e (—$)* n
if and only if v - e = n.

This and similar results are proven by induction on the number of reduction
steps involved in 7 + e (—%)* n, and within each reduction step, by an
induction on the depth of the proof tree justifying the single reduction step.

A corollary to the proposition above is that the “reduction-down-to-
values” relation is a (partial) function, though such results can be shown
from first principles without reference to the big-step semantics.

A more interesting result to show about the relation —¢ is whether it
satisfies a strong diamond property. The proof of this property is by structural
induction on the original expression, and analysis on how it could reduce to
different expressions using induction on these justifications. This confluence
result provides a direct proof that while reduction is non-deterministic, the
input-output relation it induces is a function. (Totality is often shown by
proving that a reduction relation is well-ordered.)

18

A confluence result can greatly simplify reasoning about program execu-
tion, since it essentially says that we need not consider each possible sequence
but merely any one sequence to a point of confluence. Confluence properties
can play an important role in compilation, since confluent systems admit
simplifications in any order, including strategies that involve simplification
of subexpressions in parallel or even in non-deterministic fashion; these may
make sense in certain architectures such as those involving pipelining or mul-
tiple computational units. Non-confluence should alert a compiler developer
that a proposed optimization may in fact be unsound if it alters reduction
order, and ought therefore be avoided.

The small-step framework admits various restricted versions of reduction
corresponding to specialized strategies, typically those that are deterministic
or easier to implement. For instance, we could replace the (add,) rule by
more restrictive versions, e.g.,

!
v oes — e

ddlseq
(add,™) v E (n+e) —f (n+é€)

which allow simplification of the second summand only when the first is
already a numeral. With these more restrictive rules, the reduction relation
becomes deterministic; for any expression at most one reduction rule applies.
The modified relation specifies a sequential left-to-right evaluation strategy.
It is then important to prove that this strategy can simulate the original
relation correctly in the sense that both relations have the same reflexive
transitive closures when considering reductions down to values. This result
is an example of standardization: if an expression can be reduced to a value
by any strategy, it can be reduced by a standard sequence using a particular
strategy?.

Standardization is useful in reasoning about program execution, since it
allows one to transform any sequence of reductions to another one about
which it is somehow easier to reason. Standardization results are often em-
ployed, for instance, in showing that certain reduction sequences are not
possible. They can be important to a compiler writer, since they permit
the use of possibly more efficient implementation strategies without having
to sacrifice any generality. It must be emphasized that standardization is
a very important syntactic meta-theorem of transition systems that applies
only in systems whose extensional behavior (input-output) is deterministic.

2Richer languages may require more complicated standardization results.

19

Example 2.10 Phenomena such as non-termination sharpen the differences be-
tween various evaluation strategies. Consider a simple language of possibly non-
terminating boolean expressions given by the abstract grammar:

b:=tv| Q| (b \/ b2) tv € {true,false}

We define three different small-step relations (omitting the “y 7 in the rules):

— "™ which evaluates all parts of a disjunctive boolean expression,

0 o g tvs = OR(tvy,tvs)

(t'Ul \/ t’l)g) _>i:omp tus

comp 1./ comp 1/
by —r bl by — b2

(b1 \/ b)) =™ 0y \ b)) (o \ b)) —{ (0] Bh)

—b which is a left sequential evaluation,

by — b
0 —7 0 (b \/ b2) —b @ \/ b2)

(true \/ b) — true (false \/ by) — by
and —"" which is parallel evaluation

par

Q —" Q

! !
by —P B by —P B,

b1\ b)) =1 @\ b)) (0 \ b)) =0 (00) BY)

(b1 \/ false) —!"" b, (false \/ be) —" by

(b1 \/ true) —7"" true (true \/ be) —7" true

If a boolean expression b reaches normal form via —{°"" then it reaches the

same normal form via —%, in which case it reaches the same normal form via
ar -
—" . However, the converse is not true:

(true V Q) —1" true and (Q V true) —" true, but
(true V Q) —! true whereas (2 \/ true) —¥ (2 V true). However,
both (true \/ Q) — """ (true V Q) and (Q \ true) —{""" (Q V true).

20

Environment-free formulations. = We pause briefly to remark that the
formulation of the above relations using environments can be transformed to
transition systems that operates wholly within syntax. For this we need the
notion of substitution.

Definition 2.11 (substitution) A substitution o is a finite domain func-
tion from X to Exp. Equivalently, it can be viewed as a total function that is
almost everywhere identity. We write ec to denote applying o to e yielding
an expression obtained by simultaneously replacing in e every occurrence of
variable x by the expression o(x) for each x € vars(e).

An environment 7y is a specific instance of a substitution. It can easily be
shown that if v F e (—¢)* n then - ey (—¢$)* n (the variable free case)
and likewise for —..

This observation may cause you to wonder why we introduced environ-
ments in the first place. The reason is that substitution is usually an ex-
pensive operation, whereas the environment data structure allows the com-
putation to “look up” the expression to be substituted for a variable as and
when it is needed. Moreover, the later sections will show that environments
arise naturally when we try to implement languages with block structure
and functions. The environment-less formulation eases the presentation of
the following notion of equality.

Operational notions of equality. Given a small-step relation such as
—¢, it is often natural to define a notion of equality =° on expressions
as the symmetric reflexive transitive closure of the reduction relation. This
is precisely the idea taught in junior school to show that two arithmetic
expressions are equal.

Definition 2.12 (Equality) e =°¢ ¢ if there is a sequence of expressions
€i,...,e, such that e = e, € = e, and for each i : 1 < i < n — 1, either
€ —] €it1 OT €iy1 —7 €.

If the —¢ relation is weakly confluent, e and €’ can be reduced to a common
form.

Abstract machines. A more common approach to specifying arithmetic
expression evaluation, familiar to most computer scientists after an introduc-
tory data structures course, is by using a stack machine. This semantics is at

21

a lower level than either the big-step or small-step semantics, since it departs
from providing a specification of evaluation directly in terms of the source
syntax, and also since it employs additional data structures.

The op-codes of the machine are instructions for loading numerical con-
stants, for adding numerals and for looking up bindings of variables. To avoid
introducing new symbols, we employ the same symbols for the op-codes of
the machine. Let OpCodes be defined as sequences (strings) over the sym-
bol +, numerals, variables in X', with the idea that a variable is a look-up
operation?®.

OpCodes = (Num | J X |J{+})"

Consider now a post-order traversal of the abstract syntax tree of an expres-
sion in Fzp. This is defined as a recursive function compile : Exp — OpCodes.
To enhance readability, we have used " to indicate string catenation.

compile(n) =n
compile(x) = x
compile((ex + e3)) = compile(ey) compile(es) ™+

Configurations of the abstract machine are triples consisting of an envi-
ronment, a “stack” of numerals, and a sequence of op-codes. Table 3 details
the initialization and transitions (the relation —) of the abstract machine.
Observe that we have presented a (finite) set of possibly conditional rewrite
rules in a two-dimensional syntax. The rules are operated by taking any con-
figuration that matches via a substitution for the schematic variables, e.g.,
v,¢,9,n, ..., the pattern indicated in the left side of a rule, and replacing
it with the configuration obtained by applying the same substitution to the
right side of a rule. In this example the rewrite rules involved are determinis-
tic and “regular”, in that at most one rule applies and that no configuration
can be rewritten to more than one configuration.

The machine is initialized with a given environment v with respect to
which expression e is to be evaluated, an empty stack, and a sequence of
op-codes corresponding to compile(e). (For readability we have used the ML-
like notation :: for sequence concatenation, writing e.g., + :: C’ to specify
a sequence beginning with + followed by sequence C'.) Observe that there
are no inference rules — merely rewrite rules, which are applied repeatedly

3In implementations, we can have a single op-code that is parametrized by a variable
(or equivalently an address or index corresponding to the variable), and similarly a single
op-code for loading constants.

22

load(y,e) = [J compile(e

variables (v, S, z:: C) —> (’)/, 7(|, C)

constants (v, S, n:: C) —> (v, gJ, C)

N9
add (v, | m |, +:C) —> (v, { 7;? J, C) where n3 = ADD(nq,n9)
S

unload ({7, { n J, €))=mn

Table 3: Evaluating expressions using an abstract stack machine

until no rule applies. The moves depend primarily on the first op-code in
the sequence. The “good” terminal states are those with a single value on
the stack, from which the results are “unloaded”, and an empty sequence of
op-codes.

The operational semantics induced by the abstract machine is exactly
the same as the big-step =, (and thus also the closure of the small-step
relation).

Proposition 2.13 Foralle € Exp, v € Env andn € Num: v F e =, n
if and only if there exists a configuration s such that load(vy,e) (—>)* s and
unload(s) =n

The proof involves induction on e and on the number of — steps in
reaching the terminal configuration. In fact, several non-trivial lemmas need
to be shown, which essentially state that the evaluation of an expression does
not examine or disturb the part of the stack below its initial top, and that
any expression results in a single value on the stack.

A typical result that has to be shown is along the lines of “for any stack
S and code list C, if

(7, { S J, compile(e)"C"y (—>)* (v, { S’ J, ")

23

then [S J = for some n € Num.” The proof is by induction on the

n
S
length of the op-code sequence, but observe that we need to explicitly involve
all “contexts” in which an expression may be evaluated — the universal
quantification on all stacks S and “continuation” code C' — in the statement
of this property.

The above abstract machine can be seen as an implementation of a left-to-
right reduction. In general, standardization results help mediate the relation-
ship between the abstract machine semantics and the reduction semantics.

Tuples, records and conditionals. = We make a quick foray into giving
rules for structured expressions. We consider pairs (the idea extends easily
to tuples and records) and a simple conditional (which generalizes to case
statements. We only point out that in the rules for conditionals, the test
ey is first evaluated to a truth value before one of the branches e; or ej is
selected.

We assume that our values v :=n | tv | (v1, ve). The big-step rules for
pairs and conditionals are:

vy e = v vYFE e = v

paIr
o) e ey = (o, 02)

(if) v e = true v F ey = v
t v F if e; then e, else e3 =, v,
(i) vk e = false v F e3 =, v3

!

v F if e; then ey else e3 —, 3

24

One possible set of small step rules are:

e /

v FE e — €

pair
R S P e
, v E ey —7 €
pair, -
BT T e) =% Gen)
(if o) v F e —7 €
0 v b if e, then ey else e3 —{ if €] then e, else e3
(if1) v F if true then e, else e3 —] ey
(if)

v = if false then e, else e3 —{ e

We do not present the abstract machine rules but observe that new op-
codes need to be introduced, and the compile function extended. The rule
for a n-tuple-formation op-code takes n values off the stack forms an n-tuple
which is then pushed onto the stack. A record formation operation will
require a little more jugglery, for example, by sorting the fields according a
particular order (lexicographic, say) at the compilation stage, and traversing
the abstract syntax tree accordingly. The op-code for conditional choice
picks one of two continuations based on the value on the top of the stack.
At an abstract level, it is possible to talk of compound op-codes IF(cy, cs),
which are realized on actual machines by jumps. Another trick, used by
Plotkin [Plo81, page 18] as a motivating illustration for advocating more
structure in operational descriptions, is to take the syntax apart and stash the
continuations or markers, selecting the correct one based on the evaluation
of €1.

2.3 Private definitions

Tennent’s principle of qualification [Ten81] suggests that Ezp can be extended
to include expressions that employ locally scoped definitions.

de .
e i= ... |letzx :f61 in e,

Inlet z < e1 in ey, the scope of the definition of x to e; is limited to e5. The
occurrences of variables in an expression are now of two kinds: those which

25

are bound and those which are free. Define fv: Fxp — X as:

fo(z) == szv(f(el’ er) = UL fu(e)
fole)=0 fo(let 2 e, in es) = fo(er) U(fo(es) — {a})

The big-step rules are extended with:

v E e = n xen] Fea = ny

v F let xdéf e in e =, Ny
The small-step rules are:

!
v e —7 e

d . d .
v letz™ e ine, —¢ let 2 ¢ in e,

ylx = n] B ey —5 €

d . d .
v letznine, —¢ let 2 nyin €

d .
v F let x éfnl inng —% ny

We postpone the presentation of an abstract machine that can correctly
deal with scoping issues to our discussion of functions in §4, since the ma-
chinery needed there subsumes that needed here. Tennent’s principle of
correspondence relates definition mechanisms to parameter-passing and thus
definition mechanisms get addressed in the operational semantics for func-
tion definition and call. It suffices to mention at this stage that the machines
will now additionally have to stack environments (or structures containing
them) to implement the lexical scoping of block structured languages.

Instead we will discuss compound definitions. Consider the syntactic
category Defs with meta-variable d:

d ==z déf (& | dl;dg | d1||d2

with dv : Defs — X returning the defined variables, and fv extended to Defs

dv(z = e) ={z} dv(di;d2) = dv(dy) U dv(d2) dv(dy||de) = dv(dy) W dv(ds)

fole @ e) = fole) foldizds) = fod) U(fo(ds) — do(dy))
Foldillda) = fo(dy) U fo(da)

26

Here W stands for disjoint union, defined only when the sets are actually
disjoint.

The big-step semantics uses two mutually recursive (but nevertheless in-
ductive definitions): =, as before and =; C Env X Defs x Env. Observe
here that the “values” (canonical forms) for the =, transition system are
environments, which are “extra-syntactic”! The rules for =, are:

vFEe =.n

v b2 e =, [z — n]

yEd =4 YmlF do =4 7
v odidy =>4 71[72]

YyEdi =4 v F d =4 7
v odiflds =4 71U72

To correctly implement scoping, =4 returns the incremental change to the
environment obtained by processing a definition. In sequential definitions
we first process d; with respect to v, which we augment with the resulting
environment to process do, whereas with simultaneous definitions, the same
environment is used for elaborating the parallel definitions. In the last rule,
since we assumed that dv(d;) Ndv(dz) = 0, the union of environments is
well-defined.

Finally, since the principle of qualification may be applied to Defs, we
obtain definitions that contain auxiliary local definitions

d:=... |local d; in d,
d’U(lOC&l d1 in d2) = dU(dg) fU(lOC&l d1 in d2) = fU(dl) U(fv(dg) —d’U(dl))
The big-step semantics of this construct is:

yEd =4 YmlE do =4 7
v F local d; ind, =4 ¥

The reduction semantics for Defs is somewhat more tricky (see [Plo81,
pages 80-81]). The problem can perhaps be understood in trying to reduce
let d in e when d is irreducible. Here, the bindings of d must somehow be
augmented to the outer environment ~ before e can be evaluated. Plotkin

27

employs the expedient of treating environments as a canonical form of defi-
nitions, clarifying that they are not in the abstract syntax but merely in the
control component in configurations.

vl ke —1¢
v F let v, ine —§ let 7, in €

Indeed, this mixing of extra-syntactic data structures (environments) with
abstract syntax is a somewhat weak point about pure reduction semantics.
While the big-step formulations also use extra-syntactic constructions, their
use is far more disciplined (indeed Astesiano points out that various semantic

definitions can be given in the same inductive framework of big-step seman-
tics) [Ast91].

Relation to types. We finish this section with an important issue of
how the operational semantics relates to type-checking. Indeed, our presen-
tation has avoided typing issues altogether, although they are a significant
part of any structural semantic presentation. The relationship between typ-
ing and execution is particularly significant in strongly-typed languages with
compile-time type-checking: Programs that type-check correctly at compile
time should not raise type errors at run-time. This property can be guaran-
teed if expressions do not change type during execution. Such a theorem is
called subject reduction. A typical subject reduction (stated for small-step
semantics, but an analogous statement holds for big-step semantics) is:

Let I be a set of assumptions of types of variables under which
expression e has type 7 (written I' = e : 7). If v is an environ-
ment that conforms to I, i.e., it binds variables to values having
type according to I', and if v - e —{ €/, then I' F €' : 7.

3 Imperative Languages

We now move on to providing a simple imperative language WHILE with
operational semantics. WHILE has nested within it a language of expressions
(boolean expressions in particular) and the operational semantics provides
a good illustration of how semantics developed for one syntactic category
can be employed in the inductive definition of another — transitions for
expressions are employed in those for imperative commands.

28

Syntax. The syntax of commands Comm in WHILE with typical metavari-
able ¢ is given by the following abstract grammar, where metavariable e
ranges over Ezp, which we assume includes a sublanguage of boolean expres-
sions.

¢ == skip
r.=e
C1;C2
if e then c; else ¢
while e do ¢

Big-step semantics. The big-step semantics of WHILE, as noted earlier,
is a relational specification of command execution. The imperative model of
computation is based on the idea of making a series of small changes to a
memory state. Commands can be thought of as state transformers — the
basic action being that of assigning a value to a program variable. More
complex actions are built up from the elementary ones using constructs for
sequencing, conditional execution and iteration. For convenience, we include
an identity transformation, namely the command skip.

Let State consist of finite domain functions from X to V. For simplic-
ity, we will assume that expression evaluation involves no “side-effects” that
change the state of memory. State is, at least as a first approximation,
the same as Env. This valuable abstraction will get taken apart in mod-
eling other features. The set of configurations in the transition system is
(State x Comm)J State. The big-step transition relation =C (State X
Comm) x State is defined as the smallest relation closed under the rules
given in Table 4.

skip leaves the state unchanged. If an expression e evaluates to a value v
in a state o (given in terms of the big-step relation for expressions), the effect
of an assignment x:=e results in a state that is identical to o, except that its
value at variable z is now v. If ¢; transforms o to oy and ¢y transforms o to
09, then their sequential composition achieves the composite transformation
of 0 to 09. The rules for the conditional say that if e then c¢; else ¢,
transforms o as would command ¢; (respectively cy) depending on whether
e evaluates to true or false in state 0. The while rules for the indefinite
iterator are also intuitive — if the boolean condition e evaluates to false in
state o, the loop is not entered; if e evaluates to true then if the body ¢ of
the loop is executed to reach state o, and if executing the loop while e do ¢

29

ki
o (0, skip) = o

ok e =, v

aestgn (0, v:=€) = o[z — v]
seq (O’, Cl> — 01 <0'1, Cg> — 09
(0, c13c0) = 09
if o F e =, true (o, ¢;) = 0y
true (o, if e then ¢ else ¢) = 0y
r o F e =, false (0, o) = 09
i
false (o, if e then ¢ else) = 0y
bl o F e =, false
while
Jelse (5, while e do ¢) = o
_ o F e =, true (o, ¢)= 0, (o1, whileedoc)= 0y
while yrye

(o, while e do ¢) = 0y

Table 4: “Big-step” semantics for a simple imperative language

30

starting from o, yields state oy, then oy is the resulting state from executing
the loop. Observe that this relational specification corresponds to partial
correctness®.

The = relation is deterministic:
Proposition 3.1 If (0, ¢) = o1 and (0, ¢) => 09 then o1 = 03.

There are some subtle technical issues about these rules that arise, e.g., in
formal compiler verification exercises. As noted in [Ast91], the rules for the
while e do ¢ yield an inductive definition, but one which is not structural.
The two while rules can be coalesced into a single equivalent rule, which too
is not structural:

/

(o, if e then c;while e do c else skip) — o
(0, while e do ¢) — o'

Both these formulations involve a recursive definition, which while being
concise and intuitive do not allow the use of structural induction. Fortu-
nately, there is an equivalent formulation for the while e do ¢ rule which is
structural; this formulation employs an auxiliary inductively defined relation
F C State x State.

(o, o'y e F
(0, while e do ¢) = o

where F is defined inductively by:

o F e =, false
(0, o)y € F
ok e =, true (o, c) = o" (", 0')YeF
(o, o'y e F

We can now propose operational notions of equivalence and ordering be-
tween WHILE programs:

Definition 3.2 (Operational equivalence)
c1 =X ¢y whenever for all o: (o, ¢;) =01 D (0, ¢3) = 0y
c1 & ¢y whenever for all o: (o, ¢,) = oy if and only if (0, c3) = 03.

“In fact, it is possible to read the Hoare style axiomatic semantics for WHILE as being
a “backwards” operational semantics on a non-standard kind of state.

31

These notions are instances of the concepts of Definition 2.3 — the observable
behavior of a command is how it transforms a given state to yield a resulting
state.

Example 3.3 Here are some equivalences and ordering relations that can be
seen as code improvements.

1. skip ~ while false do ¢ for all commands c.

2. while true do ¢ < ¢ for all ¢, since the former is non-terminating.
3. Let W = while e do c. Then W = if e then ¢;IW else skip.

4. ¢;skip ~ ¢ = skip;c for all c.
5

. if true then ¢, else ¢y, ~ ¢; and if false then c; else ¢, ~ c¢».

Reduction semantics. @ We now move on to the reduction semantics for
WHILE as a possibly more detailed description on how to realize an imple-
mentation. The main difference now is the relation —1C (State x Comm) x
((State x Comm) |J State). The canonical (normal) forms for this relation are,
naturally, those in State. Table 5 presents the reduction semantics.

The — relation is easy to understand. Rule skip’ says skip does noth-
ing. Executing an assignment first involves simplifying the expression e (re-
peatedly using rule assign’,) down to a value v, which is then associated with
x (rule assign'y). Executing a sequential composition c;;cy involves executing
the first command ¢; until it is exhausted (repeatedly using rule seq’;), at
which stage we start the execution of ¢, from the resulting state oy (rule
seq’s). In evaluating a conditional, we first evaluate the expression e to a
boolean value (repeatedly using rule if’;). If that value is true, then ¢; is
executed (rule if',.,.) and if it is false, ¢, is executed (rule if'y,,,). The
while’ rule is, again, somewhat harder to formalize concisely, and relies on
the fact that skip is a “no op”.

Proposition 3.4 The big-step and reduction semantics define the same no-
tion of program execution, that is, for all ¢ and o: (o, ¢y = o' if and only
if (o, ¢y (—1)* o',

32

kip'
P (0, skip) —1 o

o b e —{¢€

N /
st (0, ;:=e) —>1 (o, v:=¢')
N /
3G (o, :=v) —1 o[z]
seq’ <0= Cl> —1 <01, C,1>
' (0, crice) —1 (o1, c)iea)
seq' (0, c1) —1 0y
? (0, ci502) —1 (01, c2)
i ok e —f ¢
i
L (o, if € then ¢ else ¢3) —>1 (o, if € then c; else ;)
]
" true (o, if true then ¢ else ¢3) —1 (0, ¢1)
g
W tse (o, if false then c; else ¢3) —1 (0,)
while! (o, if e then c;while e do ¢ else skip) —»; (¢', ()

(0, while e do ¢) —; (0,)

Table 5: Reduction semantics for a simple imperative language

33

Remark 3.5 In fact, in [Plo81], Plotkin uses what Astesiano calls a “mized
step” semantics for branching and iteration. For example, the rules for while
he gives are:

o F e (—7)" true o F e (—7)" false
(o, while e do ¢) —>1 (0, ¢;while e do ¢) (o, whileedo ¢) — o

His small step rules for the while command involve the transitive closure of
the small step reduction of expressions, equivalent to a big step expression
evaluation.

Recall that a small-step semantics can be thought of as moving “irrevoca-
bly forward” albeit non-deterministically, whereas big-step semantics can eas-
ily incorporate temporary undo-able changes in describing sub-computations.
Constructs which have a relatively simple big-step semantics but have diffi-
cult small-step semantics usually necessitate additional data structures such
as stacks for effecting the temporary changes involved in sub-computations in
the abstract machine.

Abstract machine. The abstract machine for WHILE is a so-called SMC
machine, with a Stack for evaluating expressions, a Memory or State com-
ponent and a Code list. As illustrated by Plotkin [Plo81, pages 17-19], the
transition semantics is somewhat messy: the transition relation is not di-
rectly in terms of syntactic structure, and the linearization of this abstract
syntax via a post-order traversal that worked well for expressions requires
“adjustments” for constructs involving branching and iteration, wherein con-
trol points need to be stacked for further use or disposal. The reason is that
execution of a program is no longer isomorphic to traversal of the abstract
syntax tree, since a transition sequence can involve executing constructs in
which an entire subtree may be ignored (branching and iteration), or may be
revisited repeatedly (iteration).

3.1 Non-determinism

Dijkstra’s so-called guarded choice language is a quintessential imperative
language involving non-determinism.

c = ... |if|]?:1 e;, b Ciﬁ|d0|]?:1 e;, b CiOd

Given below are the big-step and mixed step semantics for the new constructs.
We use the mixed step approach of Plotkin (or Astesiano) for reduction, since

34

it yields a compact presentation (a pure small-step presentation is replete
with the problems mentioned above). The big-step rules are:

o F e = true (o, ¢j) = o

] 1,...
(U, ifD?ZleiDCifD = o (]E{’ 7n}
o F e = true (o, ¢isdo[]iu; € > ¢ od) = o Gef !
(o, do[iz & > ¢ od) = o J Y
n
/\o F e, =, false
i=1
(U, do D?:l e > ¢ Od) — O
and in the mixed-step formulation:
o F e (—1)" true Gel n}
(o, if []i1 e > ¢ i)y —1 (0, ¢j) T
o F e (—9)" true _
Bt Gell,...,n)

(U, do D?:l e b ¢ Od> —1 (U, Cj;dO I:l?zl e; > ¢ Od)

n
/\ o F e (—9)" false
=1
(U, do D?:l e b ¢ Od> —1 O

In each set, the first two rules are really families of rules (one for each
choice of j). The rule for guarded choice says that if any e; evaluates to true in
o, then the corresponding ¢; may be executed from o. The rules for guarded
iteration say that if any e; evaluates to true in o, then the corresponding c;
followed by the loop again may be executed from o, whereas if all e; evaluate
to false, control exits the iteration construct.

An implementation (or abstract machine) will have to use some mech-
anism for evaluating the guard expressions down to values choosing some
order. In order to achieve some degree of fairness, a scheduler may be used
to select the order in which guard expressions will be tried.

Parallel execution. Many concurrent imperative languages allow parallel
execution of threads, for instance in a cobegin-coend construct.

c = ... |Cl||02

35

Consider the following big-step semantics:

(O’, Cl> — 01 (O’, Cg> — 09
(0, c1]|e2) = o1 J o2

provided W (c;) N W (c2) = 0.

where W (¢;) denotes the set of variables changed in ¢;. The proviso ensures

that the union is well-defined. Unfortunately, this semantics does not cor-

respond to our usual intuition of parallel computation. It is intuitive and

simple only when neither thread uses the contents of variables modified by
the other (Bernstein’s conditions); otherwise it is difficult to implement.

The small-step semantics is simpler to implement (and less fussy to spec-

ify!).

(o, ¢;y —1 (0!,)

(0, cillesy —1 (0", clllcy)

ie{1,2}.

(o, ¢;) —1 0
(U; 01||C2> —1 <UI; C3fz'>

What this suggests is that the granularity of abstraction that the big-step se-
mantics seeks to impose in describing the operational behavior is inappropri-
ate for concurrent computation. Also, using big-step semantics makes it dif-
ficult to describe visible side-effects of a computation during non-terminating
runs. Consequently, it is common to find most frameworks for concurrency,
e.g., [Mil80], using (generally labelled) reduction semantics.

i€ {1,2}.

3.2 Blocks and Variable Declarations

Imperative languages are block-structured, and employ scoped declarations
of “variables”, which are (often) initialized before any command is executed.
Moreover, we have not studied any constructs where imperative “variables”
(which are really named storage cells) can have any structure. A more general
treatment of imperative variables is to factor the notion of State into two
maps, the first an environment v € Env = X —, Loc and the second
o € Store = Loc —5, V, where Loc is a set of storage addresses or locations
and V is the set of (storable) values. Environments can also be used to model
constant declarations by including V in the co-domain of Env. The common
practice is to have different environment components for constants, variables,
procedures, types, classes, modules — whatever distinct nameable concepts

36

appear in the language. In what follows, we will assume that the appropriate
environment component is being looked up.

We will ignore the issue of the types of the declared variables, since they
are (usually) irrelevant for specifying the dynamic behavior. Consequently,
variable declarations merely become lists of variables.

¢ == ... | var vd begin ¢ end vd =z | vd;vd

The big-step relations now are =.C ((Env x Store) x Exp) x V for
expressions, =>.C Env x (Store x Comm) x Store for commands, =—>,C
(Env x Store x Decl) x (Env x Store) for declarations (this is a little more gen-
eral than we need but will allow variable initializations during declarations,
and will be invaluable in the specification of procedures).

The previous rules for expressions will now be relative to a pair 7, o, and
other than the variable lookup all other rules are otherwise unchanged. All
the previous rules given for commands will now be relative to an environment
v, and = will be subscripted =>.. We now give the new and changed rules
for variable lookup variable declarations, assignments and blocks (only for
the big-step case — we encounter the same issues in blocks as we did in local
declarations when attempting a small-step formalization)

o F 7 =, v where v = o(y(x)), if defined

v,0 F e = v
v F (o, z:=e) = o[y(z) — v]

provided z € dom(7y).

M o 2) =g @ 0, ol o 1] here L& codom(y)U dom(e)

(77 g, Ud1> =—d (’Yla Ul) (7[71]7 01, Ud2> =d (727 UQ)
(7, 0, vdivda) =>4 (11]12], 02)

(77 g, Q)d> =d (’Yla Ul) 7[71] - (Ula C) ¢ o'
v F (o, var vd begin c end) =>. o’ t dom (o)

In assignments, we now use 7y to determine the location corresponding
to x, which is updated in the store. In variable declarations, fresh locations
are generated, and added to the store (initialized to an “undefined value”
1), and then bound to the variables in the environment. Observe that we
have (somewhat idiosyncratically) the environments returned be increments

37

(and hence undo-able), whereas the changes to the store be cumulative (i.e.,
persistent). This approach is appropriate for small or mixed step seman-
tics, and also for any extensions to procedures. At the abstract machine
level, this hints that environments must necessarily to be implemented using
stacks (whereas stores can be global, with careful control on accessibility of
locations).

Note also that the returned state in the execution of a block purges all
components of the store that were created during execution of the block. This
is to avoid the occurrence of locations inaccessible from the environment (i.e.,
garbage). Likewise, we have been careful to avoid the possibility of dangling
references, namely locations accessible from the environment but not present
in the domain of the store — which can occur if we have a command free(z).

3.3 Procedures and parameter passing

We now introduce the possibility of declaring and calling procedures in the
language WHILE. We consider only non-recursive procedures, with a single
variable. The extension to several variables and indeed to several variables
with several different parameter-passing mechanisms is at least intuitively
straightforward (though rather tedious to write as rules). The extension to
recursive procedures, however, is not quite trivial (it involves the computation
of fixed points by an iterative process akin to the case of the while command).

Indeed, we have met some of the scoping issues during our treatment
of blocks (via Tennent’s principle of correspondence, where any parameter
passing mechanism corresponds to a definition mechanism and conversely).
The issues of managing control during call and return are better treated in
a more general setting of first-class abstractions in §4.

Parameterless procedures. We first extend the language with facilities
for declaring and calling procedures without parameters. It is then easy to
extend this further to various parameter-passing conventions such as call-by-
value and call-by-reference.

d == ...|subP = ¢
¢c u= ...|callP

As in most programming languages, we assume that the body ¢ of the
procedure sub may refer to and modify non-local (free) variables that are
visible by the usual rules of static scope.

38

Semantically a (parameter-less) procedure is merely a state transformer
with a name. Hence it is necessary to include state transformers in the
co-domain of semantic environments:

Procy = Store —, Store
Env = X —p, (Loc+ Procy +...)

Operationally, however, a procedure identifier merely represents sufficient
information required to be able to execute the code of the procedure. Lexical
scoping requires that variables in the body of the procedure take their bind-
ings in the environment that the procedure was declared, rather than from
the calling context. Hence a procedure declaration modifies the environment
by associating with the procedure name, the environment in which the decla-
ration occurs and the body of the procedure. Such a data structure is called
a procedural closure. We will revisit closures in §4 while discussing function
call in lexically scoped functional languages. As in the case of blocks and
declarations, we assume that the state has two components, an environment
v, and a store o.

Sub
o (v, 0, sub P = ¢) =4 (y[P > proc0{c, v)|, o)
Cally 10) =0 (P) = proco{c, 71)
" 0, 0 cal P)—,.o VTP e
Procedures with parameters. Extending the treatment to procedures

with parameters, we consider, for simplicity, only procedures with a single
parameter. We also consider only the call-by-value and call-by reference
mechanisms. The extended language syntax is:

d == ...|subP(valz)= c¢|sub P (var z) = ¢
¢ u= ... |call Pe)

We require that the expression e can only be a variable symbol when the
procedure P uses a var parameter. The mathematical domains for proce-
dures of these kinds are:

Proc, = (Store x V) —, Store
Proc, = (Store x Loc) —, Store
Proc = Procy + Proc, + Proc,
Env = X —, (Loc + Proc)

39

The corresponding closures used in the operational world now carry the
formal parameters (marked with the name of the parameter-passing mecha-
nism) in addition to the body of the procedure and its definition environment.

The operational rules for the new constructs are given below. In the rule
Call,, v, is the environment of the declaration of the procedure P. It is
necessary to allocate a new location [for the formal parameter x in which
the value of the actual parameter obtained by evaluating e in the state (v, o)
is stored. Finally, of course, the location [needs to be made inaccessible on
exit from the procedure. Hence the conclusion of the rule has the restriction
of o’ to the domain of . The presence of the binding for P in -, is a simple
expedient to deal with recursion.

Sub,

(7, o, sub P (val x) = ¢) =>4 ([P — proc(val z,c,)|, o)

v,o b e = v (7, oll—v], ¢)=.0
(7, o, call P(e)) =, o't dom(o)

Call,

where 7o = 71[P = 7(P)][z —]
[& codom(y) U dom(o)
and y(P) = proc(val z, ¢, 7).

In a similar vein we also define the semantics of procedures that use a
reference parameter. Note that the formal parameter x is now associated with
the location of the actual parameter y in invocation call P(y). There are no
new locations created, hence dom(c) = dom(o’). The effect of updating the
formal parameter x within the procedure body, is directly reflected in the
contents of the location of the actual parameter.

Sub,

(7, 0, sub P (var) = ¢) =>4 ([P — proc(var z,c¢,7)], o)

<727 o, C> = OJ
(v, 0, call P(y)) =0’
where v, = 71 [P = v(P)][z = v(y)]

Call,

3.4 Run-time Allocation and Deallocation

One of the most nettlesome features of most programming languages is the
use of pointers — their creation, access and disposal. Pointers are a major

40

source of problems for users, implementors and language designers alike. It
is therefore necessary to precisely define the semantics of dynamic memory
allocation and deallocation. This is also a feature easier to treat operationally
rather than denotationally.

Briefly, one of the problems with pointers is aliasing. The problem of
aliasing is not an exceptional circumstance, since it is often the case that
distinct dereferencing expressions refer to the same location on the heap.
Hence an assignment to one of the references might alter the value of some
other seemingly unrelated expression. The second major problem is that
it is fairly common to work with several logically distinct data structures
in heap, where there is sharing of components. Thirdly, while discussing
memory allocation and deallocation, it is important to treat definedness (a
major source of run-time errors).

Recently, [CIO00] have built on some previous work of Morris [Mor82] and
Bornat [Bor(00] to specify the semantics of aliasing, memory allocation and
disposal. For simplicity, the store is assumed to consist of two components —
a stack, which holds the values of local variables, and a heap which contains
data that is dynamically created and destroyed. Naturally any access to the
heap is from the stack. Any structure that is inaccessible from the stack
is treated as garbage. The stack can be extended by declarations of local
variables and variable values can be modified by assignments. The heap
on the other hand, is assumed to consist of only one kind of data structure,
namely, records, where each record has a fixed number of components indexed
by tags.

We extend the language of expressions to include record component access
and update. The meta-variables a, b, . .. range over tags (record components).
An expression can also be a null pointer or access to a record component.

e == ...|ea

Correspondingly, the domain of denotable values for expressions is ex-
tended to include locations and a special value null. The changes that are
needed in the various domain definitions are listed below:

Tag = {a,b,...}

)4 = ...+ Loc+ {null}
Stack = X =5 V

Heap = Loc —p, (Tags — V)
Store = Stack x Heap

41

A store o is a pair (st, hp), containing a stack st and a heap hp. Both the
stack st and the heap hp are partial functions. Their domains are denoted
dom(st) and dom(hp) respectively. dom(st) includes only the variables in
the current scope and dom(hp) includes only the locations allocated so far
and is finite.

Two distinct variables x and y could point to the same record on the heap
i.e. x.a and y.a could be aliases. However, two distinct variables cannot be
aliases since variables are on stack and not on the heap. Moreover the “I-
values” of variables cannot be modified. For any variable which may be a
pointer to a record on the heap, x.a represents access to a component a.

Example 3.6 We restrict ourselves to the two constructors for linked lists
— hd and tl respectively. For any list variable x (on stack) x.hd will denote
the “value” of the first element in the list (if the list is nonempty), whereas
x.tl will denote a location from which the rest of the list is accessible. Hence
x.tl.hd will be the value of the second element of the list (if one does ezist).
We also allow for a special value null to be stored in x (to denote the empty
list). Hence if the list (ML-style) [1, 2, 3] is the value of the variable x on
stack, then we require x € dom(st) and three locations {l1,ls,13} C dom(hp)
such that

st(x) = L

wi)(hd) = 1 @) = b
wb)(hd) = 2 hpb)) = s
hp(l3)(hd) = 3 : hp(ls)(tl) = null

Clearly it follows that x.tl.tl.hd = 3 where “.” is left associative.

The operational rule for the new expression is given below. The rules
for other expressions are as given in Table 4. We use the meta-variable [to
range over Loc + {null}, and v will range over “actual values” that are not
locations.

(st,hp) F e =, 1 [€ dom(hp)
(st,hp) F e.a =, hp(l)(a)

7€fioc

Since it is now possible for assignment commands to allow the assignments
of pointer expressions, we require two rules for the assignment command.
The first rule defines the assignment of values to variables on the stack.

42

Depending upon the type of the variable, it may either be an integer value
or a location®. We use the meta-variable vl to denote that it may be drawn
from either values or Loc + {null}.

We use hll.a — v] to abbreviate h[l — (h(l)[a + v]]. The rules for
assignment are shown below.

(st,hp) F e =, vl
((st,hp), x:=e) =>, (st[x > vl], hp)

aSSLGNyar

(st,hp) = eg = | (st,hp) F ea =, vl l € dom(hp)
((st,hp), e1.a:= ey) =>. (st,hp[l.a — vl])

aSSIGNref

Having defined the semantics of references, we are now ready to augment
the language with commands for allocation and deallocation of memory. We
then extend the language of commands to include the two Pascal-like com-
mands.

¢ == ... |new(z) | free(e)

new (x) will non-deterministically select a location not currently in dom(hp)
and initialize the record with the value “1”. We use hp[l.x —_L | to denote
that all components of the record hp(() are initialized to L. Similarly, free(e)
simply removes the location denoted by e from dom(h). The rules are given
below.

ew [& dom(hp)
((st,hp), new(z)) = (st[x 1], hp[l.x —L x])
free (st,hp) F e=1 1| € dom(hp)

((st, hp), free(e)) = (st,hp —1)

In the rule for free(e), h — [denotes the fact that the heap is no longer
defined for [(as opposed to being filled with value “1”).

The above rules give us a flavor of how operational rules may be used to
specify implementation intuition to a large extent. In [CIO00], the authors
also show how these rules may be used to justify axiomatic rules for reasoning
locally about aliasing and dynamic memory allocation and deallocation.

5The issue of types is something that needs to be addressed by a static semantics, as
pointed out elsewhere. It is not properly the domain of a dynamic semantics. So we will
continue to believe that all the constructs we use are type-safe.

43

4 Functions and higher-order forms

Applying the principle of abstraction [Ten81] to expressions or commands
allows us to form abstracts that may be invoked, usually with different pa-
rameters. These abstract forms are called functions and procedures respec-
tively. Abstract expressions (with a single parameter) are written as Az.e.
A binds the variable x within the scope of the “body” e. An abstract a can
be invoked by “applying” it to an argument e, written as (a e); such calls
belong to the syntactic category over which the abstract is formed.

The situation becomes more interesting in “higher-order languages” which
admit such abstracts as first-class values — abstracts can themselves be bound
to variables, passed as arguments and returned as results of other functions.
The various issues related to functions and procedures, in particular the cor-
rect formulation of lexical scoping and of recursive function definitions, can
be explored in a higher-order functional language with only single parame-
ter functions (the generalizations to procedures and multiple parameters is a
matter of detailing, but does not need very much by way of new concepts).
Indeed, these two issues are of vital importance — early implementations of
Lisp implemented “dynamic scoping” because of a rather simplistic imple-
mentation of recursion.

Ezp is now extended to

e m= ... A\zr.e| (e e3)

We look at an extremely simple quintessential functional language, called
the A-calculus. Indeed, Landin explicated the block structured features of
Algol by relating them to the A-calculus. The operational semantics for the
A-calculus is given in a purely syntactic manner (involving no extra-syntactic
constructs such as environments). From these, various environment-based
formulations can be constructed to realize the semantics in an efficient man-
ner.

4.1 A-calculus
The syntax of the “pure” A-calculus is:
e == x| Ar.er | (e1 e3)

Expressions (or terms) are variables, abstractions on expressions, or appli-
cations of one expression (putatively a function) to another (an argument).

44

Other kinds of values and expressions such as those we have examined so
far can be added together with their computation rules to obtain an applied
A-calculus. While applied A-calculi raise interesting issues and problems, the
pure calculus itself exhibits several important concepts. Plotkin’s seminal
papers [Plo75, Plo77] are good examples of detailed studies of many of the
fundamental issues.

Definition 4.1 (free and bound variables) An occurrence of a variable
x in a term e is bound if it appears in a sub-term A\x.e'. All occurrences of
variables that are not bound or binding are free. The function fv returns the
set of free variables in a term.

fo@)={z} fv(hz.e) = fole) = {z} fo((er e2)) = foler) U f(e2)

Bound variables may be systematically renamed without altering the intended
meaning of an expression. By systematic, we mean that two hitherto different
variables are not suddenly identified, in particular that no previous free vari-
able is suddenly “captured” and bound. We identify expressions that differ
only in the choice of names of bound variables, a notion called a-equivalence.
Ezxpressions with no free variables are called closed.

The major meta-operation for syntactic manipulation in any A-calculus
is substitution.

Definition 4.2 (substitution) We write e[e’/x] to denote the term ob-
tained by substituting €' for all free occurrences of variable x in term e.
Substitution is defined using a case analysis on e%:

zle fa] = ¢
yle'/z] =y y#Ea

(e1 e2)[e'/a] = (er[e'/x] eale/x])

My-eile' [x] = Az (elz/ylle'/a]) 2 & fo(er) U fule)

6This version of the definition “factors in” a-equivalence whereas most treatments do
not.

45

(8)

(Az.€q €3) —>1 ey]es/x]

e — €
Ar.e — Mx.e

(op) !
(61 62) —1 (6'1 62)

!

(arg) ©2 %

(e €2) —1 (e €))
Table 6: S-reduction in the A-calculus

Since substitution avoids capture of free names, it perforce avoids the possi-
bility of accidental dynamic binding.

It is often convenient to use the notion of contexts in examining the struc-
ture of a term.

Definition 4.3 (context) A context is a A\-term with a “hole” given by the
following abstract grammar:

C == []|(CC)]| C |e
One-hole contexts are characterized as
C' = []](C)| (eCh) | Na.C!

Definition 4.4 (reduction) A redex is any term of the form (Ax.e; es).
Any term containing a redexr as a sub-term is called reducible. The (-
reduction rule is

CH((Am.e1) e3)] —1 Clleifea/]]
where C'[] is any one-hole context.

An alternative formulation of g-reduction is given in Table 6.
Some important results about S-reduction are:

46

Lemma 4.5 (Substitution and f-reduction) Ife —; ¢ then
eile/x] (—1)* ei[€'/x] and ele;/x] —1 €'|er/x].

Proposition 4.6 (Local confluence) [-reduction satisfies the weak dia-
mond property.

Theorem 4.7 (Church-Rosser) [-reduction is confluent.

Theorem 4.8 (Standardization) Ife(—)*e then e(—Stamdard) e by al-
ways reducing the leftmost outermost redex at each stage.

Proposition 4.9 (fixed points) There exists a closed A-calculus term Y,
called a fized point combinator, such that (Y e) —7% (e (Y e)), for any e.

4.2 Relationship with functional languages.

Almost all functional languages disallow reduction “below” a A — redexes
appearing in terms of the form Ax.e are not considered. In other words,
such “weak reduction” does not have the -rule. Hence, not all results (con-
fluence!) shown for the A-calculus automatically transfer to functional lan-
guages based on them. Moreover, certain results do not hold for typed frame-
works. For instance, fixed point combinators do not exist in simply typed
lambda calculi’. Finally, we should mention that programming languages
are concerned with closed terms only.

Two commonly used strategies for reducing terms are (weak) call-by-value
(or eager) and (weak) call-by-name (or lazy)®. In what follows, we present
different formulations of these two strategies and how they are realized.

Call-by-value. The basic notion in call-by-value (cbv) is that arguments
to a function are evaluated before evaluation of the function body commences.
The notion of value is crucial — they are merely all abstractions: v € Val ::=
Azx.e. Values are irreducible, but not conversely.

We first present the big-step formulation for call-by-value reduction:

e1 =y, A1) €3 =, v €][v/1] =, v
V=>, v (€1 €2) = v

In the small-step framework, this is formulated as shown in Table 7.

"though they can in languages with reflexive types or recursive types
8Various researchers actually distinguish between call-by-value and eager (or call-by-
name and lazy) which we gloss over here.

47

(ves) —7 (ve)

(arg,)

Table 7: Call-by-value g-reduction

Alternatively, the cbv strategy can be explained by using the (3, reduction
rule in the following cbv evaluation contexts:

E, w= []](Ey e | (vE,)

v

Call-by-name. Call-by-name (cbn), in contrast, does not simplify argu-
ments before function call. The big-step cbn rules are:

e1 =, \r.€] ellex/x] =, v
V=>, U (€1 €2) =>p v

Note that arguments are not evaluated before substituting them for the for-
mal parameter in the function body. This may result in more than one copy
of the same argument, which may be evaluated multiple times. The advan-
tage of cbn over cbv is that arguments that are not needed are not evaluated.
An important static analysis technique is strictness analysis, in which cbv
evaluation can safely be used instead of cbn. An alternative formulation of
the cbn rules is given in Table 8.

Alternatively, the cbn strategy can be explained by using the S rule in
the following cbn evaluation contexts:

B, == []1](E, ¢

Context machines. The notion of evaluation context permits a simple
transformation, due to Felleisen and Wright [WF94] of reduction semantics
into an abstract machine. We illustrate the idea for cbv reduction. A similar
machine can be constructed for cbn reduction.

48

(8)

(Az.e; e5) —1 eifea/z]

ep — €}
(e1 €2) —T (€] e2)

(op)

Table 8: Call-by-name S-reduction

We first characterize basic evaluation contexts F':
F* u= ([]e) | (Aze[])

Using the fact that any non-trivial cbv evaluation context can be expressed
as the composition of basic evaluation contexts Fy [Fy[...FY[]...]], (the trivial
context [| can be considered as corresponding to the case where k£ = 0), we
define a “context stack machine” as follows. The machine has two compo-
nents — a stack of basic evaluation contexts F'S, and the current expression
e. Transitions are defined by cases depending on the structure of e and then

of F'S:
2] o= 0]

| 5D] o — (s | et

—~

(75) ey — o G|

The machine is started in configuration ({ J, e) for any closed e and ter-
minates with context stack empty and value v.
Now if we define function crunch as:

crunchq J, e) = e

cmnchq o J e) = crunch(| FS |, Fle)

49

it is easy to show that

([FSJ, e) —>* ([J, v) ifandonlyifcrunch([FSJ, e) =, v

4.3 Closures and Environment machines

As mentioned earlier in passing, substitution is an expensive operation, since
it involves traversing the term in which the substitution is being performed
(as well as a-conversion to prevent name capture). Environments are a con-
venient ancillary structure used to record the bindings for variables in sub-
stitutions.

Closures. Suppose environments were, as before, represented by finite
domain functions from variables to “values”. Suppose we considered an en-
vironment 7 in which f was bound to Ax.e and proposed a rule for function
call:

v FEe=.v; Fxr—uv| Fe=.v

Y - f(@l):>67)

The problem with this rule is that if e contains free variables other than x,
lexical scoping may be violated if the binding for f was made in an environ-
ment other than v, since in the call, they will take their value (if they can)
from . While the problem is more acute in higher-order languages, it never-
theless exists in simple block structured procedures as well, which is why we
disallowed nested procedures in §3.3. It is therefore necessary to “package”
in when making the binding for f the prevalent environment. Such a pair is
called a closure. We define

Clos C Fxp X Env Env =X —g, Clos

In an applied calculus, there can be other kinds of values apart from closures.

Closures permit a correct treatment of lexical scope, and thus remedy
the lacuna in our treatment of procedures. They can also correctly handle
recursive functions (and other recursive data structures that are possible in
a lazy language). Let vel range over closures of the form < Az.e,y >. We
give a big-step description for cbn and cbv simplifications of closures, which
are basically restatements of the rules for =, and =>,. Very roughly, the
judgments used for closure evaluation under strategy X < e,v > =2 wvcl

50

correspond to judgments v e =>x v for expression evaluation, and where
value closure vel “unravels” to value v.
V(z) =4 vel
Lz, y> = vcl

LenL,7> =0 <,y > << AVr<e,y>> =0, d
< (e e3),7y> =0 wcl

For cbv the rules are:

V(z) =g vl
Lz, 7> = vl

Le,y> =Y LA vd Y > Le,y> =Y wcly
< Y[z el > =T vl

< (e1 e2),y > =g wcl

It is also possible to formulate a calculus of closures [Cur91l] and study
properties such as confluence of its reduction relation, which is “weak” in
the sense that reduction does not occur below abstractions.

Abstract machines. The big-step semantics suggests using a stack of
closures that are yet to be simplified, or which are awaiting their arguments.
Using this insight, environment machines can be developed, manipulating
closures.

An environment machine for c¢bn due to Krivine is:

(a7, | S)) — (), | 5]

(< (1 e2), 7>, §) —> (e, >, {<<625’7>>J>

(K A\p.e,7 >, {gJ) —> (K e, y[x > cl] >, {SJ)

The machine configurations consist of a current closure to be simplified and
a stack of closures which are (yet-to-be evaluated) arguments to the current
term. The first rule is a look-up. The second rule stacks the closure consisting

ol

of argument N together with the current environment (in which it should

be evaluated) onto the stack of yet-to-be-evaluated closures. The third rule

starts the evaluation of the body in a closure after extending the environment

with a binding of formal x to the argument closure, which is atop the stack.
The corresponding environment machine for cbv is:

(z,y>, | S]) — (v(@), | S |)

¢
(< (€1 e3),y >, [SJ) —> (KLe,y >, | e,y |)
S
N\ e
(vel, Ler>) — (Ke,y>, | v |)
s s
v
(vel, | < Axv.e,y> |) —> (K e, y[r = vel] >, S)
S

The cbv machine is not much different, except that both operator and operand
are to be evaluated before application. For this, two markers \, and /" are
used to indicate that the closure below it on the stack is the argument and
operator respectively of an application. The third rule swaps the evaluated
operand and unevaluated operators between the current-closure and the top-
of-stack positions.

Both machines are loaded with a closure consisting of a closed term and
empty environment, with an empty stack. The wunload function involves
unfolding the resulting closure, using the packaged environment to obtain
the terms bound to variables (recursively unfolding closures).

SECD Machine. The prototypical machine used for cbv evaluation of a
functional language was the SECD machine [Lan65a]. This machine works
with two stacks — S for already evaluated expressions and “dump” D for
managing control during function call and return — an environment £ and a
list of opcodes C'. Stack S is used in much the same way as the stack is used
for expression evaluation — the closures to which expressions evaluate are
pushed onto it. Dump D is used as a repository for storing the calling context

52

(the current environment, the sub-expressions already evaluated prior to the
call, and the code to be evaluated after the call) when a function call is made;
this context can then be restored from the top of the dump on completion of
a function call. To avoid introducing new symbols, we use (following [Plo75])
the A\-terms themselves as op-codes, with one additional op-code for function
application app.

§]re S0 — (& |ren
(5)razelp)) — <V<;>Jm o)
(| S |vAeese| D { <<Ac’“’v>|,%c,[_z> i

([S J,*y,(el es) i ¢, { D J) —> ({ S J,’y,el ey app::c,[D J>

cl
(<m@v>,%wwm40p—»<uwuHm@{

‘ (S, v, ©) J>

D

The first rule describes function return; it says that if the current call has no
remaining instructions, the calling context is restored from the dump — the
returned value placed atop the caller’s stack, and the environment and code
list of the caller are restored. The second rule is a variable look up. The
third rule forms and places a closure atop the value stack. The fourth rule is
really a “compilation rule” which evaluates operator and operand expressions
of an application (it is possible to separate the execution and compilation
phases). The fifth rule is the actual function call rule. It assumes that the
operand (argument) closure ¢l sits above the operator (function) closure atop
the stack. ¢l is bound to the formal argument x in the operator closure’s
environment, the operator closure’s code is now made the code list, and the
calling context is placed atop the dump. As indicated above, the calling
context consists of the stack below the operator and operand closures, the
calling environment and the remaining code list.

The SECD machine has been used as a template for a variety of block-
structured languages, as we will discuss below. Plotkin [Plo75] has related the

53

abstract machine semantics with the big-step and reduction semantics of an
applied cbv A-calculus using standardization to establish the correspondence.

Other abstract machines. There are various other abstract machine
implementations that we cannot describe here. One such class of machines is
based on a translation of the A-calculus into combinatory logic and an imple-
mentation of these combinators [Tur79]. A special class of implementations
are based on graph reduction (see [Jon87] and various references therein for
an accessible treatment of such implementations). The main operations of
these machines involve performing rearrangements of a syntax tree (or graph)
according to certain combinators or directors [KS88]. Also significant is the
Categorical Abstract Machine [CCM85] which is based on operative features
of categorical models of A-calculi, and the closely related machine derived by
Hannan and Miller [MH90].

4.4 Implementation issues related to environments

The abstract machines seem rather profligate in the structures they employ.
Fortunately, there are rather efficient implementations of environments, and
closures using stacks, pointers and allocation on stack and heap. The ob-
servation that the called function never looks at the caller’s stack in the
SECD machine suggests that the value stack does not need storing, only the
(re)storing of the stack pointer. Likewise, entire code lists and environments
need not be stowed away on the dump, pointers to them will suffice.

Efficient environment implementation and management is crucial. First,
the environment is maintained as a stack of references to local frames. Then,
variables are replaced by a fast indexing scheme relative to a frame pointer
(c.f. de Bruijn indices in the A-calculus).

Recursion. Special mention must be made about recursive functions. As
mentioned above, simply typed languages cannot have a Y combinator, so
a special mechanism is needed to build closures for recursive functions and
recursive data structures. A simple idea is to build a circular reference into
the environment component of the closure for a recursive function. This
is achieved using two op-codes introducing a level of indirection in environ-
ments’. The first op code places a reference to a dummy closure. The closure

9which is already there in most pointer-based implementations of environments

54

for the recursive function is created using this augmented environment, and
a second op-code overwrites the reference to the dummy reference with a
pointer to the new closure, thus building the cycle (see [Hen80, Car84] for a
simple implementation).

Local definitions. Local definitions may be implemented in correspon-
dence to the parameter-passing mechanism, employing the equivalence

(Axr.es 1) =~ let x def e in ey

or its generalization to more structured definitions. However such a crude
approach is rarely followed, since it is inefficient. Exploiting the fact that
the environment used for e, is an extension of that used for e;, much simpler
and direct methods are possible, in particular, by employing finer grain op-
codes that facilitate stack manipulation and making definitions and recursive
definitions.

Extensions. The SECD framework is fairly robust, and can easily be
extended to deal with a variety of language extensions, including side effects.
Adding a store component and related op-codes [Car86a] allows support for
imperative features. Similarly, input and output streams can be accom-
modated, as also can communication and concurrency primitives (a general
choice operator is difficult to incorporate) [GMP89].

Procedures in imperative languages. By the principle of abstrac-
tion, the notion of closures carries over to command abstracts. Of course,
there are some aspects that are simpler (languages with higher-order pro-
cedures are rare beasts), whereas issues pertaining to stores are somewhat
more involved. In particular, showing that the allocation and deallocation of
locations is done correctly is an important part of proving that the language
and implementation are free of storage insecurities.

The typical call-stack management in traditional imperative languages
can be seen as an implementation where three different stack structures — S
for temporary computation, E for the environment and D for the dump —
are “multiplexed” onto one physical stack.

%)

4.5 Control operators

We briefly discuss here the operational semantics for an extension of the
A-calculus with control operators that can pass or throw away the current
evaluation context. Control operators allow functional programs to handle
features like concurrent threads, exceptions, call/cc etc. They support a
technique used in modern compilers, namely that of passing continuations
[App92]. Moreover, the environment machines given earlier have simple ex-
tensions to deal with these new control operators.

The syntax is extended with two new unary operations, which are also
redexes:

e n= ... | Ce | Ae

whose reduction rules, stated in contextual form, are:

x & fule)

(©) E[Ce] —{ (e (\z.AE[z]))

(A) ElAe] — e

In the rule (A), the “abort” operator throws away the current evaluation
context, whereas in the rule (C), the “control” operator passes an abstracted
form of the current evaluation as an argument to the expression e.

Another well-known control operator is call/cc, “call with current contin-
uation”, with the following operational rule:

(call/ cc)

Elcall/cc0k.e)] —¢ ((M-(k €)) O\ AE[z])) Z fu(e)

an equivalent of which can be expressed in terms of (C) and (A).

Environment machines for control operations. Recall that the stack
component S of an environment machine represents the context E of the
current, expression being evaluated. The control operators manipulate this
evaluation context. Therefore, operations to encapsulate and manipulate the
stack are introduced: A new kind of closure retr(S) is added that corresponds
roughly to Az.AFE|x].

56

The new rules for the Krivine machine are:

(< Ce,y >, {SJ) —> (L e,v7 >, Lretr(S) J>
(< Ae, vy >, [SJ) —> (< e,y >, [J>

cl

perrs), | &) — e [5]

The manipulations of the context are fairly clear: in the first rule, the current
stack is encapsulated and presented as an argument to the closure correspond-
ing to e. The “abort” operator throws away the current stack. In the third
rule, the encapsulated stack is restored, in place of the existing stack S’.
The cbv environment machine uses the same rules as before with three
additional rules for manipulating the stack. Of these, the second rule (for
abort) is the same as the rule in the extension of the Krivine machine.

(K Ce,y >, [SJ> —> (K e,y >, {ret>((5) J>

(K Ae,y>, | S|) —» (<er> [])

vd
(vel, retggS))y —> (vdl, [S J)

If retr(S) corresponds to Az.AFE[z], and S’ corresponds to context E'[|, then
the last rule can be seen as implementing the reduction sequence

E'[(A\x.AE[z] v)] —] E'[AE[]] —] Ev].

Translating the control operators away. An important result [Plo75,
FFKD87, Gri90] is that these control operators can be translated away by so-
called “CPS transformations” into purely functional languages. We introduce
the idea here only to indicate how operational techniques are used in language
translations, since a proper treatment of CPS is well beyond the scope of this
chapter. We present one such translation, which lets us interpret call-by-value

57

reduction as call-by-name reduction [Plo75].

S
Il
>
™
=
o

e e3) = Mk.(e7 (Am.(ez (An.((m n) k)))))

a = Mk.(k a) Ce = Mk.(e Am.((m (An.A\d.(k n))) (\z.z))))

Ne = Me.(k (\ve)) Ae = M.(e (\z.z))

Various interesting theorems can be shown about this CPS translation.
For example:

Theorem 4.10 For any pure A-expression e: (€ (Ar.x)) =, v if and only
if (@ (A\v.x)) =, v

Theorem 4.11 For any A-expression e without control operators, and of
base type (not of a function type)'®: e (—1)* v if and only if (€ (M\x.x)) (—
).

5 LTSs and Interactive Programs

The formulations we have presented so far have used transition systems with-
out labels. We have till now concentrated on programs in isolation from their
operating environment. However, programs interact with their execution en-
vironment, at the very least for input and output of data. Even in an isolated
computer, there are various interactions with peripheral devices such as disks,
printers, file systems and libraries. There are also interactions with forked
processes, interrupt handlers etc.

The picture we have so far presented can be sustained when interaction
with the environment can be clearly separated from computation. However,
programming nowadays is increasingly interactive, and all programming lan-
guages provide facilities for interaction with the environment. In addition,
several languages provide features for concurrent and distributed execution.
Interactions can take the form of remote procedure calls, or communication
in a network / cluster / distributed computing environment, interspersed in

Oguch expressions can be considered “complete programs” in a typed A-calculus. The
result depends on strong normalization of the typed lambda calculus.

58

the computation. In other words, interaction becomes an integral part of
computation.

Central to this kind of interactive computing are the concepts of process
and communication (the texts [Hoa85, Hen88, Mil89] provide excellent in-
troductions to the area). A program and its environment can be considered
two processes that communicate with each other. These two processes may
themselves consist of collections of interacting processes.

When integrating interaction into computation, certain issues arise in pro-
viding structured operational descriptions. Firstly, the Fregean principle of
compositionality should still be applicable. Secondly, the fact that processes
interact while executing concurrently brings in its own complexity since in-
teractions may alter the state of a program non-deterministically. Thirdly,
the fact that a program operates correctly only under circumstances where
the environment fulfills certain obligations implies that both the program
and its environment (regarded as a process) cooperate in achieving certain
goals. Specifications must clearly define interfaces of interaction that con-
strain the kinds of inputs a process can receive, the outputs it can produce
and how it synchronizes with other components in a system. Lastly, one
cannot place unreasonable restrictions on the environment. For example, it
would be unreasonable to expect that a remote server operate at the same
speed as one or several of its clients. Hence concurrent execution in general,
implies that different processes execute at different speeds and interactions
are the only means of achieving certain synchronizations.

Labels and behavior. Labels are a convenient device to indicate in-
teraction between a program and its environment during execution. They
carry information about communication capabilities of processes and are of-
ten crucial to the changes in state that processes incur. They are also used to
determine and resolve non-deterministic choices in the execution of a process
when it has the possibility of interacting with several other processes at the
same time.

We saw in T'Ss that confluence, determinacy and termination were impor-
tant properties and that two sequential systems are considered equal if they
compute the same function between input and output states. Concurrent
systems on the other hand, are generally non-deterministic (mostly non-
confluent), and often infinite-state, non-terminating systems; neither may
they be computing a particular relation or function. So what are the corre-

59

sponding notions of behavioral properties in LTSs? The crucial properties of
such systems concern their interaction capabilities. Any equality relation on
such systems will naturally relate to the communication capabilities of the
individual processes that make up the system.

Various notions of behavior can be associated with an LTS, based on the
idea that the observable behavior of a process depends on the sequences of
labelled transitions it can perform. However, there is little consensus yet on
what is the right notion of behavior. A simple, language-theoretic notion
of program behavior is the set of sequences (finite or infinite) of labels or
traces. A process p has trace ¢ = l1ly... € £ = £*J L™ if it can perform

a sequence of labelled transitions p SLIN P1 by Po.... Two processes are
considered trace-equivalent if they have the same traces.

Other notions of behavior take into account the communication capabil-
ities (and incapabilities) at each intermediate state, thus being sensitive to
the possibility of deadlock — inability to perform a transition with a particu-
lar label — in some sequences of transitions (see examples 5.2 and 5.3 below).
We present only one such finer notion, called bisimulation [Par81].

The intuition is that this notion of equivalence identifies a pair of pro-
cesses, if starting from equivalent states they have the same interaction pos-
sibilities, the success of each of which puts them again in states that may be
considered equivalent.

Definition 5.1 e A binary relation R on process configurations is a sim-
ulation if whenever sy Rsy, for anyl € L, if s, SN s\, then there exists
a configuration s!, such that s, L s, and s\ Rs,

e R is a bisimulation if R and R™" (the symmetric inverse of R) are
both simulations.

e The collection of bisimulation relations is closed under inverse, compo-
sitton and arbitrary union. The largest bisimulation called bisimilarity
15 denoted =~ and is an equivalence relation.

Proving two labelled transitions systems are bisimilar involves proposing and
proving a particular relation is a bisimulation. Bisimulation equivalence or
bisimilarity is a finer notion of equivalence than trace equivalence, since it
distinguishes more programs than trace equivalence does. In particular, it
is sensitive to the potential for deadlock behavior — two processes with the

60

same traces are distinguished if on some trace, one of them can reach a
state where some particular actions are possible whereas the other cannot
reach such a corresponding state on that same trace. In fact, bisimilarity
is the finest deadlock-sensitive equivalence relation on processes obtained
from examining their observable behavior. In practice, there are a variety
of notions that can be considered bisimulations, either for different notions
of labelled transition, or which differ in the precise characterization of the
labelled actions, what exactly is observable, etc. There also may be different
characterizations for a single notion of bisimulation, with alternative charac-
terizations supporting different styles of reasoning. There are also a variety
of different notions of equivalence that lie between trace equivalence and
bisimulation, some of which are fairly natural notions of equivalence to work
with. A full exploration of these issues is beyond the scope of this chapter;
a quick introduction is provided in [AFV00].

5.1 CSP

We illustrate the use of LTSs in semantic specification through a language
based on CSP (Communicating Sequential Processes) due to Hoare [Hoa78,
Hoa85]. The language extends the language of guarded choice (which already
includes non-determinism) with new constructs for communication and con-
current execution. The semantics we give here is a simplification of a pre-
sentation due to Plotkin [Plo83].

We must mention here that it is often difficult to present purely big-step
or purely small-step semantics for interactive programming languages, which
incorporate internal evaluation of expressions. This is because communi-
cating concurrent systems are best described using small-step descriptions,
since they can account for interleavings and interactions from intermediate
states (particularly important in notions of behavior sensitive to deadlock),
whereas expressions are evaluated in entirety (and can easily be specified in
a big-step).

The syntax for CSP is as follows:

io == P?in| Qlout
g = eleio
c == x:=e|Plin|Qout]cc
| if D?:lgi > ¢ fi | do D?:lgi > ¢ od
S = [Pl

61

io stands for input/output communication statements, ¢ for “guards”, which
are boolean expressions, optionally followed by a communication. Commands
are communication statements, assignments, and the guarded choice and it-
eration constructs. A program S consists of a collection of named processes.
For simplicity we assume that concurrent execution takes place only at the
topmost level, i.e., processes cannot have subprocesses that themselves ex-
ecute concurrently. Every process has a name that is known to other pro-
cesses. Communication between processes is by synchronized handshaking or
rendezvous, wherein two named processes that need to exchange values wait
at matching input and output commands respectively before consummating
the communication. The command P7?in denotes that the current process
will wait to input a value from the process named P, and Qlout represents a
desire to output a value out to the process named @); the sending process is
willing to wait till @) is ready to input the value.

Example 5.2 Assume there is a printer shared by two processes Py and Ps.
Both processes and the printer are modeled as CSP processes, which together
form a “closed” system.

[P = do —done; > locali; PRle od;PRleot;local o
| P : do —doney > localy1; PRle;odPRleot;locals o
PR : do [|2, true;P,?v > do v#eot > print(v);P;?v; od od
=1
]

The printer process PR waits till one of the two processes Py, Py, is ready to
begin transmission, with the first value. In case both processes want to output
to the printer, PR has to make a choice. Having chosen to communicate
with one of them, the printer does not serve the other process till the chosen
one sends an end-of-transmission (eot) signal. The printer process never
terminates since it keeps waiting indefinitely for Py or Py to communicate
with it'. It is possible for one process to monopolize the printer and prevent
the other process from ever gaining access.

1 This interpretation is at variance with the so-called distributed termination conven-
tion that Hoare originally proposed in the language. However we find our interpretation
more suitable for server processes. It also illustrates that we are now in an arena where
we deal with systems that do not necessarily always terminate. Indeed in concurrent
systems, guaranteeing properties such as deadlock-freedom, non-termination and freedom
from starvation may be more important.

62

Each process has its own state and the states of the different processes are
disjoint. All changes in state o; of a process P; are due to local assignments
or receipt of input from another process. The set of global states defined as

n
State = ® State;
i=1

is the Cartesian product of the sets of the states of individual processes.
where State; is the set of states of the process P;. The metavariable & denotes
the global state and each o; stands for the state of process P,. The labels we
use for our LTS consist of the set of possible communications, defined as

Inputs = {P7v | P is a process name and v € V}
Outputs = {Plv | P is a process name and v € V}
L = Inputs U Outputs U {e}

The label € signifies local computation that involves no interaction with other
processes. A is a meta-variable that ranges over L.

The semantics of the commands in a process P; are given in Table 9. We
will assume below that j # 7. The Input rule says that process P; attempting
to receive a value from process P; can, on receipt of any value v from P;, bind
v to a variable x in its local state. Expression e is evaluated to a value v before
the process attempts to send it to P;, the statement terminating if and when
P; accepts this communication. Assignment is considered an internal action
that does not affect other processes, and the transition is labeled with . In
the rules Seq and Int we abstract from the internal computations of a process
by coalescing local changes of state (labelled with £) into a single labelled
transition. The last rule abstracts from local computations and highlights
an interaction, whenever there is one. Observe that the Int rules are not
syntax-directed.

We now deal with the parallel composition of processes. The transitions
of processes (as opposed to commands) are also labelled (e.g., —’\>p) and have
a subscript p to distinguish them from the transition relation — (used in
Table 9) for command transitions.

For readability, we follow the following notational conveniences in Table
10.

e For any global state o, o will denote the k-th component of the n-tuple
(1<k<n).
e Foreach k, 1 <k <n, pp =P :: ¢, and p}, = Py, :: ¢},.

63

Input

Output o, Fe=.v
(0i, Pjle) R o
2 l_ e
Assign 2 ‘ €:> °
Oiy, T 1= ey — o[z >]
Seq (o5, 1) —> . (o}, ¢3) —> o
(0, c1;¢0) — O
. T S L e
fnt1 <UZJ C> () S () <O.7,7 C>)\7’&5
<UH C> — (U;, CI>
. _ELy AL (LB
P W) it e N
<Ji7 C> — O';

Table 9: Mixed-step semantics for CSP commands

e In rules Parinterleave and Parsy"'?’

S o= [liawm] , 5 = [k pi]
e In rule Parinterleavea
, or ifk=1 , c, ifk=1
o = . C = .
k o, otherwise > k ¢, otherwise
e In rule Pargy,,
o ifth=i#y ¢, ifk=i#j
o, = op ifk=j5#1 , ¢ = ;g ifk=j#i
o, otherwise ¢, otherwise

64

(0, ¢y = (o',)

IR

A
<Uz'; pi> —p (Uzl'a p;>

Process;

<Uz'; pi> _€>p (Uzl'a p;>
<67 S> —€>p <&,7 SI>

Parinteﬂeave

P;lv P;?
(oi, i) —]>p (O—z{7 p;) <Uj7 pj> _;}P <U;" p;)

(0,) —p (0", S

Pargy,.

Table 10: Big-step semantics for CSP commands

In Table 10:

e The rule Paryy,, treats a “closed” system of processes. Hence all com-
munications between components of the system are internal to the sys-
tem.

e The system of processes terminates only if every process in the system
terminates. In other words, configurations of the form (&, [|[f_, Pk =
o |) (where “o” denotes an empty continuation) are the only terminal
configurations.

e [f the system reaches a stuck configuration, then it is said to be dead-
locked. In other words, a configuration (o, S), which is not terminal

and such that (5, S) /=, is deadlocked.

Table 11 contains the rules for guards using yet another labelled transition
system, which is then used in giving the semantics of the conditional and
iterations constructs. (Table 12).

The following example illustrates some of the distinctions that can arise
due to non-determinism.

Example 5.3 Compare the process PR in Example 5.2 with the following
alternative version.

PR : do []?, true > P?v;do v#eot > print(v); P?7v; od od

The major difference between PR and PR' is in their deadlock behavior.
Whereas PR may wait till one of the processes is ready to communicate with

65

o e =, true
(O’, 6jl>Cj> —)E g O

, A
o e =, true (o, io;) — o

(0, ej;i04) L>g o

Table 11: Mixed step semantics for guards

it, PR is forced to make a commitment to wait on one of the two processes
say Py, regardless of whether Py wants to communicate with it. PR' clearly
exacerbates the possibilities of deadlock in the system. Therefore, PR and
PR’ cannot be considered equivalent as processes.

5.2 Extensions

We conclude this discussion with some language features that can easily be
modeled in the framework of L'T'Ss.

Input and output. Commands are extended with input and output
primitives:

¢ == ... | read(x) | write(e)
Input and output are really special cases of communication, but instead of
interacting with a named process, values are taken from and added to stream
data structures. The command level rules are (following the convention men-
tioned above):

Read -
(0;, read(z)) — o;[x —]
) - e
Write 2 i

(0;, write(e)) s o,

Two new kinds of labels are added, for reading and writing:

lel == ... ||

66

(Ua gj> A>9 o'

(0, IF) 25 (o', ¢;)

(je{l,...,n})

<07 gj> 49 o'

(o, DO) 2 (o', ¢j; DO)

(je{l,...,n})

No F e =, false
i=1

(o, DO) - o

Let IF = if D?:lgi > ¢ fi
and DO =do [|i,9; > ¢; od

Table 12: Semantics of if — fi and do — od

At the global configuration level, (global) input and output streams are
added. The labels generated at the command level are “discharged” at the
top level, with the corresponding manipulations of the I/O streams g;, g,
<0i7 Ci> l> <O-z{7 C;>

Rd
<O.i7 Pi, VS, §0> —E>p <O.7Ija p;,; Siy §0>

(o5, ¢;) —= (0}, ¢)

IR

Wrt
<Ji7 Di, Siy §0> —E>p <O.£7 pga Siy §0’U>

Dynamic Process Creation. Consider a command fork(P, ¢), which
dynamically creates a new process named P executing the command c. At
the command level, the effect of this command returns the state unchanged,
but generates a new kind of label ®((o;, P :: ¢)). The state o; is cloned and
packaged into the label.

(o1 P)) where P is a new process name
(0;, fork(P,c)) =" o;

67

At the global configuration level, the label ®((0;, P :: ¢)) is “discharged”,
by creating a new process with its own local state.
®(P::c)
(o, pi) —p (03, P})
<&7 S> —€>p <U_”7 S”>

S"=1(Ir~, k) | P c]and 6" = ¢’ ® 0;, where we continue with the
notational convention mentioned above. That is, the vector of process code
has a n+ 1" component P :: c the local state of which has a fresh copy of o;
as its initial local state. The rule applies only under the assumption that P
is a globally fresh process name.

6 Conclusion

We have seen the use of structural operational semantics both as a concise
formalism and as a method of precisely defining the dynamic semantics of
programming language constructs. The conciseness of the formalism makes
it far easier to study and comprehend the potential bottlenecks that an im-
plementor is likely to face. Since the semantics is syntax-driven and the rules
are essentially syntactic, it is also possible in many cases, to generate pro-
totypical implementations of new and so far untried constructs quickly with
the help of scanning and parsing tools. One such tool for concurrent systems
is the Process Algebra compiler of North Carolina [CMS95].

In the case of both imperative and functional languages, we have chosen
the semantics of a small core and built up new constructs and features and
given them meaning. However, in general, an existing programming language
cannot be extended by adding new features to it, without first considering
how the existing features of the language interact with the new ones.

In many cases, the implementation strategies become clearer through
such a rule-based exposition of the semantics. In certain cases, of course,
we have chosen to define rules that are consistent with and model current
implementation strategies.

We have not treated the semantics of structured data in general. We have
also not treated the semantics of types or static semantic analysis. While this
is a major omission and is important for compiling, it would have taken us too
far afield. Another significant omission is the semantics of modules, classes
and objects much of which is still an area of active research. The bibliography

68

contains several references which the reader may consult to learn more about
the work in the area.

References

[ACOS]

[AFV00]

[ANBT86]

[App92]

[Ast91]

[Bar84]

[BC84]

[BG92]

R. M. Amadio and P.-L. Curien. Domains and lambda-calculs.
Cambridge University Press, 1998.

L. Aceto, W. Fokkink, and C. Verhoef. Structural operational
semantics. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra. Elsevier, Amsterdam, 2000.

E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi,
A. Giovini, P. Inverardi, E. Karlsen, F. Mazzanti, G. Reggio,
and E. Zucca. The Trial Definition of Ada, Deliverable 7 of the
CEC MAP project: The Draft Formal Definition of ANSI/MIL-
STD 1815 Ada. CEC MAP, 1986.

Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

E. Astesiano. Inductive and Operational Semantics, pages 53—
134. Formal Description of Programming Concepts. Springer-
Verlag, 1991.

H.P. Barendregt. The Lambda Calculus, Its Syntax and Seman-
tics, volume 103 of Studies in Logic and the Foundation of Math-
ematics. North Holland, Amsterdam, 1984.

G. Berry and L. Cosserat. The Esterel synchronous program-
ming language and its mathematical semantics. In S.D. Brookes,
A.W. Roscoe, and G. Winskel, editors, Seminar on Concurrency,
volume 197 of Lecture Notes in Computer Science, pages 389—
448. Springer-Verlag, 1984.

G. Berry and G. Gonthier. The ESTEREL synchronous program-
ming language: design, semantics, implementation. Science of
Computer Programming, 19(2):87-152, 1992.

69

[BHS7]

[Bor00]

[BS90]

[Car84]

[Car86al

[Car86b]

[CCMS3]

[CTO00]

[CKRW99)]

R. Burstall and F. Honsell. A natural deduction treatment of op-
erational semantics. In Proceedings of FST and TCS 8, Founda-
tions of Software Technology and Theoretical Computer Science,
Pune India, volume 287 of Lecture Notes in Computer Science.
Springer-Verlag, 1987.

Richard Bornat. Proving pointer programs in Hoare Logic. In
Mathematics of Program Construction, pages 102-126, 2000.

Egon Borger and Peter H. Schmitt. A formal operational se-
mantics for languages of type prolog III. In CSL, pages 67-79,
1990.

L. Cardelli. Compiling a functional language. In Proceedings
of 1984 Symposium on LISP and Functional Programmin, pages
208217, 1984.

L. Cardelli. Amber. In G. Cousineau, P-L. Curien, and B. Robi-
net, editors, Combinators and Functional Programming Lan-
guage, volume 242 of LNCS. Springer, 1986.

L. Cardelli. The amber machine. In G. Cousineau, P-L. Curien,
and B. Robinet, editors, Combinators and Functional Program-
ming Languages, volume 242 of LNCS. Springer, 1986.

G. Cousineau, P. Curien, and M. Mauny. The Categorical Ab-
stract Machine. In J.-P. Jouannaud, editor, Functional Pro-
gramming Languages and Computer Architecture, volume 201 of
Lecture Notes in Computer Science, pages 50-64, Berlin, 1985.
Springer-Verlag.

Cristiano Calcagno, Samin Ishtiaq, and Peter W. O’Hearn. Se-
mantic analysis of pointer aliasing, allocation and disposal in
Hoare logic. In Maurizio Gabbrielli and Frank Pfenning, editors,
Proc. 2nd International Conference on Principles and Practice
of Declarative Programming, Montreal, Canada. ACM, 2000.

Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Mar-
tin Wirsing. An Event-Based Structural Operational Semantics
of Multi-Threaded Java. In Formal Syntaxr and Semantics of
Java, pages 157-200, 1999.

70

[CMSO5]

[Cur91]

[dS92]

[FFKD87]

[GMP89]

[Gon88]

[Gri9o]

[Gun92]

[Gur93]

R. Cleaveland, E. Madelaine, and S. Sims. A front-end genera-
tor for verification tools. In E. Brinksma, R. Cleaveland, K.G.
Larsen, and B. Steffen, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1019 of LNCS,
pages 153-173. Springer Verlag, 1995.

Pierre-Louis Curien. An abstract framework for environment
machines. Theoretical Computer Science, 82(2):389-402, 1991.

Fabio Q. B. da Silva. Correctness Proofs of Compilers and De-
buggers: an Approach Based on Structural Operational Seman-
tics. PhD thesis, Laboratory for Foundations of Computer Sci-
ence, Computer Science Department, Edinburgh University, Ed-
inburgh, EH9 3JZ, Scotland, September 1992. Available as LECS
Report Series ECS-LFCS-92-241 or CST-95-92.

M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. A syn-
tactic theory of sequential control. Theoretical Computer Sci-
ence, 52(3):205-237, 1987.

A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric
integration of concurrent and functional programming. Interna-
tional Journal of Parallel Programming, 18(2):121-160, 1989.

G. Gonthier. Sémantiques et Modeles d’Ezécution des Lan-
gages Réactifs Synchrone; Application o Esterel. These
d’informatique, Université d’Orsay, 1988.

Timothy G. Griffin. The formulae-as-types notion of control.
In Conf. Record 17th Annual ACM Symp. on Principles of Pro-
gramming Languages, POPL’90, San Francisco, CA, USA, 17—
19 Jan 1990, pages 47-57. ACM Press, New York, 1990.

Carl A. Gunter. Semantics of Programming Languages: Struc-
tures and Techniques. Foundations of Computing. MIT Press,
1992.

Yuri Gurevich. Evolving algebras: An attempt to discover se-
mantics. In G. Rozenberg and A. Salomaa, editors, Current
Trends in Theoretical Computer Science, pages 266-292. World
Scientific, 1993.

71

[Han91]

[Han94]

[Hens0)

[Henss]

[HIP92]

[HL74]

[Hoa69]

[Hoa78|

[Hoa85]

[HPY2]

[Jon87]

John Hannan. Making abstract machines less abstract. In
J. Hughes, editor, Functional Programming Languages and Com-
puter Architecture, 5th ACM Conference, volume 523, pages
618-635. Springer-Verlag, Berlin, Heidelberg, and New York,
1991.

J. Hannan. Operational semantics-directed compilers and ma-
chine architectures. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1215-1247, 1994.

P. Henderson. Functional Programming: Application and Imple-
mentation. Prentice Hall International, 1980.

M. Hennessy. Algebraic Theory of Processes. MIT Press, Cam-
bridge, Massachusetts, 1988.

Seif Haridi, Sverker Janson, and Catuscia Palamidessi. Struc-
tural operational semantics of AKL. Future Generation Com-
puter Systems, 1992.

C.A.R. Hoare and P.E. Lauer. Consistent and complementary
formal theories of the semantics of programming languages. Acta
Informatica, 3:135-153, 1974.

C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10), 1969.

C.A.R. Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666—677, 1978.

C.A.R. Hoare. Communicating Sequential Processes. Prentice
Hall International, Englewood Cliffs, 1985.

J. Hannan and F. Pfenning. Compiler verification in If. In Sev-
enth Annual IEEE Symposium on Logic in Computer Science,
pages 407-418. IEEE, 1992.

Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice Hall International, London, 1987.

72

[Kah87]

[KS88]

[Lan64]

[Lan65a]

[Lan65b]

[Lau68|

[Lei01]

[McC63]

[MHO0]

[Mic94]

[Mil73]

G. Kahn. Natural semantics. In F.J. Brandenburg, G. Vidal-
Naquet, and M. Wirsing, editors, Proceedings of STACS 87, vol-
ume 247 of Lecture Notes in Computer Science, pages 22—39.
Springer-Verlag, 1987.

Richard Kennaway and Ronan Sleep. Director strings as com-
binators. ACM Transactions on Programming Languages and
Systems, 10(4):602-626, 1988.

P.J. Landin. The Mechanical Evaluation of Expressions. Com-
puter Journal, 6(5):308-320, 1964.

P. J. Landin. An abstract machine for designers of computing
languages. In Proc. IFIP Congress, pages 438-439, 1965.

P.J. Landin. A correspondence between ALGOL 60 and Church’s
lambda-notation: Part I. Communications of the ACM, 8(2):89—
101, 1965.

L.P. Lauer. Formal definition of Algol 60. Technical Report
TR.25.088, IBM Lab. Vienna, 1968.

J. J. Leifer. Operational Congruences for Reactive Systems. PhD
thesis, University of Cambridge Computer Laboratory, 2001.

J. McCarthy. Towards a mathematical science of computation.
In C.M. Popplewell, editor, Information Processing 1962, pages
21-28, 1963.

D. Miller and J. Hannan. From operational semantics to abstract
machines: Preliminary results. In Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming. ACM, 1990.

Marino Miculan. The expressive power of structural operational
semantics with explicit assumptions. In Henk Barendregt and
Tobias Nipkow, editors, Types for Proofs and Programs, pages
263-290. Springer-Verlag LNCS 806, 1994.

R. Milner. Processes: A mathematical model of computing
agents. In H.E. Rose and J.C. Shepherdson, editors, Proceed-
ings Logic Colloquium 1973, Bristol, UK, pages 158-173. North-
Holland, 1973.

73

[Mil76]

[Mil80]

[Mil89)

[Mor82]

[Mor8S]

[Mos92]

[MS96]

[MTHM97]

[Ong99]

[Pal92]

R. Milner. Program semantics and mechanized proof. In K. R.
Apt and J. W. de Bakker, editors, Foundations of Computer
Science I, pages 3—44. Mathematical Centre, Amsterdam, 1976.

R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer Verlag, 1980.

R. Milner. Communication and Concurrency. Prentice-Hall In-
ternational, Englewood Cliffs, 1989.

J. Morris. A general axiom of assignment and linked data struc-
ture. In M. Broy and G. Schmidt, editors, Theoretical Founda-
tions of Programming Methodology, pages 25-41. 77, 1982.

James Morris. Algebraic operational semantics for Modula 2.
PhD thesis, University of Michigan, 1988.

P. D. Mosses. Action Semantics, volume 26 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press,
1992.

D. Le Metayer and D. Schmidt. Structural operational semantics
as a basis for static program analysis. ACM Computing Surveys,
28:340-343, 1996.

Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML (Revised). MIT Press,
1997.

C.-H. L. Ong. Correspondence between Operational and Deno-
tational Semantics: The Full Abstraction problem for PCF. In
S. Abramsky, editor, Handbook of Theoretical Computer Science,
volume 3. Oxford University Press, 1999.

Jens Palsberg. A provably correct compiler generator. In Bernd
Krieg-Bruckner, editor, ESOP 92, jth European Symposium on
Programming, Rennes, France, February 1992, Proceedings, vol-
ume 582, pages 418-434. Springer-Verlag, New York, NY, 1992.

74

[Par81]

[PL/86]

[Plo75]

[Plo77]

[Plo81]

[P1o83]

[San97]

[Sch86]

[Sew98|

[Sto77]

[Ten81]

D. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5th GI Conference, Karlsruhe, Germany, vol-
ume 104 of Lecture Notes in Computer Science, pages 167—183.
Springer-Verlag, 1981.

PL/I Definition Group. Formal definition of PL/I version 1.
Report TR25.071, American Nat. Standards Institute, 1986.

G.D. Plotkin. Call-by-name, call-by-value and the lambda-
calculus. Theoretical Computer Science, 1:125-159, 1975.

G.D. Plotkin. LCF considered as a programming language. The-
oretical Computer Science, 5:223-256, 1977.

G.D. Plotkin. A structural approach to operational semantics.
Report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

G.D. Plotkin. An operational semantics for CSP. In D. Bjgrner,
editor, Proceedings IFIP TC2 Working Conference on For-
mal Description of Programming Concepts — 1I, Garmisch-
Partenkirchen, pages 199-225. North-Holland, 1983.

David Sands. From SOS rules to proof principles: An opera-
tional metatheory for functional languages. In Conference Record
24th ACM Symposium on Principles of Programming Languages,
pages 428-441, Paris, France, 1997.

D. A. Schmidt. Denotational Semantics: A Methodology for Lan-
guage Development. Allyn and Bacon, 1986.

P. Sewell. From rewrite rules to bisimulation congruences. In
Proceedings of CONCUR’98, volume 1466 of LNCS, pages 269
284. Springer Verlag, 1998.

J. Stoy. Denotational Semantics: the Scott-Strachey approach to
Programming Language Theory. MIT press, 1977.

R. D. Tennent. Principles of Programming Languages. Prentice-
Hall International, 1981.

75

[Tin01]

[Tur79]

[War83]

[Wat90]

[WBB92]

[WF94]

[Win93]

[WO092]

Simone Tini. An axiomatic semantics for Esterel. Theoretical
Computer Science, 269, 2001.

D. A. Turner. A new implementation technique for applicative
languages. Software Practice and FEzperience, 9(1):31-49, 1979.

D. H. D. Warren. An abstract Prolog instruction set. Technical
Note 309, SRI International, Menlo Park, California, 1983.

D.A. Watt. Programming Concepts and Paradigms. Prentice
Hall, 1990.

S. Weber, B. Bloom, and G. Brown. Compiling Joy to silicon:
A verified silicon compilation scheme. In Proceedings of the Ad-
vanced Research in VLSI and VLSI and Parallel Systems Con-
ference, Providence, RI, 1992.

Andrew Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation, 115(1):38-94,
1994.

G. Winskel. The Formal Semantics of Programming Languages:
An introduction. Foundations of Computing Science. MIT Press,
1993.

Mitchell Wand and Dino P. Oliva. Proving the correctness of
storage representations. In Proceedings of the 1992 ACM Con-

ference on LISP and Functional Programming, pages 151-160,
New York, 1992.

76

