CSL705/CS355N: Theory of Computation

Tutorial sheet: Coding and Gödelization

1. We may code finite sets of natural numbers by the function fs which for any finite set $T = \{a_1, \ldots, a_m\}$, is defined as $fs(T) = \prod_{a_i \in T} p_{a_i+1}$ where p_n is the *n*-the prime (with $p_1 = 2, p_2 = 3, p_2 = 3, p_3 = 1$).

 $p_3 = 5$, etc.).

- (a) What is $fs(\emptyset)$?
- (b) Prove that fs is primitve recursive.
- (c) Prove that the predicate $isfs : \mathbb{N} \to \{0, 1\}$ which determines whether a given number n encodes a finite set of natural numbers, is also primitive recursive.
- 2. Prove that the "head" and "tail" functions on lists are both primitive recursive.
- 3. Prove that every integer is primitive recursive.
- 4. Prove that every rational number (regarded as an infinite sequence of decimal digits) is primitive recursive.
- 5. What distinguishes a modern machine in a fundamental fashion from the URM machine is the fact that unlike the case of the URM, it is not possible to determine from the program text, the amount of memory a program may consume (compare this for instance with the $\rho(P)$ which we have freely used in many programs). This is mainly due to the fact that the architecture of the modern machine allows for *indexing* registers and *indirect* addressing mechanisms. Suppose we add the following indirect addressing mechanisms to create a new and more "powerful" machine called "URM++".

opcode	instruction	semantics	Verbal description
4	CI(m,n)	$R_n := !R_{!R_m+1}$	Copy <i>indirectly</i> into R_n
			from (register referred to by) R_m
5	AI(m,n)	$R_{!R_n+1} := !R_m$	Assign <i>indirectly</i> the contents
			of register (referred to by) R_n
			the contents of R_m
6	AII(m,n)	$R_{!R_n+1} := !R_{!R_m+1}$	Assign <i>indirectly</i> the contents
			of register (referred to by) R_m to
			the register (referred to by) R_n

Notice the +1 in each of the subscripts to the registers. Since our registers have only positive indices, whereas register contents could be 0, we map the content k in a register to denote the register R_{k+1} .

- (a) Write a (non-terminating) URM++ program which starting from the empty memory map gradually fills up all the registers with non-zero values.
- (b) Prove that the function ρ is a partial recursive function.
- 6. (a) Give a Gödel numbering of URM++ programs.
 - (b) Show that there are primitive recursive functions which implement the indirect addressing instructions.
- 7. (a) Show that for any URM configuration, the contents of any register may be obtained by a primtive recursive function.
 - (b) Show that the function ρ , which for any URM program yields the maximum index of register used, is primitive recursive.
- 8. Prove that \mapsto is a primitive recursive function.