
Home Page JJ J I II
ILFP

Go Back Full Screen Close 1 of 314 Quit

Introduction to (Logic and Functional)
Programming

http://www.cse.iitd.ac.in/ s̃ak/courses/ilfp/2019-20/2019-20.index.html

S. Arun-Kumar
Department of Computer Science and Engineering

I. I. T. Delhi, Hauz Khas, New Delhi 110 016.

September 25, 2019

http://www.cse.iitd.ac.in/~sak
http://www.cse.iitd.ac.in/~sak/courses/ilfp/2019-20/2019-20.index.html

Home Page JJ J I II
ILFP

Go Back Full Screen Close 2 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 3 of 314 Quit

Contents

1 1: Introduction 7

2 2: Functional Programming 16

3 3: Standard ML Overview 24

4 4: Standard ML Computations 40

5 5: Standard ML Scope Rules 57

6 6: Sample Sort Programs 83

6.1 Insertion Sort . 84

6.2 Selection Sort . 87

7 7: Higher-order Functions 94

8 8: Datatypes 112

9 9: Information Hiding 125

10 10: Abstract Data Types to Modularity 135

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 4 of 314 Quit

11 11: Signatures, Structures & Functors 143

11.1 Axiomatic Specifications . 152

11.1.1 The Stack Datatype . 152

11.2 Closing Equational Specifications . 166

12 12: Example: Tautology Checking 183

13 13: Example: Tautology Checking (Contd) 190

14 14: The Lambda Calculus: Introduction 207

14.1 Motivation for λ . 208

14.2 The λ-abstraction . 211

15 15: The Pure Untyped Lambda Calculus: Basics 214

16 16: Notions of Reduction 228

17 17: Representing Data in the Untyped Lambda Calculus 241

18 18: Confluence Definitions 248

18.1 Why confluence? . 252

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 5 of 314 Quit

19 19: Confluence Characterizations 261

20 20: The Church-Rosser Property 270

21 21: An Applied λ-Calculus 278

22 22: Type Inferencing in FL 297

23 26 311

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 6 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 7 of 314 Quit

1. 1: Introduction

Introduction

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 8 of 314 Quit

About this course
This covers aspects of
1. Programming paradigms
2. Programming Languages
3. Compilers
4. Logic
5. Software engineering

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 9 of 314 Quit

Programming and Algorithms
• A computation is a sequence of transformations carried out mechani-

cally by means of a number of predefined rules of transformation on
finite discrete data.
•Computations are specified with the help of programs written in a pro-

gramming language.
•Algorithms studies specific classes of problems for which programs

may be written on some some universal machine.
• Programming is concerned with the logical aspects of program organi-

zation.
1. Draws on the study of algorithms to choose efficient data structures

and high-performance algorithms
2. Main purpose is to provide concepts and methods for writing pro-

grams correctly, legibly in a way that is easy to modify and reuse.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 10 of 314 Quit

Program Specification
•How do we specify what to expect from a program?
•How do we associate what we expect from a program with a precise

description of what the program computes?
•How can we ensure that the program is correct with respect to a given

specification?

These questions can be rigorously answered only by means of a formal
mathematical specification and by establishing a formal relationship be-
tween the specification and the program.

•Unfortunately, the state of art of these processes is such that they can be done
only for small programs.
•Without sufficient automation of formal reasoning methods these cannot be

done for huge industry scale programs.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 11 of 314 Quit

Programming languages History
• A continuous effort to abstract high-level concepts in order to escape

low-level details and idiosyncracies of particular machines.
– machine language (the use of mnemonics)
– assembly language (assemblers)
– FORTRAN (compilers)
– LISP (interpreters)
– Pascal (compiler on a virtual machine)
– PROLOG (Abstract machines)
– Smalltalk (OO with mutable objects)
– ML (Memory abstraction)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 12 of 314 Quit

Imperative Programming
•Most conventional programming languages (e.g. C, C++, Java)
• Evolved from the Von-Neumann architecture (machine, assembly,

FORTRAN)
• Principally rely on state changes (visible updation of memory) through

side-effects
• Far removed from mathematics (e.g. x = x+1).
•Not referentially transparent: the same function placed in different con-

texts behaves differently (side-effects on global variables, aliasing
problems etc.).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 13 of 314 Quit

Chronology of Programming Languages

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 14 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 15 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 16 of 314 Quit

2. 2: Functional Programming

Functional Programming

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 17 of 314 Quit

Functional Programming
• A program consists entirely of functions (some may depend on others previously defined). The

“main” program is also a function.
• The “main” function is given input values and the result of evaluating it

is the output.
•Most functional progrmaming languages are interactive.
• The notion of function in a pure functional language is the mathematical

notion of function.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 18 of 314 Quit

Imperative vs. Functional
• Imperative programs rely on “side-effects” and state updation. There

are no side-effects in “pure” functional programs.
• Side-effects in imperative programs are mainly due to assignment com-

mands (either direct or indirect). There is no assignment command in
pure functional languages.
•Most imperative programmers rely on iterative loops. There is no it-

eration mechanism in a pure functional program. Instead recursion is
used.
• Variables in imperative programs tend to change values over time.

There is no change in the values of variables in a pure functional pro-
gram. Variables are constants.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 19 of 314 Quit

Referential Transparency
Definition 2.1 An expression is referentially transparent if it can be re-
placed by its value in a program without changing the behaviour of the
program in any way.

In a pure functional language all functions are referentially transparent.
Hence
• programs are mathematically more tractable than imperative ones.
• compiler optimizations such as common sub-expression elimination,

code movement etc. can be incorporated without any static analysis.
• Any expression anywhere may be replaced by another expression

which has the same value.
In most imperative languages (because of assignment, and side-effects
to non-local variables) there is no (guarantee of) referential transparency.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 20 of 314 Quit

Higher-order functions & Modularity
Higher Order. Higher order functions characterise most functional pro-

gramming. It leads to compact and concise code.
Modularity. Modularity can be built into a pure functional language
Objected-orientedness. Object-oriented features require state updation

and can be obtained only by destroying referential transparency. So
a pure functional programming language cannot be object-oriented,
though it can be modular.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 21 of 314 Quit

Imperative features
Input/Output. All input-output and file-handling (esp. in the Von Neu-

mann framework) is inherently imperative.
Object-Orientation. Object oriented features require updation of state

and are hence better served by imperative features.

So most functional languages need to have certain imperative features.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 22 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 23 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 24 of 314 Quit

3. 3: Standard ML Overview

Standard ML Overview

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 25 of 314 Quit

SML: Overview
(Impure) Functional
Strongly and statically typed
Type inferencing
Parameterised Types
Parametric polymorphism
Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 26 of 314 Quit

SML: Functional
Based on the model of evaluating expressions as opposed to the model of
executing sequences of commands found in imperative languages.

Strongly and statically typed
Type inferencing
Parameterised Types
Parameterised Types
Parametric polymorphism
Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 27 of 314 Quit

SML: Strong Static Typing
Definition 3.1 A language is statically typed if every expression in the
language is assigned a type at compile-time.

Definition 3.2 A language is strongly typed if the language requires the
provision of a type-checker which ensures that no type errors will occur
at run-time.

Each expression in the ML language is assigned a type at compile-time
describing the possible set of values it can evaluate to, and no runtime
type errors occur.
(Impure) Functional

Type inferencing

Parameterised Types

Parameterised Types

Parametric polymorphism

Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 28 of 314 Quit

SML: Parameterised Types
ML allows the use of parameterised types which allows a single implemen-
tation to be applied to all structures which are instances of the parametric
type. For this purpose ML also has the notion of a type variable.

• Facilitates parametric polymorphism
•Reduces duplication of similar code and allows code reuse.

(Impure) Functional

Type inferencing

Parameterised Types

Parametric polymorphism

Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 29 of 314 Quit

SML: Type inferencing
Except in a few instances, ML is capable of deducing the types of identi-
fiers from the context. There is no need to declare every identifier before it is
used.
Type-inferencing also works on parametric and polymorphic types in such
a way that ML
• assigns the most general parametric polymorphic type to the expres-

sion at compile-time and
• ensures that each run-time value produced by the expression is an

appropriate instance of the polymorphic type assigned to it.
(Impure) Functional

Strongly and statically typed

Parameterised Types

Parametric polymorphism

Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 30 of 314 Quit

SML: Parametric Polymorphism
A function gets a polymorphic type when it can operate uniformly over
any value of any given type.

Example 3.3 One can define types of the form stack(’a) where ’a is
a type variable, for stacks of all types including stacks of complex user-
defined data structures and types.
The operations defined for stack(’a) work equally well on all instances
of the type.
(Impure) Functional

Strongly and statically typed

Type inferencing

Parameterised Types

Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 31 of 314 Quit

SML: Modularity
A state-of-the-art module system, based on the notions of structures
(containing the actual code), signatures (the type of structures) and
functors (creation of parameterised structures from one or more other
parametrised structures without the need for writing new code).
(Impure) Functional

Strongly and statically typed

Type inferencing

Parameterised Types

Parametric polymorphism

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 32 of 314 Quit

SML: Overview Summary 1
(Impure) Functional. Based on the model of evaluating expressions (as op-

posed to the model of executing sequences of commands found in impera-
tive languages)

Strongly and statically typed. Each expression in the language is as-
signed a type describing the possible set of values it can evaluate to,
and type checking at the time of compilation ensures that no runtime
type errors occur.

Type inferencing. Except in a few instances, ML is capable of deducing
the types of identifiers from the context. There is no need to declare every
identifier before it is used.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 33 of 314 Quit

SML: Overview Summary 2
Parametric polymorphism. A function gets a polymorphic type when it

can operate uniformly over any value of any given type.
Modularity. A state-of-the-art module system, based on the notions of

structures (containing the actual code), signatures (the type of struc-
tures) and functors (parametrized structures).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 34 of 314 Quit

Functional Pseudocode for writing algorithms

An algorithm will be written in a mixture of English and standard mathematical notation (usually called
pseudo-code). Usually,

• algorithms written in a natural language are often ambiguous

• mathematical notation is not ambiguous, but still cannot be understood by machine

• algorithms written by us use various mathematical properties. We know them, but the machine
doesn’t.

• Even mathematical notation is often not quite precise and certain intermediate objects or steps are left
to the understanding of the reader (e.g. the use of “· · · ” and “...”).

However

• Functional pseudo-code avoids most such implicit assumptions and attempts to make definitions more
precise (e.g. the use of induction).

• Functional pseudo-code is still concise though more formal than standard mathematical notation.

• However functional pseudo-code is not formal enough to be termed a programming language (e.g. it
does not satisfy strict grammatical rules and neither is it linear as most formal languages are).

• But functional pseudo-code is precise enough to analyse the correctness and complexity of an algorithm,
whereas standard mathematical notation may mask many important details.

•We may freely borrow from the notation of the functional programming language to express various
data-structuring features.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 35 of 314 Quit

An Example

Suppose Real.Math.sqrtwere not available to us!

isqrt(n) of a non-negative integer n is the integer k ≥ 0 such that k2
≤ n < (k + 1)2

That is,

isqrt(n) =

{
⊥ if n < 0
k otherwise

where
0 ≤ k2

≤ n < (k + 1)2

This value of k is unique!

0 ≤ k2
≤ n < (k + 1)2

⇒ 0 ≤ k ≤
√

n < k + 1
⇒ 0 ≤ k ≤ n

Strategy. Use this fact to close in on the value of k. Start with the interval [l,u] = [0,n] and try to shrink it
till it collapses to the interval [k, k] which contains a single value.

If n = 0 then isqrt(n) = 0.
Otherwise with [l,u] = [0,n] and

l2 ≤ n < u2

use one or both of the following to shrink the interval [l,u].

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 36 of 314 Quit

• if (l + 1)2
≤ n then try [l + 1,u]

otherwise l2 ≤ n < (l + 1)2 and k = l

• if u2 > n then try [l,u − 1]
otherwise (u − 1)2

≤ n < u2 and k = u − 1

isqrt(n) =

⊥ if n < 0
0 if n = 0
shrink(n, 0,n) if n > 0

where

shrink(n, l,u) =

l if l = u
shrink(n, l + 1,u) if l < u and (l + 1)2

≤ n
l if l < u and (l + 1)2 > n
shrink(n, l,u − 1) if l < u and u2 > n
u − 1 if l < u and (u − 1)2

≤ n
⊥ if l > u

In the above algorithm the function isqrt uses the function shrink which is recursively defined. Beginning
with an initial closed interval [0,n], shrink reduces the size of the interval by 1 i each recursive call. The
complexity of the algorithm is therefore O(n) where n is the input to the function isqrt.

A better algorithm would be as follows. Here the interval is “halved” with each recursive evaluation of
shrink

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 37 of 314 Quit

isqrt(n) =

⊥ if n < 0
0 if n = 0
shrink(n, 0,n) if n > 0

where

shrink(n, l,u) =

l if l = u or u = l + 1
shrink(n,m,u) if l < u and m2

≤ n
shrink(n, l,m) if l < u and m2 > n
⊥ if l > u

where

m = b(l + u)/2c

Another Example

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 38 of 314 Quit

(* Program f o r generat ing primes upto some number *)

fun primeWRT (m, []) = t rue
| primeWRT (m, h : : t) =

i f m mod h = 0 then f a l s e
e l s e primeWRT (m, t)

fun generateFrom (P , m, n) =
i f m > n then P
e l s e i f primeWRT (m, P)
then (

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)

fun primesUpto n = i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e generateFrom ([2] , 3 , n) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 39 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 40 of 314 Quit

4. 4: Standard ML Computations

Standard ML Computations

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 41 of 314 Quit

Computations: Simple
For most simple expressions it is
• left to right, and
• top to bottom

except when

• presence of brackets
• precedence of operators

determine otherwise.

Hence

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 42 of 314 Quit

Simple computations

4 + 6 − (4 + 6) div 2
= 10 − (4 + 6) div 2
= 10 − 10 div 2
= 10 − 5
= 5

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 43 of 314 Quit

Computations: Composition

f (x) = x2 + 1
g(x) = 3 ∗ x + 2

Then for any value say a = 4

f (g(a))
= f (3 ∗ 4 + 2)
= f (14)
= 142 + 1
= 196 + 1
= 197

This is the Leftmost-innermost computation rule.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 44 of 314 Quit

Composition: Alternative

f (x) = x2 + 1
g(x) = 3 ∗ x + 2

Why not the following?
f (g(a))

= g(4)2 + 1
= (3 ∗ 4 + 2)2 + 1
= (12 + 2)2 + 1
= 142 + 1
= 196 + 1
= 197

This is the Leftmost-outermost computation rule.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 45 of 314 Quit

Compositions: Compare

f (x) = x2 + 1
g(x) = 3 ∗ x + 2

Leftmost-innermost computation Leftmost-outermost computation
f (g(a)) f (g(a))

= f (3 ∗ 4 + 2) = g(4)2 + 1
= f (14) = (3 ∗ 4 + 2)2 + 1

= (12 + 2)2 + 1
= 142 + 1 = 142 + 1
= 196 + 1 = 196 + 1
= 197 = 197

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 46 of 314 Quit

Compositions: Compare
Question 1: Which is more correct? Why?
Question 2: Which is easier to implement?
Question 3: Which is more efficient?

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 47 of 314 Quit

Computations in SML: Composition
A computation of f (g(a)) proceeds thus:
• g(a) is evaluated to some value, say b
• f (b) is next evaluated

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 48 of 314 Quit

Recursion

f actL(n) =

{
1 if n ≤ 0
f actL(n − 1) ∗ n otherwise

fun factL n = if n<=0 then 1 else factL (n-1) * n

f actR(n) =

{
1 if n ≤ 0
n ∗ f actR(n − 1) otherwise

fun factR n = if n<=0 then 1 else n * factR (n-1)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 49 of 314 Quit

Recursion: Left

f actL(4)
= (f actL(4 − 1) ∗ 4)
= (f actL(3) ∗ 4)
= ((f actL(3 − 1) ∗ 3) ∗ 4)
= ((f actL(2) ∗ 3) ∗ 4)
= (((f actL(2 − 1) ∗ 2) ∗ 3) ∗ 4)
= · · ·

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 50 of 314 Quit

Recursion: Right

f actR(4)
= (4 ∗ f actR(4 − 1))
= (4 ∗ f actR(3))
= (4 ∗ (3 ∗ f actR(3 − 1)))
= (4 ∗ (3 ∗ f actR(2)))
= (4 ∗ (3 ∗ (2 ∗ f actR(2 − 1))))
= · · ·

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 51 of 314 Quit

Factorial: Tail Recursion 1
• The recursive call precedes the multiplication operation. Change it!
•Define a state variable p which contains the product of all the values

that one must remember
•Reorder the computation so that the computation of p is performed

before the recursive call.
• For that redefine the function in terms of p.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 52 of 314 Quit

Factorial: Tail Recursion 2
f actL2(n) =

{
1 if n ≤ 0
f actL tr(n, 1) otherwise

where

f actL tr(n, p) =

{
p if n ≤ 0
f actL tr(n − 1,np) otherwise

fun factL2 n = if n <= 0 then 1

else let fun factL_tr (n, p) =

if n <= 0 then p

else factL_tr (n-1, n*p)

in factL_tr(n, 1)

end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 53 of 314 Quit

A Tail-Recursive Computation

f actL2(4)
; f actL tr(4, 1)
; f actL tr(3, 4)
; f actL tr(2, 12)
; f actL tr(1, 24)
; f actL tr(0, 24)
; 24

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 54 of 314 Quit

Factorial: Issues
Correctness : Prove (by induction on n) that for all n ≥ 0, f actL2(n) = n!.
Termination : Prove by induction on n that every computation of f actL2

terminates.
Space complexity : Prove that S f actL2(n) = O(1) (as against S f actL(n) ∝

n).
Time complexity : Prove that T f actL2(n) = O(n)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 55 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 56 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 57 of 314 Quit

5. 5: Standard ML Scope Rules

Standard ML Scope Rules

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 58 of 314 Quit

(* Program f o r generat ing primes upto some number *)

fun primeWRT (m, []) = t rue
| primeWRT (m, h : : t) =

i f m mod h = 0 then f a l s e
e l s e primeWRT (m, t)

fun generateFrom (P , m, n) =
i f m > n then P
e l s e i f primeWRT (m, P)
then (

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)

fun primesUpto n = i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e generateFrom ([2] , 3 , n) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 59 of 314 Quit

(* Program f o r generat ing primes upto some number *)
l o c a l

fun primeWRT (m, []) = t rue
| primeWRT (m, h : : t) = i f m mod h = 0 then f a l s e

e l s e primeWRT (m, t)

fun generateFrom (P , m, n) =
i f m > n then P
e l s e i f primeWRT (m, P)
then (p r i n t (I n t . t o S t r i n g (m) ˆ " is a prime\n") ;

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)

in fun primesUpto n =
i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e generateFrom ([2] , 3 , n)

end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 60 of 314 Quit

(* Program f o r generat ing primes upto some number *)
l o c a l

l o c a l
fun primeWRT (m, []) = t rue
| primeWRT (m, h : : t) = i f m mod h = 0 then f a l s e

e l s e primeWRT (m, t)
in fun generateFrom (P , m, n) =

i f m > n then P
e l s e i f primeWRT (m, P)
then (p r i n t (I n t . t o S t r i n g (m) ˆ " is a prime\n") ;

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)
end

in fun primesUpto n =
i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e generateFrom ([2] , 3 , n)

end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 61 of 314 Quit

(* Program f o r generat ing primes upto some number *)
fun primesUpto n =

i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e l e t fun primeWRT (m, []) = t rue

| primeWRT (m, h : : t) =
i f m mod h = 0 then f a l s e
e l s e primeWRT (m, t) ;

fun generateFrom (P , m, n) =
i f m > n then P
e l s e i f primeWRT (m, P)
then (p r i n t (I n t . t o S t r i n g (m) ˆ " is a prime\n") ;

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)
in generateFrom ([2] , 3 , n)
end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 62 of 314 Quit

(* Program f o r generat ing primes upto some number *)
fun primesUpto n =

i f n < 2 then []
e l s e i f n=2 then [2]
e l s e i f (n mod 2 = 0) then primesUpto (n−1)
e l s e l e t fun generateFrom (P , m, n) =

l e t fun primeWRT (m, []) = t rue
| primeWRT (m, h : : t) =

i f m mod h = 0 then f a l s e
e l s e primeWRT (m, t)

in i f m > n then P
e l s e i f primeWRT (m, P)
then (p r i n t (I n t . t o S t r i n g (m) ˆ " is a prime\n") ;

generateFrom ((m: : P) , m+2 , n)
)

e l s e generateFrom (P , m+2 , n)
end

in generateFrom ([2] , 3 , n)
end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 63 of 314 Quit

Disjoint Scopes
let

in

end

val x = 10;
fun fun1 y =

let
...

in
...

end

fun fun2 z =
let ...
in ...
end

fun1 (fun2 x)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 64 of 314 Quit

Nested Scopes
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 65 of 314 Quit

Overlapping Scopes
let

in

end

val x = 10;
fun fun1 y =

...

...

...

...

fun1 (fun2 x)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 66 of 314 Quit

Spannning
let

in

end

val x = 10;
fun fun1 y =

...

...

fun fun2 z =

...

...

fun1 (fun2 x)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 67 of 314 Quit

Scope & Names
• A name may occur either as being defined or as a use of a previously

defined name
• The same name may be used to refer to different objects.
• The use of a name refers to the textually most recent definition in the

innermost enclosing scope

diagram

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 68 of 314 Quit

Names & References: 0
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 69 of 314 Quit

Names & References: 1
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 70 of 314 Quit

Names & References: 2
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 71 of 314 Quit

Names & References: 3
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 72 of 314 Quit

Names & References: 4
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 73 of 314 Quit

Names & References: 5
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 74 of 314 Quit

Names & References: 6
let

in

end

fun1 x

val x = 10;
fun fun1 y =

let

val x = 15

in
x + y

end

val z = 5;

* z

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 75 of 314 Quit

Names & References: 7
let

end

val x = 10;
fun fun1 y =

let
...

in
...

end

fun fun2 z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 76 of 314 Quit

Names & References: 8
let

end

val x = 10;
fun fun1 y =

let
...

in
...

end

fun fun2 z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 77 of 314 Quit

Names & References: 9
let

end

val x = 10;
fun fun1 y =

let
...

in
...

end

fun fun2 z =
let ...
in ...
end

fun1 (fun2 x)

val x = x − 5;

in

Back to Scope & Names

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 78 of 314 Quit

Definition of Names
Definitions are of the form
qualifier name . . . = body

• val name =
• fun name (argnames) =

• local de f initions
in de f inition
end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 79 of 314 Quit

Use of Names
Names are used in expressions.
Expressions may occur

• by themselves – to be evaluated
• as the body of a definition
• as the body of a let-expression
let de f initions
in expression
end

use of local

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 80 of 314 Quit

Scope & local

end

local
fun fun1 y =

fun fun2 z =

in
fun fun3 x =

...

fun2 ...
fun1 ...

...

...
fun1

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 81 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 82 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 83 of 314 Quit

6. 6: Sample Sort Programs

Sample Sort Programs

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 84 of 314 Quit

6.1. Insertion Sort

Let’s consider the development of a program to sort a list using the insertion sort algorithm, which you
must have all studied before. Notice the use of induction (basis, hypothesis and induction step) inherent
in this algorithm.

Problem How do you sort a list of elements by insertion?

For the purpose of development of this algorithm we assume that we are given

input. A list of elements of some unspecified type such that there exists a pre-defined total ordering
relation R on the type of the elements that make up the list.

Our sort function will take this total ordering and the list of elements as parameters.

Strategy. The following cases are to be considered.

Basis. The empty list (and the one-element list) are already sorted.

Induction hypothesis. Assume a list of length m ≥ 0 can be sorted.

Induction step. Given a list of n = m + 1 elements,

1. sort the tail of the list (consisting of n − 1 = m elements). By the induction hypothesis, we know
how to do this!

2. insert the first element into this sorted list at an appropriate position to obtain a sorted list of length n.

Subproblem How does one insert an element x into a sorted list L of length m ≥ 0 to obtain a sorted list
of length m + 1?

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 85 of 314 Quit

Strategy. The following cases need to be considered.

Basis. If the given sorted list L is empty, then [x] is the resulting sorted list.

Induction hypothesis. Assume it is possible to insert x into a sorted list of length k ≥ 0 to obtain a sorted
list of length k + 1 for k < m.

Induction step. Assume given a sorted list L of length m > 0. Since m > 0, L is non-empty and hence
L = h :: t where h is the head of the list and t is the tail. Further t is a list of length m − 1.

1. Compute R(x, h).
Case R(x, h) = true. Then x :: L is the required sorted list of length m + 1.
Case R(x, h) = f alse. Then insert x into t so as to produce a sorted list t′ of length m (this is possible

by the induction hypothesis). Then h :: t′ is the required sorted list of length m + 1.

Here is the strategy implemented in functional pseudocode.

insertSort R L =

{
[] if L ∼ []
insert R (insertSort R t) h elseif L ∼ h :: t

where

insert R L x =

[x] if L ∼ []
x :: L elseif L ∼ h :: t ∧ R(x, h)
h :: (insert R t x) else

We use the notation ∼ to indicate “structural pattern-match” rather than equality. Hence in our functioal
pseudo-code, “L ∼ h :: t” denotes the statement “L is of the form h :: t where h is the head of the list L and t is
the tail of the list L”. The usual static scope rules for names apply.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 86 of 314 Quit

(*−−−−−−−−−−−−−−−−−−−−−−−−−−−− INSERTION SORT −−−−−−−−−−−−−−−−−−−−−− *)
(* R i s assumed to be a t o t a l ordering r e l a t i o n *)
fun i n s e r t S o r t R [] = []
| i n s e r t S o r t R (h : : t) =

l e t fun i n s e r t R [] x = [x]
| i n s e r t R (h : : t) x =

i f R (x , h) then x : : (h : : t)
e l s e h : : (i n s e r t R t x)

val r e s t = i n s e r t S o r t R t
in i n s e r t R r e s t h
end ;

(* Test
val i = i n s e r t S o r t ;
i (op <) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
i (op <=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
i (op >) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
i (op >=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 87 of 314 Quit

6.2. Selection Sort

Strategy.

Basis. The empty list and the one-element list are already sorted.

Induction hypothesis. Assume a list of length m ≥ 0 can be sorted.

Induction step. Given a list of n > 1 elements,

1. Find and remove the “R-minimal” element from the list of length n > 1.
2. Sort the rest of the list (which is of length n − 1).
3. Prepend the list with the “R-minimal” element.

selSort R L =

{
L if L ∼ [] ∨ L ∼ [h]
m :: (selSort R M) else

where
(m,M) = f indMin R L

where

f indMin R L =

⊥ if L ∼ []
(h, []) elseif L ∼ [h]
(m,L′) elseif L ∼ h :: t

where

(m,L′) =

{
(m, h :: t′) if (m, t′) = (f indMin R t) ∧ R(m, h)
(h, t) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 88 of 314 Quit

(* −−−−−−−−−−−−−−−−−−−−−−−−−−− SELECTION SORT −−−−−−−−−−−−−−−−−−−−−−−−− *)
(* R i s assumed to be a t o t a l ordering r e l a t i o n *)
fun s e l S o r t R [] = []
| s e l S o r t R [h] = [h]
| s e l S o r t R (L as h : : t) =

l e t except ion emptyList ;
(* findMin f i n d s the minimum element in the l i s t and removes i t *)
fun findMin R [] = r a i s e emptyList
| findMin R [h] = (h , [])
| findMin R (h : : t) =

l e t val (m, t t) = findMin R t ;
in i f R(m, h) then (m, h : : t t) e l s e (h , t)
end ;

val (m, LL) = findMin R L
in m: : (s e l S o r t R LL)
end ;

(* Test
val s = s e l S o r t ;
s (op <) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
s (op <=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
s (op >) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
s (op >=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 89 of 314 Quit

(* −−−−−−−−−−−−−−−−−−−−−−−−−−− BUBBLE SORT −−−−−−−−−−−−−−−−−−−−−−−−− *)
l o c a l

fun bubble R [] = []
| bubble R [h] = [h]
| bubble R (f : : s : : t) = (* can ’ t bubble without a t l e a s t 2 elements *)

i f R (f , s) then f : : (bubble R (s : : t))
e l s e s : : (bubble R (f : : t))

fun unsorted R [] = f a l s e
| unsorted R [h] = f a l s e
| unsorted R (f : : s : : t) =

i f (f=s) then (unsorted R (s : : t))
e l s e i f R (f , s) then (unsorted R (s : : t))
e l s e t rue

in fun bubbleSort R L =

i f (unsorted R L) then (bubbleSort R (bubble R L))
e l s e L

end

(* Test
val b = bubbleSort ;
b (op <) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
b (op <=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
b (op >) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;
b (op >=) [˜ 1 2 , ˜ 2 4 , ˜ 1 2 , 0 , 123 , 45 , 1 , 20 , 0 , ˜ 2 4] ;

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 90 of 314 Quit

(* −−−−−−−−−−−−−−−−−−−−−−−− MERGE SORT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− *)
fun mergeSort R [] = []
| mergeSort R [h] = [h]
| mergeSort R L = (* can ’ t s p l i t a l i s t unless i t has > 1 element *)

l e t fun s p l i t [] = ([] , [])
| s p l i t [h] = ([h] , [])
| s p l i t (h1 : : h2 : : t) =

l e t val (l e f t , r i g h t) = s p l i t t ;
in (h1 : : l e f t , h2 : : r i g h t)

end ;
val (l e f t , r i g h t) = s p l i t L ;
fun merge (R , [] , []) = []
| merge (R , [] , (L2 as h2 : : t 2)) = L2
| merge (R , (L1 as h1 : : t 1) , []) = L1
| merge (R , (L1 as h1 : : t 1) , (L2 as h2 : : t 2)) =

i f R(h1 , h2) then h1 : : (merge (R , t1 , L2))
e l s e h2 : : (merge (R , L1 , t2)) ;

val s o r t e d L e f t = mergeSort R l e f t ;
val sor tedRight = mergeSort R r i g h t ;

in merge (R , sor tedLef t , sor tedRight)
end ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 91 of 314 Quit

(* −−−−−−−−−−−−−−−−−−−−−−−−−−−−− QUICK SORT −−−−−−−−−−−−−−−−−−−−−−−−−− *)
fun quickSort R [] = []
| quickSort R (h : : t) =

l e t fun part R p [] = ([] , [])
| part R p (f : : r) =

l e t val (l e s s e r , g r e a t e r) = part R p r
in i f R (f , p) then (f : : l e s s e r , g r e a t e r)

e l s e (l e s s e r , f : : g r e a t e r)
end

val (l e f t , r i g h t) = part R h t ;
val s o r t e d L e f t = quickSort R l e f t ;
val sor tedRight = quickSort R r i g h t ;

in s o r t e d L e f t @ (h : : sor tedRight)
end ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 92 of 314 Quit

(* The l e x i c o g r a p h i c ordering on s t r i n g s *)
fun l e x l t (s , t) =

l e t val Ls = explode (s) ;
val Lt = explode (t) ;
fun l s t l e x l t (, []) = f a l s e
| l s t l e x l t ([] , (b : char) : :M) = t rue
| l s t l e x l t (a : : L , b : :M) =

i f (a < b) then true
e l s e i f (a = b) then l s t l e x l t (L , M)

e l s e f a l s e
;

in l s t l e x l t (Ls , Lt)
end

fun l e x l e q (s , t) = (s = t) o r e l s e l e x l t (s , t)

fun l e x g t (s , t) = l e x l t (t , s)

fun lexgeq (s , t) = (s = t) o r e l s e l e x g t (s , t)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 93 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 94 of 314 Quit

7. 7: Higher-order Functions

Higher-order Functions

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 95 of 314 Quit

Functions in SML
1. All functions are unary.
• Parameterless functions take the empty tuple as argument
• Functions with a single parameter take a single 1-tuple as argument.
• Functions of m parameters take a single m-tuple as argument.

2. Functions are first-class objects. Any function may be treated as a
value (except when ...). So we can have
• functions on data structures and
• data structures of functions

Example 7.1 Creating a list of Functions

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 96 of 314 Quit

Functions: Mathematics & Programming
Functions in programming differ from mathematical functions in at least
two fundamental ways.
1. There is no notion of function equality in programming

Example 7.2 f actL2(n) ?
= factL (n) cannot be checked by a program.

2. Mathematically equivalent definitions are not necessarily program equiv-
alent.

Example 7.3

f L(n) =

{
1 if n ≤ 0
f L(n − 1) ∗ n else f L′(n) =

{
1 if n ≤ 0
f L′(n + 1)/(n + 1) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 97 of 314 Quit

Lists
An ′a list L
• is an ordered sequence of elements all of the same type ′a,
•may be empty (called nil and denoted either by [] or nil).
• only the first element (called the head) of the list is immediately acces-

sible through the unary operation hd.
• the tail of the list for a nonempty list is the list without the head and is

obtained by the unary operation tl
• There is an operation (called cons denoted by the infix operation ::) for

prepending an element of type ′a to a list of type ′a list.
• L satisfies the following conditional equation.

L , nil⇒ L = (hd L) :: (tl L) (1)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 98 of 314 Quit

A Progression of Functions
1. Creating a list of Functions
2. Arithmetic Progressions
3. Geometric Progressions

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 99 of 314 Quit

List of Functions: 1
Suppose we want a long list of functions to be generated

[incrby1, incrby2, incrby3, . . . , incrby1000]

where the function incrbyk is a unary function that increments a given
input value by k. Here is one way to generate the list

fun incrby x = fn y => (x+y);

fun listincrby n = if n <= 0 then []
else listincrby (n-1)@[(incrby n)]

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 100 of 314 Quit

List of Functions: 2
A more efficient way of doing it would use “::” instead of “@”.

local

fun listincrby_tr (m, k, L) =
if k >= m then L

else listincrby_tr (m, k+1, (incrby (m-k))::L)

in fun listincrby’ n =

if n <= 0 then []

else listincrby_tr (n, 0, [])

end

fun applyl [] x = []

| applyl (h::t) x = (h x)::(applyl t x)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 101 of 314 Quit

Higher-order Functions on Lists
1. map applies a unary function uniformly to all elements of a list and yields

the list of result values i.e.

map f [a0, . . . , an−1] = [f (a0), . . . , f (an−1)]

fun map f [] = []

| map f (h::t) = (f h)::(map f t)

2. filter “filters” out all elements of a list that do not satisfy a property
i.e. it produces an (ordered) sub-list consisting of only those elements
in the list for which the property holds

More Higher-order Functions on Lists

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 102 of 314 Quit

Arithmetic Progressions: 1

AP1(a, d,n) =

{
[] if n ≤ 0
a :: AP1(a + d, d,n − 1) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 103 of 314 Quit

Geometric Progressions: 1
GP1(a, d,n) =

{
[] if n ≤ 0
a :: GP1(ad, d,n − 1) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 104 of 314 Quit

Arithmetic-Geometric Progressions: 1
AGP1 bop (a, d,n) =

{
[] if n ≤ 0
a :: (AGP1 bop (bop(a, d), d,n − 1)) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 105 of 314 Quit

Arithmetic Progressions: 2

AP2(a, d,n) =

{
[] if n ≤ 0
AP2 tr(a, d,n, []) else

where

AP2 tr(a, d,n,L) =

{
L if n ≤ 0
AP2 tr(a, d,n − 1, (a + d ∗ (n − 1)) :: L) else

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 106 of 314 Quit

Geometric Progressions: 2

GP2(a, r,n) =

{
[] if n ≤ 0
GP2 tr(a, r,n, []) else

where

GP2 tr(a, r,n,L) =

{
L if n ≤ 0
GP2 tr(a, d,n − 1, (a.d(n−1)) :: L) else

But powering is both an expensive and a wasteful operation.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 107 of 314 Quit

More Progressions
For any binary operation bop define

curry2 bop = fn x => fn y => bop(x, y)

Then incrby = curry2 op+ and multby = curry2 op*

AP3(a, d,n) =

{
[] if n ≤ 0
a :: (map(curry2 op+ d) AP3(a, d,n − 1)) else

GP3(a, d,n) =

{
[] if n ≤ 0
a :: (map (curry2 op∗ d) AP3(a, d,n − 1)) else

may be generalized to

AGP4 bop (a, d,n) =

{
[] if n ≤ 0
a :: (map (curry2 bop d)(AGP4 bop (a, d,n − 1))) else

AP4 = AGP4 op+
GP4 = AGP4 op∗

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 108 of 314 Quit

Harmonic Progressions
A harmonic progression is one whose elements are reciprocals of the
elements of an arithmetic progression.

HP4(a, d,n) = map reci AP4(a, d,n)

where reci x = 1.0/(real x) for each integer x.
We may sum the elements of all the progressions by defining

sumint = f oldl op + 0
sumreal = f oldl op + 0.0

AS4(a, d,n) = sumint(AP4(a, d,n))
GS4(a, d,n) = sumint(GP4(a, d,n))
HS4(a, d,n) = sumreal(HP4(a, d,n))

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 109 of 314 Quit

More Higher-order Functions on Lists
Higher-order Functions on Lists

1. foldl applies a binary function to all elements of a list from left to right
starting from an initial element e i.e.

f oldl f e [a0, . . . , an−1] = f (an−1, f (an−2, · · · f (a0, e) · · ·))

fun foldl f e [] = e

| foldl f e (h::t) = foldl f (f(h, e)) t

2. foldr operates from right to left starting from an initial element e i.e.

f oldr f e [a0, . . . , an−1] = f (a0, f (a1, · · · f (an−1, e) · · ·))

fun foldr f e [] = e

| foldl f e (h::t) = f (h, foldr f e t)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 110 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 111 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 112 of 314 Quit

8. 8: Datatypes

Datatypes

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 113 of 314 Quit

Primitive Datatypes
The primitive data types of ML are
Booleans: the type bool defined by the structure Bool
Integers: the type int defined by the structure Int
Reals: the type real defined by the structure Real with a sub-structure

Math of useful constants (e.g. Real.Math.pi) and functions (e.g.
Real.Math.sin).

Characters: the type char defined by the structure Char
Strings: the type string defined by the structure String

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 114 of 314 Quit

Structured Data
For any data strucure we require the following
Constructors. which permit the creation and extension of the structure.
Destructors or Deconstructors. which permit the breaking up of a struc-

ture into its component parts.
Defining Equation. Constructors may be used to reconstruct a data structure

pulled apart by its destructors.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 115 of 314 Quit

Tuples and Records
Elements of cartesian products of (different or same) types defined by
grouping.
Tuples. Records with no field names for the components.

Defining Equation. t = ((#1 t), (#2 t),. . . (#n t))

Records. Tuples with field names for the components. For any record r
with field names fn1, ..., fnm we have

Defining Equation. r = {(#fn1 r), (#fn2 r), ..., (#fnm r)}

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 116 of 314 Quit

The List Datatype
A recursively defined datatype conforming to the following ML datatype
definition

datatype ’ a l i s t = n i l
| : : o f ’ a * ’ a l i s t −> ’ a l i s t

i n f i x : :

Constructors. nil and ::
Destructors. hd and tl

Defining Equation. L = nil ∨ L = (hd L)::(tl L)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 117 of 314 Quit

The Option Datatype
datatype ’ a op t ion = NONE | SOME of ’ a op t ion

Constructors. NONE, SOME
Destructors. valOf

Defining Equation. O = NONE ∨ O = SOME (valOf O)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 118 of 314 Quit

The Binary Tree Datatype
A recursive user-defined datatype.

datatype ’ a b i n t r e e = Empty | Node of ’ a * ’ a b i n t r e e * ’ a b i n t r e e

Constructors. Empty, Node
Destructors. root, leftsubtree, rightsubstree

Defining Equation. T = Empty ∨ T = Node (root(T), leftsubtree(T),
rightsubtree(T))

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 119 of 314 Quit

(* The data type binary t r e e *)

datatype ’ a b i n t r e e =

Empty |

Node of ’ a * ’ a b i n t r e e * ’ a b i n t r e e

except ion Empty binary tree

fun isEmpty Empty = t rue
| isEmpty = f a l s e

fun subtrees Empty = r a i s e Empty binary tree
| subt rees (Node(N, Lst , Rst)) = (Lst , Rst)

fun root Empty = r a i s e Empty binary tree
| root (Node(N, ,)) = N

fun l e f t s u b t r e e Empty = r a i s e Empty binary tree
| l e f t s u b t r e e (Node(, Lst ,)) = Lst

fun r i g h t s u b t r e e Empty = r a i s e Empty binary tree
| r i g h t s u b t r e e (Node(, , Rst)) = Rst

(* Checking whether a given binary t r e e i s balanced *)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 120 of 314 Quit

fun height Empty = 0
| height (Node(N, Lst , Rst)) =

1+ I n t . max (height (Lst) , height (Rst))

fun isBalanced Empty = t rue
| i sBalanced (Node(N, Lst , Rst)) =

(abs (height (Lst) − height (Rst)) <= 1) andalso
isBalanced (Lst) andalso isBalanced (Rst)

fun s i z e Empty = 0
| s i z e (Node(N, Lst , Rst)) = 1+ s i z e (Lst)+ s i z e (Rst)

(* Here i s a s i m p l i s t i c d e f i n i t i o n of preorder t r a v e r s a l *)
fun preorder1 Empty = n i l
| preorder1 (Node(N, Lst , Rst)) =

[N] @ preorder1 (Lst) @ preorder1 (Rst)

(* The above d e f i n i t i o n though c o r r e c t i s i n e f f i c i e n t because i t has
complexity c l o s e r to n ˆ2 s i n c e the append funct ion i t s e l f i s l i n e a r in
the length of the l i s t . We would l i k e an algorithm t h a t i s l i n e a r in the
number of nodes of the t r e e . So here i s a new one , which uses an i t e r a t i v e
a u x i l i a r y funct ion t h a t s t o r e s the preorder t r a v e r s a l of the r i g h t subtree
and then gradual ly a t t a c h e s the preorder t r a v e r s a l of the l e f t subtree
and f i n a l l y a t t a c h e s the root as the head of the l i s t .

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 121 of 314 Quit

l o c a l fun pre (Empty , L l i s t) = L l i s t
| pre (Node (N, Lst , Rst) , L l i s t) =

l e t val Ml is t = pre (Rst , L l i s t)
val N l i s t = pre (Lst , Ml is t)

in N: : N l i s t
end

in fun preorder2 T = pre (T , [])
end

val preorder = preorder2

(* S i m i l a r l y l e t ’ s do inorder and postorder t r a v e r s a l *)
fun inorder1 Empty = n i l
| inorder1 (Node(N, Lst , Rst)) =

inorder1 (Lst) @ [N] @ inorder1 (Rst)

l o c a l fun ino (Empty , L l i s t) = L l i s t
| ino (Node (N, Lst , Rst) , L l i s t) =

l e t val Ml is t = ino (Rst , L l i s t)
val N l i s t = ino (Lst , N: : Ml is t)

in N l i s t
end

in fun inorder2 T = ino (T , [])
end

val inorder = inorder2

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 122 of 314 Quit

fun postorder1 Empty = n i l
| postorder1 (Node (N, Lst , Rst)) =

postorder1 (Lst) @ postorder1 (Rst) @ [N]

l o c a l fun post (Empty , L l i s t) = L l i s t
| post (Node (N, Lst , Rst) , L l i s t) =

l e t val Ml is t = post (Rst , N: : L l i s t)
val N l i s t = post (Lst , Ml i s t)

in N l i s t
end

in fun postorder2 T = post (T , [])
end

val postorder = postorder2

(* A map funct ion f o r binary t r e e s *)

fun BTmap f =

l e t fun BTM Empty = Empty
| BTM (Node(N, Lst , Rst)) =

Node ((f N) , BTM (Lst) , BTM (Rst))
in BTM
end

(* Example i n t e g e r binary t r e e : Notice t h a t 2 has an empty l e f t subtree
and 5 has an empty r i g h t subtree .

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 123 of 314 Quit

1
/ \

/ \

2 3
\ / \

4 5 7
/

6

*)
val t7 = Node (7 , Empty , Empty) ;
val t6 = Node (6 , Empty , Empty) ;
val t4 = Node (4 , Empty , Empty) ;
val t2 = Node (2 , Empty , t4) ;
val t5 = Node (5 , t6 , Empty) ;
val t3 = Node (3 , t5 , t 7) ;
val t1 = Node (1 , t2 , t 3) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 124 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 125 of 314 Quit

9. 9: Information Hiding

Information Hiding

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 126 of 314 Quit

Datatype: Constructors & Destructors
1. The Defining Equations require for each data type a relation between

its constructors and destructors.
2. The data type completely reveals its structure through the constructors
3. Even if there are no destructors defined, the structure could be broken

down using pattern-matching.

1. Information Hiding: Separate Compilation
2. Information Hiding: Abstraction

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 127 of 314 Quit

Information Hiding: Separate Compilation
Information hiding is useful for many reasons
Separate Compilation. Different modules may be compiled separately

and
1. a module is loaded only when required by the user program
2. module implementations may be changed, separately compiled and

stored. As long as the interface to the user remains unchanged the
user programs will exhibit no change in behaviour.

3. Many different implementations may be provided for the same pack-
age specification, allowing a choice of implementations to the user.

Abstraction.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 128 of 314 Quit

Information Hiding: Abstraction
Information hiding is useful for many reasons
Separate Compilation.
Abstraction.

1. Requires that the structure of the underlying data should be hidden
from user, so that it can be changed whenever found necessary.

2. Reduces clutter in the user code and user code may be read and
understood clearly without being distracted by unnecessary details
that are not essential for functionality of the user’s code.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 129 of 314 Quit

Abstract Data Types
1. In a datatype definition the constructors of the data type and the struc-

ture of the data type are revealed.
2. It is not necessary to program any destructors because of the availabil-

ity of excellent pattern-matching facilites.
3. A datatype may be declared abstract, so that absolutely no informa-

tion about its internal structure is revealed and the only access to its
components is through its interface.

4. Without destructor functions available in the interface, no inkling of the
components of the structure are made available.

bintree.sml vs. abstype-bintree.sml

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 130 of 314 Quit

abstype-bintree.sml

(* The a b s t r a c t data type binary t r e e *)

abstype ’ a b i n t r e e =

Empty |

Node of ’ a * ’ a b i n t r e e * ’ a b i n t r e e
with

except ion Empty binary tree

fun mktree0 () = Empty

fun mktrees2 (N, TL , TR) = Node(N, TL , TR) ;

fun isEmpty Empty = t rue
| isEmpty = f a l s e

fun subtrees Empty = r a i s e Empty binary tree
| subt rees (Node(N, Lst , Rst)) = (Lst , Rst)

fun root Empty = r a i s e Empty binary tree
| root (Node(N, ,)) = N

fun l e f t s u b t r e e Empty = r a i s e Empty binary tree
| l e f t s u b t r e e (Node(, Lst ,)) = Lst

fun r i g h t s u b t r e e Empty = r a i s e Empty binary tree

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 131 of 314 Quit

| r i g h t s u b t r e e (Node(, , Rst)) = Rst

fun height Empty = 0
| height (Node(N, Lst , Rst)) =

1+ I n t . max (height (Lst) , height (Rst))

fun isBalanced Empty = t rue
| i sBalanced (Node(N, Lst , Rst)) =

(abs (height (Lst) − height (Rst)) <= 1) andalso
isBalanced (Lst) andalso isBalanced (Rst)

fun s i z e Empty = 0
| s i z e (Node(N, Lst , Rst)) = 1+ s i z e (Lst)+ s i z e (Rst)

(* Here i s a s i m p l i s t i c d e f i n i t i o n of preorder t r a v e r s a l *)
fun preorder1 Empty = n i l
| preorder1 (Node(N, Lst , Rst)) =

[N] @ preorder1 (Lst) @ preorder1 (Rst)

(* The above d e f i n i t i o n though c o r r e c t i s i n e f f i c i e n t because i t has
complexity c l o s e r to n ˆ2 s i n c e the append funct ion i t s e l f i s l i n e a r in
the length of the l i s t . We would l i k e an algorithm t h a t i s l i n e a r in the
number of nodes of the t r e e . So here i s a new one , which uses an i t e r a t i v e
a u x i l i a r y funct ion t h a t s t o r e s the preorder t r a v e r s a l of the r i g h t subtree
and then gradual ly a t t a c h e s the preorder t r a v e r s a l of the l e f t subtree
and f i n a l l y a t t a c h e s the root as the head of the l i s t .

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 132 of 314 Quit

*)

l o c a l fun pre (Empty , L l i s t) = L l i s t
| pre (Node (N, Lst , Rst) , L l i s t) =

l e t val Ml is t = pre (Rst , L l i s t)
val N l i s t = pre (Lst , Ml is t)

in N: : N l i s t
end

in fun preorder2 T = pre (T , [])
end

val preorder = preorder2

(* A map funct ion f o r binary t r e e s *)

fun BTmap f =

l e t fun BTM Empty = Empty
| BTM (Node(N, Lst , Rst)) =

Node ((f N) , BTM (Lst) , BTM (Rst))
in BTM
end

end (* with abstype *)

(* Example i n t e g e r binary t r e e : Notice t h a t 2 has an empty l e f t subtree
and 5 has an empty r i g h t subtree .

1

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 133 of 314 Quit

/ \

/ \

2 3
\ / \

4 5 7
/

6

*)
val t0 : i n t b i n t r e e = mktree0 () ;
val t7 = mktrees2 (7 , t0 , t0) ;
val t6 = mktrees2 (6 , t0 , t0) ;
val t4 = mktrees2 (4 , t0 , t0) ;
val t2 = mktrees2 (2 , t0 , t4) ;
val t5 = mktrees2 (5 , t6 , t0) ;
val t3 = mktrees2 (3 , t5 , t7) ;
val t1 = mktrees2 (1 , t2 , t3) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 134 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 135 of 314 Quit

10. 10: Abstract Data Types to Modularity

Abstract Data Types to Modularity

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 136 of 314 Quit

Information Hiding: Balancing
isBalanced(Empty) = true
isBalanced(Node(N,Lst,Rst)) = (|(height(Lst) − height(Rst)| ≤ 1)

∧isBalanced(Lst) ∧ isBalanced(Rst)
• Binary tree functions like size and height require at least one complete

traversal of the tree to determine.
• The above code for the binary tree datatype is very expensive.
•One way to make it more efficient:

– compute information and store it on the node of the tree during con-
struction of the tree and simply read it off from it.

– Hide this representation from the user.
– The user cannot tamper with the information
– There are no updates in functional programming. So once calculated

correctly the information is constant.
abstype-bintree.sml abstype-bintree2.sml

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 137 of 314 Quit

abstype-bintree2.sml

(* The a b s t r a c t data type binary t r e e with hidden data *)

(* The b i n t r e e . sml and abstype−b i n t r e e . sml implementations are both very
poor when i t comes to determining whether a t r e e i s Balanced .

A look at the code

fun isBalanced Empty = t rue
| i sBalanced (Node(N, Lst , Rst)) =

(abs (height (Lst) − height (Rst)) <= 1) andalso
isBalanced (Lst) andalso isBalanced (Rst)

r e v e a l s t h a t a l a r g e number of t r a v e r s a l s of the t r e e are made
before deciding whether the t r e e i s balanced . Each c a l l to isBalanced
a l s o makes c a l l s to height which i t s e l f i s r e c u r s i v e .

Given a t r e e of height h how many times i s each node in the t r e e v i s i t e d ?

One obvious s o l u t i o n i s to keep r e l e v a n t information about each node at
the node i t s e l f and hide i t from a user of the abstype . So with every node
during the very c o n s t r u c t i o n of the t r e e we keep the fol lowing three p i e c e s
of information :

h : the height of the node
s : the s i z e of the t r e e rooted at t h i s node

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 138 of 314 Quit

b : the balance information
(height of the l e f t −subtree − height of the r ight −subtree)

i sB : whether the t r e e i s balanced

This information i s hidden from the user and i s used i n t e r n a l l y only
f o r the height and isBalanced f u n c t i o n s .

The code of the cons t ruc tors , d e s t r u c t o r s and a l l other f u n c t i o n s
may have to be changed because of t h i s −− p r e t t y much the e n t i r e
implementation changes with only the names remaining the same .

*)

abstype ’ a b i n t r e e 2 =

Empty |

Node of {nv : ’ a , h : in t , s : in t , b : in t , i sB : bool } *
’ a b i n t r e e 2 * ’ a b i n t r e e 2

with
except ion Empty binary tree

fun height Empty = 0
| height (Node(N, Lst , Rst)) = #h N

fun s i z e Empty = 0
| s i z e (Node(N, Lst , Rst)) = # s N

fun isBalanced Empty = t rue

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 139 of 314 Quit

| i sBalanced (Node(N, Lst , Rst)) = # isB N

fun mktree0 () = Empty

fun mktrees2 (n , TL , TR) =

l e t val (hL , sL , isBL) = (height (TL) , s i z e (TL) , i sBalanced (TL))
val (hR , sR , isBR) = (height (TR) , s i z e (TR) , i sBalanced (TR))
val b a l i n f o = sL−sR

in Node ({ nv = n , h = 1+ I n t . max(hL , hR) , s=1+sL+sR , b=bal in fo ,
i sB =(abs (b a l i n f o)<=1) andalso isBL andalso isBR } , TL , TR)

end

fun isEmpty Empty = t rue
| isEmpty = f a l s e

fun subtrees Empty = r a i s e Empty binary tree
| subt rees (Node(N, Lst , Rst)) = (Lst , Rst)

fun root Empty = r a i s e Empty binary tree
| root (Node(N, ,)) = #nv N

fun l e f t s u b t r e e Empty = r a i s e Empty binary tree
| l e f t s u b t r e e (Node(, Lst ,)) = Lst

fun r i g h t s u b t r e e Empty = r a i s e Empty binary tree
| r i g h t s u b t r e e (Node(, , Rst)) = Rst

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 140 of 314 Quit

(* Here i s a s i m p l i s t i c d e f i n i t i o n of preorder t r a v e r s a l *)
fun preorder1 Empty = n i l
| preorder1 (Node(N, Lst , Rst)) =

[(# nv N)] @ preorder1 (Lst) @ preorder1 (Rst)

(* The above d e f i n i t i o n though c o r r e c t i s i n e f f i c i e n t because i t has
complexity c l o s e r to n ˆ2 s i n c e the append funct ion i t s e l f i s l i n e a r in
the length of the l i s t . We would l i k e an algorithm t h a t i s l i n e a r in the
number of nodes of the t r e e . So here i s a new one , which uses an i t e r a t i v e
a u x i l i a r y funct ion t h a t s t o r e s the preorder t r a v e r s a l of the r i g h t subtree
and then gradual ly a t t a c h e s the preorder t r a v e r s a l of the l e f t subtree
and f i n a l l y a t t a c h e s the root as the head of the l i s t .

*)

l o c a l fun pre (Empty , L l i s t) = L l i s t
| pre (Node (N, Lst , Rst) , L l i s t) =

l e t val Ml is t = pre (Rst , L l i s t)
val N l i s t = pre (Lst , Ml is t)

in (# nv N) : : N l i s t
end

in fun preorder2 T = pre (T , [])
end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 141 of 314 Quit

val preorder = preorder2

(* A map funct ion f o r binary t r e e s *)

fun BTmap f =

l e t fun BTM Empty = Empty
| BTM (Node(N, Lst , Rst)) =

Node ({ nv = f (# nv N) , s= (# s N) , h= (# h N) , b=(#b N) , i sB = (# i sB N) } ,
BTM (Lst) , BTM (Rst))

in BTM
end

end (* with abstype *)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 142 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 143 of 314 Quit

11. 11: Signatures, Structures & Functors

Signatures, Structures & Functors

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 144 of 314 Quit

Towards Modularity
Consider an abstract data type for which there are not only several dif-
ferent implementations but all the implementations are useful simultane-
ously.
Example 11.1 Floating point arithmetic for 32-bit precision as well as for
64-bit.

Example 11.2 Various implementations of data types such as binary
trees, balanced binary trees, binary search trees etc.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 145 of 314 Quit

The Module Facility in SML
The module facility of ML lifts the concepts of type, value and function to
a higher level in an analogous fashion

signature ↔ type
structure ↔ value
f unctor ↔ f unction

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 146 of 314 Quit

Modularity
1. Modularity is essential for large programs
2. Modularity may be used along with hiding of information to provide

fine-grained visibility required of a package.
3. Many different implementations for the same package specification

may be provided at the same time.
4. Modularity in ML is essentially algebraically defined
5. Each module consists of a signature and a structure
6. If a structure is defined without a signature, then ML infers a default

signature for the structure without hiding any data or definitions.
7. A signature may be used to define the visibility required of a structure

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 147 of 314 Quit

qu-sig.sml

s ignature Q =

s i g
type ’ a que
except ion Qerror
val emptyq : ’ a que
val nul lq : ’ a que −> bool
val enqueue : ’ a que * ’ a −> ’ a que
val dequeue : ’ a que −> ’ a que
val qhd : ’ a que −> ’ a

end ;

(*

In a s p e c i f i c a t i o n we are concerned with c e r t a i n behavioural p r o p e r t i e s
of the o b j e c t t h a t a module de f ines . These behavioural p r o p e r t i e s
p e r t a i n to an a b s t r a c t view of the o b j e c t s in the s p e c i f i c a t i o n and
t h e i r governing p r o p e r t i e s .

DEFINING EQUATIONS

Let us def ine the s t a t e of a queue as the sequence of elements in the
queue . Assume a user of t h i s module performs the
fol lowing sequence of operat ions s t a r t i n g from the emptyq .

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 148 of 314 Quit

q0 = emptyq ;
q1 = enqueue (q0 , a1) ;
q2 = enqueue (q1 , a2) ;
q3 = dequeue (q2) ;
q4 = enqueue (q3 , a3) ;
q5 = dequeue (q4) ;
q6 = enqueue (q5 , a4) ;
q7 = enqueue (q6 , a5) ;
q8 = dequeue (q7) ; (1)

At the end of t h i s sequence of operat ions the queue q8 c o n s i s t s of
the sequence of elements <a4 , a5> . I f we were to abbrev ia te the
”emptyq ” , ”enqueue” and ”dequeue” operat ions r e s p e c t i v e l y by ”<>”,
”e” and ”d” , t h i s sequence of operat ions may be regarded as a form of
a l g e b r a i c s i m p l i f i c a t i o n as fo l lows .

d (e (e (d (e (d (e (e (<> , a1) , a2)) , a3)) , a4) , a5)) (1)
−−−−

= d (e (e (d (e (e (d (e (<> , a1) , a2)) , a3)) , a4) , a5)) [7]
−−−−−−−−−−−−

= d (e (e (d (e (e (<> , a2)) , a3)) , a4) , a5)) [6]
−−−−−

= d (e (e (e (d (e (<> , a2)) , a3)) , a4) , a5)) [7]
−−−−−−−−−−−−

= d (e (e (e (<> , a3)) , a4) , a5)) [6]

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 149 of 314 Quit

−−−−

= e (d (e (e (<> , a3)) , a4) , a5) [7]
−−−−

= e (e (d (e (<> , a3)) , a4) , a5) [7]
−−−−−−−−−−−−

= e (e (<> , a4) , a5)) [6]

In other words the sequence of operat ions (1) may be regarded as being
equiva lent to the sequence (2) , in terms of the net e f f e c t on the
queue .

q9 = emptyq ;
q10 = enqueue (q9 , a4) ;
q11 = enqueue (q10 , a5) (2)

At the end of t h i s sequence of operat ions the queue q c o n s i s t s of
the sequence of elements <a4 , a5> . We may regard t h i s s t a t e
as having been obtained by using the equat ions 6 and 7 to reduce the
value of the queue to a ”normal form” by a l g e b r a i c s i m p l i f i c a t i o n .

The l a s t two equat ions enable us to view the s t a t e of any queue as
possess ing a normal form expressed only in terms of ”emptyq” and a
sequence of ”enqueue” operat ions on ”emptyq” (with no occurrence of
”dequeue” occurr ing anywhere in the normal form) .

Any implementation of t h i s s p e c i f i c a t i o n must s a t i s f y the above

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 150 of 314 Quit

equat ions in order to be considered c o r r e c t . Considering the l e v e l
of d e t a i l t h a t there could be in an implementation , t h i s i s o f ten very
tedious or cumbersome . However , t h i s seems to be the only way .

DIGRESSION :
The notion of a ”normal form” i s very pervasive in mathematics ; f o r
example every polynomial of degree n in one v a r i a b l e x i s wr i t ten as
(a) a sum of terms wri t ten in decreas ing order of t h e i r degrees ,
(b) each term i s a product of a c o e f f i c i e n t and x r a i s e d to a c e r t a i n power ,
(c) no two terms in the r e p r e s e n t a t i o n have the same degree .
A l t e r n a t i v e l y one could choose other r e p r e s e n t a t i o n s −− f o r i n s t a n c e
as a prodeuct of n f a c t o r s of the form (x−c i)
END OF DIGRESSION

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 151 of 314 Quit

Defining Properties/Equations for Q
For every q : ′a que and every x : ′a,

0. nullq(emptyq)
1. not nullq(enqueue(q, x))
2. qhd(emptyq) = Qerror
3. qhd(enqueue(q, x)) = x if nullq(q)
4. qhd(enqueue(q, x)) = qhd(q) if not(nullq(q))
5. dequeue(emptyq) = Qerror
6. dequeue(enqueue(q, x)) = emptyq if nullq(q)
7. dequeue(enqueue(q, x)) = enqueue(dequeue(q), x) if not(nullq(q))

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 152 of 314 Quit

11.1. Axiomatic Specifications

We refer to these defining properties/equations as axioms of the queue datatype. These axioms define
the behaviour of the queue datatype in much the same way that the group axioms define the class of
all groups in mathematics and the monoid axioms define the class of all monoids. The class of monoids
contains the class of all groups since every group is a monoid and satisfies all the monoid axioms.

How do these axioms define the “behaviour” of queues? More generally, does every datatype have a set
of defining axioms? More particularly, in what way does the behaviour of a queue differ from that of a
stack?

To answer some of the above questions, we first define the signature and the axioms of the stack datatype.
We do this in a manner analogously to what we have defined for queues.

11.1.1. The Stack Datatype

signature S =

sig

type ’a stk

exception Serror

val emptys : ’a stk

val nulls : ’a stk -> bool

val push : ’a stk * ’a -> ’a stk

val pop : ’a stk -> ’a stk

val top : ’a stk -> ’a

end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 153 of 314 Quit

Notice that the operations of the stack datatype defined above bear a 1-1 correspondence with the
operations of the queue datatype. The correspondence is shown below.

′a que ↔
′a stk

Qerror ↔ Serror
emptyq ↔ emptys
nullq ↔ nulls
enqueue ↔ push
dequeue ↔ pop
qhd ↔ top

What about the defining equations of the stack datatype? Well here they are and they are indeed analogous
to those of the queue. The correspondence in this case is marked by the numbering of the axioms.

For every s : ′a stk and every x : ′a,

0. nulls(emptys)
1. not nulls(push(s, x))
2. top(emptys) = Serror
3. top(push(s, x)) = x

5. pop(emptys) = Serror
6. pop(push(s, x)) = s

Notice that even though we have tried to maintain the analogy between queues and stacks, they invariably
do have different axioms and properties. For example the identity 3 in the case of stacks is unconditional

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 154 of 314 Quit

whereas in the case of queues it requires the corresponding argument q to be empty. Identity 4 in the
case of queues is necessary and conditional, but is entirely redundant in the case of stacks (though the
analogous identity does hold). In a similar manner identity 6 for queues is again conditional but is
unconditional in the case of stacks. As in the case 4, identity 7 is redundant for stacks though necessary
for queues.

One obvious question that arises is, “Are these axioms correct?” That is, are all properties derivable from
these axioms necessarily true? Another important question is “Are these axioms sufficient to prove all
properties of stacks?” These questions are called soundness and completeness respectively. A third obvious
question is “How does one think up such axioms?” The answer to this last question is “programmer
intuition” and we will leave it at that. A fourth obvious question could be, “If the above axioms are sound
and complete, is there a different set of axioms which is also sound and complete?” The answer to the
last question is, “Yes, there could be a different set of sound and complete axioms”.

The signature of the stack defines a collection of all stack expressions which have the type ’a stk for
any type ’a of elements. Given a type ’a, notice that the only ways of obtaining objects of the type ’a
stk are by composing the operations emptys, push and pop. In effect we may define a language of ’a
stk-expressions (ranged over by the meta-variable se) by the following BNF.

se ::= emptys | push (se, x) | pop (se) (2)

Notice that the BNF (2) allows stack expressions such aspop (emptys), pop (pop (emptys)), push (pop (emptys), x)
which do not necessarily yield stacks. The language therefore allows a much larger class of expressions
than is actually feasible to describe various kinds of stacks.

Our intuition about stacks (a similar analogy holds for queues as well) tells us that the pop operation
undoes a push operation, and more importantly any stack expression that is made up of a number of
push and pop operations equals a stack in which the pop operations and some push operations cancel

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 155 of 314 Quit

each other resulting in a stack that is either empty or a non-empty stack obtained by a sequence of pushes
on an empty stack. We may therefore define a set of standard or normal form of expressions (ranged over
by the meta-variable nse) which describes feasible stacks by the following BNF.

nse ::= emptys | push (nse, x) (3)

The BNF (3) reflects the above intuition about stack operations which result in stacks. We call the
expressions generated by BNF (3) normal stack expressions.

Notice first of all that every normal stack expression is also an ’a stk-expressions. Hence the language
generated by the BNF (3) is a sub-language of the one generated by the BNF (2). We may also prove that
following lemma.

Lemma 11.3 Every stack expression defined by the BNF (2) which does not yield Serror at any stage, may be
reduced to a normal stack expression.

Proof: By induction on the structure of stack expressions. The proof requires the use of the identity 6 to
eliminate all occurrences of pop in any stack expression which does not yield Serror. We leave the details
of the proof to the interested reader. QED

Notice that the normal form is unique.

Lemma 11.4 Every stack expression defined by the BNF (2) which does not yield Serror at any stage, may be
reduced to a unique normal stack expression.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 156 of 314 Quit

qu1-str.sml

s t r u c t u r e Q1 :Q =

s t r u c t

type ’ a que = ’ a l i s t ;

except ion Qerror ;

val emptyq = [] ;

fun nul lq ([]) = t rue
| nul lq (: :) = f a l s e
;

fun enqueue (q , x) = q @ [x] ;

(* enqueue takes time l i n e a r in the length of q *)

fun dequeue (x : : q) = q
| dequeue [] = r a i s e Qerror
;

fun qhd (x : : q) = x
| qhd [] = r a i s e Qerror
;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 157 of 314 Quit

(* dequeue and qhd are constant time operat ions *)

end ;

(*

Note t h a t the (pre−defined) l i s t data type has the fol lowing operat ions :

[] −− denotes the empty l i s t (a l s o c a l l e d ” n i l ”) .
n u l l −− determines whether a l i s t i s empty .
: : −− denotes the operat ion ” cons ” which prepends a l i s t with

an element to y i e l d a new l i s t .
@ −− denotes the operat ion of ”append”− ing one l i s t to another .
hd −− which y i e l d s the f i r s t element of a non−empty l i s t
t l −− which y i e l d s the r e s t of the l i s t except i t s head .

Clear ly hd and t l are defined only f o r non−empty l i s t s .

The l i s t data type in turn has a normal form e x p r e s s i b l e only in terms
of ” n i l ” and the ” cons ” operat ions . Every l i s t L s a t i s f i e s the
fol lowing DATA INVARIANT

0 . L = [] or L = hd (L) : : t l (L)

The append operat ion s a t i s f i e s the fol lowing p r o p e r t i e s f o r a l l l i s t s

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 158 of 314 Quit

L , M.

1 . [] @ M = M
2 . (h : : t) @ M = h : : (t @ M)

There i s of course another property of append viz .

3 . L @ [] = L

But t h i s property can be shown from p r o p e r t i e s 1 . and 2 . by induct ion
on the length of the l i s t L .

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 159 of 314 Quit

qu2-str.sml

s t r u c t u r e Q2 :Q =

s t r u c t
datatype ’ a que = emptyq | enqueue of ’ a que * ’ a
except ion Qerror ;

(* enqueue i s a constant time operat ion *)

fun nul lq emptyq = t rue
| nul lq = f a l s e

fun qhd emptyq = r a i s e Qerror
| qhd (enqueue (emptyq , h)) = h
| qhd (enqueue (q , l)) = qhd (q)

fun dequeue emptyq = r a i s e Qerror
| dequeue (enqueue (emptyq , h)) = emptyq
| dequeue (enqueue (q , l)) = enqueue (dequeue q , l)

(* dequeue i s l i n e a r in the length of q *)
end

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 160 of 314 Quit

qu3-str.sml

s t r u c t u r e Q3 :Q =

s t r u c t

datatype ’ a que = Queue of (’ a l i s t * ’ a l i s t)

val emptyq = Queue ([] , [])

fun nul lq (Queue ([] , [])) = t rue
| nul lq () = f a l s e

fun reverse (L) =

l e t fun rev ([] , M) = M
| rev (x : : xs , M) = rev (xs , x : :M)

in
rev (L , [])
end

;

fun norm (Queue ([] , t a i l s)) = Queue (reverse (t a i l s) , [])
| norm (q) = q
;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 161 of 314 Quit

fun enqueue (Queue (heads , t a i l s) , x) = norm (Queue (heads , x : : t a i l s)) ;

except ion Qerror ;

fun dequeue (Queue (x : : heads , t a i l s)) = norm (Queue (heads , t a i l s))
| dequeue (Queue ([] ,)) = r a i s e Qerror
;

fun qhd (Queue (x : : heads , t a i l s)) = x
| qhd (Queue ([] ,)) = r a i s e Qerror
;

(* Clear ly the amortized c o s t of enqueue−ing and dequeue−ing i s l e s s than
l i n e a r in t h i s r e p r e s e n t a t i o n ”most of the time ” .

*)

end ;

(*
This example shows a p e c u l i a r r e p r e s e n t a t i o n of queues and the concept
of information hiding . The funct ion ”norm” i s s p e c i a l to t h i s
p a r t i c u l a r r e p r e s e n t a t i o n and t h e r e f o r e should not be v i s i b l e to the
user of the queue . I f t h i s implementation i s c o r r e c t and s a t i s f i e s a l l
the p r o p e r t i e s of the s p e c i f i c a t i o n then one could use
representa t ion −hiding and the hiding of purely representa t ion −dependent
operat ions l i k e norm to switch between the two implementations without

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 162 of 314 Quit

a f f e c t i n g any user of t h i s module .

Any user of the Queue module only r e q u i r e s to know the s p e c i f i c a t i o n
and use only those funct ions , procedures and operat ions which are
v i s i b l e via the s p e c i f i c a t i o n . She would have no use f o r e i t h e r i s s u e s
t h a t properly p e r t a i n to r e p r e s e n t a t i o n nor with i s s u e s concerning the
implementation of the algori thms in the module .

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 163 of 314 Quit

Exercise 11.1

1. Run through the implementation for the example sequence given in qu-sig.sml given in the specification and
satisfy yourself that this implementation is indeed correct.

2. Prove that each operation on queues in each of the structures correctly implements the specification.

3. Suppose we defined the notion of queues bounded by a certain size, say n. In what way are the behavioural
properties of such queues different from those of the the unbounded queues defined here?

4. Give a complete set of DATA INVARIANT properties for bounded size queues.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 164 of 314 Quit

Signatures
1. A signature (c.f. type) specifies the interface to one or more structures

(c.f. values).
2. The different implementations of structures Q1, Q2 and Q3 all imple-

ment a common signature.
3. Structures may be constrained to signatures by mapping the names of

structures to the names of signatures.
(a) the names of the types should match
(b) the names of functions and values should also match

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 165 of 314 Quit

qu-sig-str.sml

use "qu1-str.sml" ;
use "qu2-str.sml" ;
use "qu3-str.sml" ;
use "qu-sig.sml" ;

(* Ins tead i f dec lar ing ”Q1 :Q” , ”Q2 :Q” and ”Q3 :Q” which bind the s t r u c t u r e s
to the given s ignature ”Q” , within the s t r u c t u r e one could have l e f t the
s t r u c t u r e name unqual i f i ed and l a t e r bound i t as fo l lows

*)

(* Transparent Cons t ra in t s −− a l l f u n c t i o n s / data not present in the
s ignature are hidden .

*)
s t r u c t u r e Q1conc : Q = Q1 ;
s t r u c t u r e Q2conc : Q = Q2 ;
s t r u c t u r e Q3conc : Q = Q3 ; (* norm i s a hidden funct ion *)

(* Opaque Cons t ra in t s −− underlying r e p r e s e n t a t i o n i s a l s o hidden *)
s t r u c t u r e Q1abs :> Q = Q1 ;
s t r u c t u r e Q2abs :> Q = Q2 ;
s t r u c t u r e Q3abs :> Q = Q3 ;

(* Try the fol lowing and see the d i f f e r e n c e *)
open Q3conc ;
open Q3abs ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 166 of 314 Quit

11.2. Closing Equational Specifications

One of the problems with the BNF (2) is that it permitted the construction of stack expressions which
would have yielded the exception Serror. As a result we had to state the lemma 11.3 in such a way that
reduction to the unique normal form BNF (3) was guaranteed only for stack expressions which did not at
at any stage raise the exception Serror.

The problems with this formulation are many as noted below:

1. (Unique) normal forms are guaranteed only for a subset of stack expressions, thus leaving out a large
number syntactically valid expressions to be essentially undefined.

2. The formulation is not very pleasing because it is not general enough.

3. An exception is different from stack expression een theoretically.

A more algebraically elegant formulation which addresses the above problems could be obtained by
taking inspiration from the implementation in “qu2-str.sml” wherein a datatype was defined with emptyq
and enqueue being the constructors of the datatype and dequeue is defined as a function which cancels
out appropriate occurrences of the enqueue constructor. An analogous implementation for stacks would
have had the following datatype definition

datatype ’a stk = emptys | push of ’a stk * ’a

and of course a corresponding function definition for the pop operation. Notice that this datatype
definition is really no different from the language of normal stack expressions.

But now what we could do is we could simply eliminate the exception Serror and instead include a 0-ary

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 167 of 314 Quit

constructor serr in the data-type definition to represent an “error stack”. This has the advantage we could
close the language of stack expressions so that now every stack expression would not just be syntactically
valid, it would also be well-defined.

We thus define the language of extended stack expressions (ranged over by the meta-variable xse) by the
following BNF

xse ::= emptys | serr| push (xse, x)| pop(xse) (4)

How does the constructor serr differ in behaviour and properties from the constructor emptys. Very
simply put, every stack operation like push or pop when applied to serr would yield serr. And of
course any pop operation on emptys would also yield serr. We may now present a richer and more
comprehensive set of equations and properties for this new type of stack. But before that we need to
evaluate the other consequences of what we are doing now.

1. By changing the exception to a valid stack expression we even obtain a different signature. We call the
new signature S’.

2. The functions top and nulls when applied to serr should still yield an exception. Alernatively we
could change the results of applications of these functions to yield an option data type. To reflect these
changes we call these functions top’ and nulls’ respectively.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 168 of 314 Quit

signature S’ =

sig

type ’a stk

val emptys : ’a stk

val serr : ’a stk

val nulls’ : ’a stk -> bool option

val push : ’a stk * ’a -> ’a stk

val pop : ’a stk -> ’a stk

val top’ : ’a stk -> ’a option

end

Returning to the elegance of dealing with serr as just another stack expression we have the following
properties and equational identities.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 169 of 314 Quit

For every s : ′a stk and every x : ′a,

0. nulls′(emptys) = true
0′. nulls′(serr) = NONE
1. nulls′(push(s, x)) = f alse if s , serr
2. top(emptys) = NONE
2′. top(serr) = NONE
3. top(push(s, x)) = SOME x

5′. pop(emptys) = serr
5′′. pop(serr) = serr
6. pop(push(s, x)) = s
6′. push(serr, x) = serr

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 170 of 314 Quit

With these equations we also have a language of extended normal form expressions defined as follows
and ranged over by the meta-variable nxse.

nxse ::= emptys | serr| push (nxse, x) (5)

We now have the following lemmata (compare these with lemma 11.3 and lemma 11.4 respectively).

Lemma 11.5 Every stack expression defined by the BNF (4) may be reduced to a normal stack expression.

Lemma 11.6 Every stack expression defined by the BNF (4) may be reduced to a unique extended normal stack
expression.

As we stated before by making these changes we have changed the signature of the module and all aspects
of the data type. An analogous change may be made in the signature and structure of queues too.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 171 of 314 Quit

qu2’-sig-str-sml

(* In t h i s s ignature and s t r u c t u r e we r e p l a c e the except ion Qerror by a
a 0−ary c o n s t r u c t o r qerr . This al lows a l l ’ a que−express ions to be c losed
under the queue operat ions . Hence we have the fol lowing e x t r a
i d e n t i t i e s on queues

dequeue (emptyq) = qerr
enqueue (qerr , x) = qerr
dequeue (qerr) = qerr

But i t r a i s e s the a d d i t i o n a l quest ion of what to do about operat ions nul lq
and qhd which are supposed to y i e l d r e s p e c t i v e l y a boolean value and an
’ a value ?

The obvious answer to these quest ions i s to e i t h e r def ine some other new
except ions or use the option datatype . We t r y using the option datatype

*)

s ignature Q’ =

s i g
type ’ a que
(* except ion Qerror *)
val qerr : ’ a que
val emptyq : ’ a que

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 172 of 314 Quit

val nullq ’ : ’ a que −> bool option
val enqueue : ’ a que * ’ a −> ’ a que
val dequeue : ’ a que −> ’ a que
val qhd ’ : ’ a que −> ’ a option

end ;

s t r u c t u r e Q2 ’ : Q’ =

s t r u c t
datatype ’ a que = emptyq | qerr | enq of ’ a que * ’ a
(* except ion Qerror ; *)

(* enqueue i s a constant time operat ion *)

fun nullq ’ emptyq = SOME true
| nullq ’ qerr = NONE
| nullq ’ = SOME f a l s e

fun qhd ’ emptyq = NONE
| qhd ’ qerr = NONE
| qhd ’ (enq (emptyq , h)) = SOME h
| qhd ’ (enq (q , l)) = qhd ’ (q)

fun normalise emptyq = emptyq
| normalise qerr = qerr
| normalise (enq (emptyq , l)) = enq (emptyq , l)
| normalise (enq (qerr ,)) = qerr

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 173 of 314 Quit

| normalise (enq (q , l)) = (* enqueue (normalise q , l)) *)
l e t val nq = normalise q
in case nq of

emptyq => enq (nq , l)
| qerr => qerr
| enq (,) => enq (nq , l)

end

fun enqueue (emptyq , l) = enq (emptyq , l)
| enqueue (qerr ,) = qerr
| enqueue (q , l) = normalise (enq (q , l))

fun dequeue emptyq = qerr
| dequeue qerr = qerr
| dequeue (enq (emptyq , h)) = emptyq
| dequeue (enq (q , l)) = enq ((dequeue q) , l)

(* dequeue i s l i n e a r in the length of q *)
end

(* t e s t i n g *)

open Q2 ’ ;

val e = enqueue ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 174 of 314 Quit

val d = dequeue ;

val q1 = e (d (emptyq) , 1)

val q7 = e (e (d (e (d (e (e (emptyq , 1) , 2)) , 3)) , 4) , 5)

val h7 = valOf (qhd ’ q7)

val q8 = d (e (e (d (e (d (e (e (emptyq , 1) , 2)) , 3)) , 4) , 5))

val h8 = qhd ’ q8

val q9 = d (e (e (d (e (d (e (e (d (emptyq) , 1) , 2)) , 3)) , 4) , 5))

val h9 = qhd ’ q9

val q10 = d (e (e (d (e (d (e (d (d (e (emptyq , 1))) , 2)) , 3)) , 4) , 5))

val h10 = qhd ’ q10

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 175 of 314 Quit

Functors
A functor is a structure that takes other structures as parameters and
yields a new structure

1. A functor can be applied to argument structures to yield a new structure
2. A functor can be applied only to structures that match certain signature

constraints.
3. Functors may be used to test existing structures or to create new struc-

tures.
4. Functors may also be used to express generic algorithms

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 176 of 314 Quit

bstree-module.sml

(* This i s a module implementation of BINARY SEARCH TREES *)

(* A Binary Search Tree or a BST i s a t r e e with nodes l a b e l l e d by elements
TOTALLY ordered by an IRREFLEXIVE−TRANSITIVE r e l a t i o n ” l t ” such t h a t
f o r any node y in the tree ,

o l t (x , y) holds f o r a l l nodes x in the LEFT subtree of y , and
o l t (y , z) holds f o r a l l nodes z in the RIGHT subtree of y .

*)

(* can one use ” b i n t r e e . sml” ? *)

(* How does one s p e c i a l i z e a binary t r e e to a BST? *)

(* We assume t h a t we are deal ing with BSTs in the fol lowing examples . *)

(* Searching in a BST : checking f o r a node l a b e l l e d x *)

(* Rather than answering these quest ions now, we simply fol low Ullman ’ s
c o n s t r u c t i o n and address these quest ions l a t e r .

*)

s ignature TOTALORDER =

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 177 of 314 Quit

s i g
eqtype e l type
val l t : e l type * e l type −> bool

end (* s i g *) ;

s t r u c t u r e INTLAB : TOTALORDER =

s t r u c t
type e l type = i n t ;
val l t = op<

end ;

s t r u c t u r e STRINGLAB : TOTALORDER =

s t r u c t

type e l type = s t r i n g ;
(* Lexicographic ordering ’< ’ on s t r i n g s *)

fun l e x l t (s , t) =

l e t val Ls = explode (s) ;
val Lt = explode (t) ;
fun l s t l e x l t (, []) = f a l s e
| l s t l e x l t ([] , (b : char) : :M) = t rue
| l s t l e x l t (a : : L , b : :M) =

i f (a < b) then true
e l s e i f (a = b) then l s t l e x l t (L , M)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 178 of 314 Quit

e l s e f a l s e
;

in l s t l e x l t (Ls , Lt)
end

;

val l t = l e x l t ;

end (* s t r u c t *) ;

func tor MakeBST (Lt : TOTALORDER) :
s i g

(* open Lt ; *)

(* The use of t h i s ”open” i s an e r r o r in Ullman ’ s book . At l e a s t i t does not
seem to be allowed in vers ion 1 0 9 . 3 2 . We have ins tead replaced a l l occurrences
of ” e l type ” in the s ignature by ” Lt . e l type ” and then i t seems to work f i n e .

*)

type ’ a b i n t r e e ;
except ion Empty tree ;
val c r e a t e : Lt . e l type b i n t r e e ;
val lookup : Lt . e l type * Lt . e l type b i n t r e e −> bool ;
val i n s e r t : Lt . e l type * Lt . e l type b i n t r e e −> Lt . e l type b i n t r e e ;
val deletemin : Lt . e l type b i n t r e e −> Lt . e l type * Lt . e l type b i n t r e e ;
val d e l e t e : Lt . e l type * Lt . e l type b i n t r e e −> Lt . e l type b i n t r e e

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 179 of 314 Quit

end
=

s t r u c t
open Lt ;
datatype ’ a b i n t r e e =

Empty |

Node of ’ a * ’ a b i n t r e e * ’ a b i n t r e e
;

val c r e a t e = Empty ;

fun lookup (x , Empty) = f a l s e
| lookup (x , Node (y , l e f t , r i g h t)) =

i f x=y then true
e l s e i f l t (x , y) then lookup (x , l e f t)
e l s e lookup (x , r i g h t)

;

(* I n s e r t an element i n t o a BST *)

fun i n s e r t (x , Empty) = Node (x , Empty , Empty)
| i n s e r t (x , T as Node (y , l e f t , r i g h t)) =

i f x=y then T (* do nothing *)
e l s e i f l t (x , y) then Node (y , i n s e r t (x , l e f t) , r i g h t)
e l s e Node (y , l e f t , i n s e r t (x , r i g h t))

;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 180 of 314 Quit

(* Delete (i f i t i s there) from a BST *)

(* Delet ion r e q u i r e s the fol lowing funct ion which can d e l e t e the
s m a l l e s t element from a t r e e ; Note t h a t the s m a l l e s t element in a
BST i s the l e f t m o s t l e a f −node in the t r e e (i f i t e x i s t s , otherwise
the root) . The funct ion deletemin should a l s o re turn the value of the
s m a l l e s t element to enable t r e e reorder ing f o r d e l e t i o n .

*)

except ion Empty tree ;

fun deletemin (Empty) = r a i s e Empty tree
| deletemin (Node (y , Empty , r i g h t)) = (y , r i g h t)
| deletemin (Node (y , l e f t , r i g h t)) =

l e t val (z , L) = deletemin (l e f t)
in (z , Node (y , L , r i g h t))
end

;

(* NOTE t h a t deletemin does not requi re the comparison funct ion l t as a
parameter .

*)

fun d e l e t e (x , Empty) = Empty
| d e l e t e (x , Node (y , l e f t , r i g h t)) =

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 181 of 314 Quit

i f x=y then
i f l e f t = Empty then r i g h t
e l s e i f r i g h t = Empty then l e f t
e l s e (* e x t r a c t the s m a l l e s t element from the r i g h t subtree

and make i t the root of the new t r e e

*)
l e t val (z , R) = deletemin (r i g h t)
in Node (z , l e f t , R)
end

e l s e i f l t (x , y) then Node (y , d e l e t e (x , l e f t) , r i g h t)
e l s e Node (y , l e f t , d e l e t e (x , r i g h t))

;

end (* s t r u c t *) ;

(* Now we may apply the functor MakeBST to STRINGLAB to obta in a new s t r u c t u r e
StringBST which def ines ” binary search t r e e s l a b e l l e d by s t r i n g s ordered by
the l e x i c o g r a p h i c t o t a l ordering .

*)

s t r u c t u r e StringBST = MakeBST (STRINGLAB) ; (* applying the functor *)

s t r u c t u r e IntBST = MakeBST (INTLAB) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 182 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 183 of 314 Quit

12. 12: Example: Tautology Checking

Example: Tautology Checking

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 184 of 314 Quit

Arguments and Tautology Checking
Proving logical arguments

http://www.cse.iitd.ac.in/~sak
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf#p295

Home Page JJ J I II
ILFP

Go Back Full Screen Close 185 of 314 Quit

Logical Consequence: 1
Definition 12.1 A proposition φ ∈ P0 is called a logical consequence of
a set Γ ⊆ P0 of formulas (denoted Γ |= φ) if any truth assignment that
satisfies all formulas of Γ also satisfies φ.

•When Γ = ∅ then logical consequence reduces to logical validity.
• |= φ denotes that φ is logically valid.
• Γ 6|= φ denotes that φ is not a logical consequence of Γ.
• 6|= φ denotes that φ is logically invalid.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 186 of 314 Quit

Logical Consequence: 2
Theorem 12.2 Let Γ = {φi | 1 ≤ i ≤ n} be a finite set of propositions, and
let ψ be any proposition. Then Γ |= ψ if and only if ((. . . ((φ1 ∧ φ2) ∧ φ3) ∧
. . . ∧ φn)→ ψ) is a tautology.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 187 of 314 Quit

Other Theorems
Theorem 12.3 Let Γ = {φi | 1 ≤ i ≤ n} be a finite set of propositions, and
let ψ be any proposition. Then
1. Γ |= ψ if and only if |= φ1→ (φ2→ · · · (φn→ ψ) · · ·)

2. Γ |= ψ if and only if ((. . . ((φ1∧φ2)∧φ3)∧. . .∧φn)∧¬ψ) is a contradiction.

Corollary 12.4 A formula φ is a tautology iff ¬φ is a contradiction (unsat-
isfiable).

�

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 188 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 189 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 190 of 314 Quit

13. 13: Example: Tautology Checking (Contd)

Lecture 13: Example: Tautology Checking
(Contd)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 191 of 314 Quit

tautology1.sml – the full source

s ignature PropLogic =

s i g
except ion Atom exception
datatype Prop =

ATOM of s t r i n g |

NOT of Prop |

AND of Prop * Prop |

OR of Prop * Prop |

IMP of Prop * Prop |

EQL of Prop * Prop
type Argument = Prop l i s t * Prop
val show : Prop −> uni t
val showArg : Argument −> uni t
val f a l s i f y A r g : Argument −> Prop l i s t l i s t
val Valid : Argument −> bool * Prop l i s t l i s t

end ;

(* P r o p o s i t i o n a l formulas *)

s t r u c t u r e PL : PropLogic =

(* s t r u c t u r e PL = *) (* This i s f o r debugging purposes only *)
s t r u c t

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 192 of 314 Quit

datatype Prop =

ATOM of s t r i n g |

NOT of Prop |

AND of Prop * Prop |

OR of Prop * Prop |

IMP of Prop * Prop |

EQL of Prop * Prop
;

except ion Atom exception ;
fun newatom (s) = i f s = "" then r a i s e Atom exception

e l s e (ATOM s) ;
fun drawChar (c , n) =

i f n>0 then (p r i n t (s t r (c)) ; drawChar (c , (n−1)))
e l s e () ;

fun show (P) =

l e t fun drawTabs (n) = drawChar (# "\t" , n) ;
fun showTreeTabs (ATOM a , n) = (drawTabs (n) ;

p r i n t (a) ;
p r i n t ("\n")
)

| showTreeTabs (NOT (P) , n) = (drawTabs (n) ; p r i n t ("NOT") ;
showTreeTabs (P , n+1)
)

| showTreeTabs (AND (P , Q) , n) =

(showTreeTabs (P , n +1) ;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 193 of 314 Quit

drawTabs (n) ; p r i n t ("AND\n") ;
showTreeTabs (Q, n+1)
)

| showTreeTabs (OR (P , Q) , n) =

(showTreeTabs (P , n +1) ;
drawTabs (n) ; p r i n t ("OR\n") ;
showTreeTabs (Q, n+1)
)

| showTreeTabs (IMP (P , Q) , n) =

(showTreeTabs (P , n +1) ;
drawTabs (n) ; p r i n t ("IMPLIES\n") ;
showTreeTabs (Q, n+1)
)

| showTreeTabs (EQL (P , Q) , n) =

(showTreeTabs (P , n +1) ;
drawTabs (n) ; p r i n t ("IFF\n") ;
showTreeTabs (Q, n+1)
)

;
in (p r i n t ("\n") ; showTreeTabs (P , 0) ; p r i n t ("\n"))

end
;

(* The funct ion below evaluates a formula given a t r u t h assignment .

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 194 of 314 Quit

The t r u t h assignment i s given as a l i s t of atoms t h a t are assigned
” true ” (i m p l i c i t l y a l l other atoms are assume dto have been
assigned ” f a l s e ”) .

*)

fun lookup (x : Prop , []) = f a l s e
| lookup (x , h : : L) =

i f (x = h) then true
e l s e lookup (x , L)

;

fun eval (ATOM a , L) = lookup (ATOM a , L)
| eval (NOT (P) , L) = i f eval (P , L) then f a l s e e l s e t rue
| eval (AND (P , Q) , L) = eval (P , L) andalso eval (Q, L)
| eval (OR (P , Q) , L) = eval (P , L) o r e l s e eval (Q, L)
| eval (IMP (P , Q) , L) = eval (OR (NOT (P) , Q) , L)
| eval (EQL (P , Q) , L) = (eval (P , L) = eval (Q, L))
;

(* We f i r s t convert every propos i t ion i n t o a normal form .

*)

(* F i r s t rew r i te i m p l i c a t i o n s and equivalences *)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 195 of 314 Quit

fun rewr i te (ATOM a) = ATOM a
| rewr i te (NOT (P)) = NOT (rewr i te (P))
| rewr i te (AND (P , Q)) = AND (rewr i te (P) , rewr i te (Q))
| rewr i te (OR (P , Q)) = OR (rewr i te (P) , rewr i te (Q))
| rewr i te (IMP (P , Q)) = OR (NOT (rewr i te (P)) , r ewr i te (Q))
| rewr i te (EQL (P , Q)) = rewr i te (AND (IMP(P , Q) , IMP (Q, P)))
;

(* Convert a l l formulas not conta in ing IMP or EQL i n t o Negation Normal
Form .

*)

fun nnf (ATOM a) = ATOM a
| nnf (NOT (ATOM a)) = NOT (ATOM a)
| nnf (NOT (NOT (P))) = nnf (P)
| nnf (AND (P , Q)) = AND (nnf (P) , nnf (Q))
| nnf (NOT (AND (P , Q))) = nnf (OR (NOT (P) , NOT (Q)))
| nnf (OR (P , Q)) = OR (nnf (P) , nnf (Q))
| nnf (NOT (OR (P , Q))) = nnf (AND (NOT (P) , NOT (Q)))
;

(* D i s t r i b u t e OR over AND to get a NNF i n t o CNF *)

fun distOR (P , AND (Q, R)) = AND (distOR (P , Q) , distOR (P , R))
| distOR (AND (Q, R) , P) = AND (distOR (Q, P) , distOR (R , P))
| distOR (P , Q) = OR (P , Q)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 196 of 314 Quit

(* Now the CNF can be e a s i l y computed *)

fun c o n j o f d i s j (AND (P , Q)) = AND (c o n j o f d i s j (P) , c o n j o f d i s j (Q))
| c o n j o f d i s j (OR (P , Q)) = distOR (c o n j o f d i s j (P) , c o n j o f d i s j (Q))
| c o n j o f d i s j (P) = P
;

fun cnf (P) = c o n j o f d i s j (nnf (rewr i te (P))) ;

(* A propos i t ion in CNF i s a tautology
i f f

Every conjunct i s a tautology
i f f

Every d i s j u n c t in every conjunct conta ins both p o s i t i v e and negat ive
l i t e r a l s of a t l e a s t one atom

So we c o n s t r u c t the l i s t of a l l the p o s i t i v e and negat ive atoms in every
d i s j u n c t to check whether the l i s t s are a l l equal . We need a binary
funct ion on l i s t s to determine whether two l i s t s are d i s j o i n t

*)

fun i s P r e s e n t (a , []) = f a l s e
| i s P r e s e n t (a , b : : L) = (a = b) o r e l s e i s P r e s e n t (a , L)
;

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 197 of 314 Quit

fun d i s j o i n t ([] , M) = t rue
| d i s j o i n t (L , []) = t rue
| d i s j o i n t (L as a : : LL , M as b : :MM)=

not (i s P r e s e n t (a , M)) andalso
not (i s P r e s e n t (b , L)) andalso
d i s j o i n t (LL , MM)

;

(* ABHISHEK : Defining a t o t a l ordering on atoms (l e x i c o g r a p h i c
ordering on underlying s t r i n g s) , and extending i t to a l i s t of atoms .

*)

except ion notAtom ;

fun atomLess (a , b) = case (a , b) of
(ATOM(x) , ATOM(y)) => x<y

| (,) => r a i s e notAtom ;

fun l i s t L e s s (a , b) = case (a , b) of
(, []) => f a l s e

| ([] ,) => t rue
| (x : : lx , y : : ly) => i f atomLess (x , y) then true

e l s e i f atomLess (y , x) then f a l s e
e l s e l i s t L e s s (lx , ly) ;

(* ABHISHEK : Once we have a l i s t of f a l s i f i e r s , we would want to remove

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 198 of 314 Quit

any dupl icat ion , f i r s t l y of atoms within a f a l s i f i e r , and secondly of
f a l s i f i e r s themselves .

In order to do t h i s , we maintain a l l l i s t s in some sorted order .
Ins tead of s o r t i n g a l i s t with a poss ib ly l a r g e number of dupl ica tes ,
we check f o r d u p l i c a t e s while i n s e r t i n g , and omit i n s e r t i o n i f a
previous i n s t a n c e i s detec ted .

*)

fun merge l e s s ([] , l 2) = l 2
| merge l e s s (l1 , []) = l 1
| merge l e s s (x : : l1 , y : : l 2) =

i f l e s s (x , y) then x : : merge l e s s (l1 , y : : l 2)
e l s e i f l e s s (y , x) then y : : merge l e s s (x : : l1 , l 2)
e l s e merge l e s s (x : : l1 , l 2) ;

(* ABHISHEK : Claim i s t h a t i f a l l l i s t s are b u i l t through the above
funct ion , then there i s no need to s o r t or remove d u p l i c a t e s .

Hence a l l ’@’ operat ions have been replaced by merge .

*)

except ion not CNF ;

fun p o s i t i v e s (ATOM a) = [ATOM a]

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 199 of 314 Quit

| p o s i t i v e s (NOT (ATOM))= []
| p o s i t i v e s (OR (P , Q)) = merge atomLess (p o s i t i v e s (P) , p o s i t i v e s (Q))
| p o s i t i v e s (P) = r a i s e not CNF
;

fun negat ives (ATOM) = []
| negat ives (NOT (ATOM a))= [ATOM a]
| negat ives (OR (P , Q)) = merge atomLess (negat ives (P) , negat ives (Q))
| negat ives (P) = r a i s e not CNF
;

(* Check whether a formula in CNF i s a tautology *)

fun t a u t (AND (P , Q)) = t a u t (P) andalso t a u t (Q)
| t a u t (P) = (* i f i t i s not a con junct ion then i t must be a d i s j u n c t *)

not (d i s j o i n t (p o s i t i v e s (P) , negat ives (P)))
;

fun tautology1 (P) =

l e t val Q = cnf (P)
in t a u t (Q)
end

;

(* The main problem with the above i s t h a t i t checks whether a given
propos i t ion i s a tautology , but whenever i t i s not , i t does not y i e l d

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 200 of 314 Quit

a f a l s i f y i n g t r u t h assignment . We r e c t i f y t h i s problem below .

*)

(*
F i r s t l y , as in the case of the funct ion lookup , we w i l l assume a t r u t h
assignment i s a l i s t of atoms which are assigned the t r u t h value ” true ”
and t h a t any atom t h a t i s not present in the l i s t has been assigned
” f a l s e ” .

Assume Q i s a propos i t ion in CNF. Then i t i s only necessary to l i s t out
a l l the l i s t s of t r u t h assignments t h a t can f a l s i f y Q.

Suppose Q i s in CNF, but not n e c e s s a r i l y a tautology . Further l e t

Q = AND (D1 , . . . , Dn)

where each Di i s a d i s j u n c t i o n of l i t e r a l s . Each Di = Pi + Ni where
Pi and Ni are the l i s t s of atoms denoting the p o s i t i v e and negat ive
l i t e r a l s r e s p e c t i v e l y .

Q would be ” f a l s i f i e d ” i f a t l e a s t one of the Di can be made f a l s e . Di
can be made f a l s e only i f i t does not conta in a ”complementary pa i r ” ,
i . e . there e x i s t s no atom a such t h a t both a and ˜ a occur in Di . Hence
f o r Di to be f a l s i f i e d i t i s necessary t h a t the l i s t s Pi and Ni are
d i s j o i n t (i f there i s no atom common to Pi and Ni , there i s no

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 201 of 314 Quit

”complementary pa i r ” in Di .

S ince Di i s a d i s j u n c t i o n of l i t e r a l s , i t can be f a l s i f i e d only by
ass igning every l i t e r a l in Di the value ” f a l s e ” . This can be done only
by ass igning a l l the atoms in Pi the value ” f a l s e ” and a l l the atoms
in Ni the value ” true ” .

In other words , i f Pi and Ni are d i s j o i n t , then Ni i s a t r u t h
assignment which f a l s i f i e s the propos i t ion Q. We r e f e r to Ni as a
FALSIFIER of Q.

Therefore the FALSIFIERS of Q are e x a c t l y the l i s t of negat ive atoms
of each d i s j u n c t which does not conta in a complementary pai r . By
checking each d i s j u n c t in Q we may l i s t out ALL the p o s s i b l e
FALSIFIERS of Q.

I f Q has no FALSIFIER then no d i s j u n c t Di can be made f a l s e i . e . every
d i s j u n c t does indeed have a compementary pai r . We may then conclude
t h a t Q i s a tautology .

*)

(* The fol lowing funct ion assumes Q i s in CNF and outputs a l i s t of l i s t
of atoms t h a t can f a l s i f y Q. I f t h i s l i s t of l i s t of atoms i s empty then
c l e a r l y Q i s a tautology .

*)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 202 of 314 Quit

fun f a l s i f y (Q) =

l e t fun l i s t F a l s i f i e r s (AND (A, B)) =

merge l i s t L e s s (l i s t F a l s i f i e r s (A) , l i s t F a l s i f i e r s (B))
| l i s t F a l s i f i e r s (A) = (* Assume A i s a d i s j u n c t of l i t e r a l s *)

l e t val PLA = p o s i t i v e s (A) (* no uniq required *)
val NLA = negat ives (A)

in i f d i s j o i n t (PLA, NLA) then [NLA]
e l s e []

end
in l i s t F a l s i f i e r s (Q)
end

;

fun tautology2 (P) =

l e t val Q = cnf (P) ;
val LL = f a l s i f y (Q)

in i f n u l l (LL) then (true , [])
e l s e (f a l s e , LL)

end
;

val tautology = tautology2 ;

(*
We may use the tautology checker to prove various arguments
l o g i c a l l y va l id or l o g i c a l l y i n v a l i d . An argument c o n s i s t s

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 203 of 314 Quit

of a s e t of pr opos i t ions c a l l e d the ” hypotheses ” and a (s i n g l e)
propos i t ion c a l l e d the ” conclus ion ” . Loosely speaking , an argument
i s s i m i l a r to a theorem of mathematics . The argument
i s l o g i c a l l y va l id i f the conclus ion i s a l o g i c a l consequence of
of the hypotheses . More accura te ly , i f in every t r u t h assignment
which makes a l l the hypotheses true , the conclus ion i s a l s o i n v a r i a b l y
true then the argument i s l o g i c a l l y va l id .

Symbol ica l ly i f H1, . . . , Hm are pro pos i t i ons and C i s another
propos i t ion then the argument ({H1, . . . , Hm} , C) i s l o g i c a l l y
va l id (equiva lent ly , C i s a l o g i c a l consequence of {H1, . . . , Hm})
i f and only i f the (compound) propos i t ion

(H1 / \ . . . / \ Hm) => C

i s a tautology .

An argument which i s not l o g i c a l l y va l id i s l o g i c a l l y
i n v a l i d . In p a r t i c u l a r i f there e x i s t s a t r u t h assignment under which
a l l the hypotheses are t rue but the conclus ion i s f a l s e , then the
argument i s i n v a l i d .

Any argument i s t r i v i a l l y l o g i c a l l y va l id i f there i s no t r u t h
assignment under which every hypothesis i s t rue . In other words ,
i f the s e t of hypotheses i s an i n c o n s i s t e n t s e t then r e g a r d l e s s
of what the conclus ion is , the argument i s always l o g i c a l l y va l id .

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 204 of 314 Quit

The s e t of hypotheses {H1, . . . , Hm} i s ” i n c o n s i s t e n t ” i f and only i f
(H1 / \ . . . / \ Hm) i s a ” c o n t r a d i c t i o n ” (i t i s f a l s e f o r every t r u t h
assignment) .

*)
type Argument = Prop l i s t * Prop ;

fun showArg (A: Argument) =

l e t fun printArg (A: Argument as ([] , c)) =

(drawChar (# "-" , 8 0) ; p r i n t ("\n") ;
show (c) ; p r i n t ("\n\n")

)
| printArg (A: Argument as (p : : p l i s t , c)) =

(show (p) ; p r i n t ("\n") ;
printArg (p l i s t , c)

)
in (p r i n t ("\n\n") ; printArg (A))
end

;

fun le f tReduce (F) =

l e t except ion empty l i s t ;
fun l r ([]) = r a i s e empty l i s t
| l r ([a]) = a
| l r (a : : L) = F (a , l r (L))

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 205 of 314 Quit

in l r
end

;

val bigAND = l e f tReduce (AND) ;

fun Valid ((L , P) : Argument) =

i f n u l l (L) then tautology (P)
e l s e tautology (IMP (bigAND (L) , P))

;

fun f a l s i f y A r g ((L , P) : Argument) =

i f n u l l (L) then f a l s i f y (cnf (P))
e l s e f a l s i f y (cnf (IMP (bigAND (L) , P)))

;

end (* s t r u c t *) ;

(* open PL ; *)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 206 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 207 of 314 Quit

14. 14: The Lambda Calculus: Introduction

14: The Lambda Calculus: Introduction

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 208 of 314 Quit

14.1. Motivation for λ

As Curry points out in his classic work on Combinatory Logic,

Curiously a systematic notation for functions is lacking in ordinary mathematics. The usual notation ’ f (x)’
does not distinguish between the function itself and the value of this function for an undetermined value of
the argument.

Let us consider the nature of functions, higher-order functions (functionals) and the use of naming in
mathematics, through some examples.

Example 14.1 Let y = x2 be the squaring function on the reals. Here it is commonly understood that x is the
“independent” variable and y is the “dependent” variable when we look on it as plotting the function f (x) = x2 on
the x − y axis.

Example 14.2 Often a function may be named and written as f (x) = xn to indicate that x is the independent variable
and n is understood (somehow!) to be some constant. Here f , x and n are all names with different connotations.
Similarly in the quadratic polynomial ax2 + bx + c it is somehow understood that a, b and c denote constants and
that x is the independent variable. Implicitly by using the names like a, b and c we are endeavouring to convey the
impression that we consider the class {ax2 + bx + c | a, b, c ∈ R} of all quadratic polynomials of the given form.

Example 14.3 As another example, consider the uni-variate polynomial p(x) = x2 + 2x + 3. Is this polynomial the
same as p(y) = y2 + 2y + 3? Clearly they cannot be the same since the product p(x).p(y) is a polynomial in two
variables whereas p(x).p(x) yields a uni-variate polynomial of degree 4. However, in the case of the function f in
example 14.1 it does not matter whether we define the squaring function as f (x) = x2 or as f (y) = y2.

Example 14.4 The function f (x) = x2 is a continuous and differentiable real-valued function (in the variable x) and
its derivative is f ′(x) = 2x. Whether we regard f ′ as the name of a new function or we regard the ′ as an operation
on f which yields its derivative seems to make no difference.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 209 of 314 Quit

Example 14.5 Referring again to the functions f (x) and f ′(x) in example 14.4, it is commonly understood that
f ′(0) refers to the value of the derivative of f at 0 which is also the value of the function f ′ takes at 0. Now let us
consider f ′(x+1). Going by the commonly understood notion, since f ′(x) = 2x, we would have f ′(x+1) = 2(x+1).
Then for x = 0 we have f ′(x + 1) = f ′(0 + 1) = f ′(1) = 2× 1 = 2. We could also think of it as the function f ′(g(0))
where g is the function defined by g(x) = x + 1, then f ′(g(0)) = 2g(0) = 2 which yields the same result.

The examples above give us some idea of why there is no systematic notation for functions which
distinguishes between a function definition and the application of the same function to some argument.
It simply did not matter!

However, this ambiguity in mathematical notation could lead to differing interpretationas and results
in the context of mathematical theories involving higher-order functions (or “functionals” as they are
often referred to). One common higher order function is the derivative (the differentiation operation)
and another is the indefinite integral. Most mathematical texts emphasize the higher-order nature of a
function by enclosing their arguments in (square) brackets. Hence if O is a functional which transforms
a function f (x) into a function g(x), this fact is usually written O[f (x)] = g(x).

Example 14.6 Consider the functional E (on continuous real-valued functions of one real variable x) defined as
follows.

E[f (x)] =

f ′(0) if x = 0
f (x) − f (0)

x
if x , 0

The main question we ask now is “What does E[f (x + 1)] mean?”

It turns out that there are at least two ways of interpreting E[f (x + 1)] and unlike the case of example 14.5, the two
interpretations actually yield different results!.

1. We may interpret E[f (x + 1)] to mean that we first apply the transformation E to the function f (x) and then

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 210 of 314 Quit

substitute x + 1 for x in the resulting expression. We then have the following.

E[f (x)]

=

f ′(0) if x = 0
f (x) − f (0)

x
if x , 0

=

{
0 if x = 0
x if x , 0

= x

Since E[f (x)] = x, E[f (x + 1)] = x + 1.

2. Since f (x + 1) = f (g(x)) where g(x) = x + 1, we may interpret E[f (x + 1)] as applying the operator E to the
function h(x) = f (g(x)). Hence E[f (x + 1)] = E[h(x)] where h(x) = f (g(x)) = (x + 1)2 = x2 + 2x + 1. Noting
that h′(x) = 2x + 2, h(0) = 1 and h′(0) = 2, we get

E[h(x)]

=

 h′(0) if x = 0
h(x) − h(0)

x
if x , 0

=

{
2 if x = 0
x + 2 if x , 0

= x + 2

The last example should clearly convince the reader that there is a need to disambiguate between a
function definition and its application.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 211 of 314 Quit

14.2. The λ-abstraction

In function definitions the independent variables are “bound” by a λ which acts as a pre-declaration of
the name that is going to be used in the expression that defines a function.

The notation f (x), which is interpreted to refer to “the value of function f at x”, will be replaced by (f x)
to denote an application of a function f to the (known or unknown) value x.

In our notation of the untyped applied λ-calculus the functions and their applications in the examples in
subsection 14.1 would be rewritten as follows.

Squaring . λ x[x2] is the squaring function.

Example 14.2 . q
d f
= λ a b c x[ax2 + bx + c] refers to any quadratic polynomial with coefficients unknown

or symbolic. To obtain a particular member of this family such as 1x2 + 2x + 3, one would have to
evaluate (((q 1) 2) 3) which would yield λ x[1x2 + 2x + 3].

Example 14.3 . p
d f
= λ x[x2 + 2x + 3]. Then p(x) would be written as (p x) i.e. as the function p applied to

the argument x to yield the expression x2 + 2x + 3. Likewise p(y) would be (p y) which would yield
y2 + 2y + 3. The products (p x).(p x) and (p x).(p y) are indeed different and distinct.

Example 14.5 Let us denote the operation of obtaining the derivative of a real-valued function f of one

independent variable x by the simple symbol D (instead of the more confusing
d
dx

). Then for any

function f , (D f) would yield the derivative. In particular (D λ x[x2]) = λ x[2x] and the value of the
derivative at 0 would be obtained by the application (λ x[2x] 0) which would yield 0. Likewise the
value of the derivative at x + 1 would be expressed as the application (λ x[2x] (x + 1)). Thus for any
function f the value of its derivative at x + 1 is simply the application ((D f) (x + 1)).

The function g(x) = x + 1 would be defined as g
d f
= λ x[x + 1] and (g x) = x + 1. Thus the alternative

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 212 of 314 Quit

definition of the derivative of f at x + 1 is simply the application ((D f) (g x)).

Example 14.6 The two interpretations of the expression E[f (x + 1)] are respectively the following.

1. ((E f) (x + 1)) and

2. ((E h) x) where h
d f
= λ x[(f (g x))]

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 213 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 214 of 314 Quit

15. 15: The Pure Untyped Lambda Calculus: Basics

15: The Pure Untyped Lambda Calculus:
Basics

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 215 of 314 Quit

Pure Untyped λ-Calculus: Syntax
The language Λ of pure untyped λ-terms is the smallest set built up from
an infinite set V of variables

L,M,N ::= x Variable
λx[L] Abstraction
(L M) Application

where x ∈ V.

• A Variable denotes a possible binding in the external environment.
• An Abstraction denotes a function which takes a formal parameter.
• An Application denotes the application of a function to an actual param-

eter.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 216 of 314 Quit

Free and Bound Variables
Definition 15.1 For any term N the set of free variables and the set of all
variables are defined by induction on the structure of terms.

N FV(N) Var(N)
x {x} {x}
λx[L] FV(L) − {x} Var(L) ∪ {x}
(L M) FV(L) ∪ FV(M) Var(L) ∪ Var(M)

• The set of bound variables BV(N) = Var(N) − FV(N).
• The same variable name may be used with different bindings in a single

term (e.g. (λx[x] λx[(x y)]))
• The brackets “[” and “]” delimit the scope of the bound variable x in the

term λx[L].
•Combinators: Λ0 ⊆ Λ is the set of λ-terms with no free variables.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 217 of 314 Quit

Notational Conventions
To minimize use of brackets unambiguously
1. λx1x2 . . . xm[L] denotes λx1[λx2[. . . λxm[L] · · ·]] i.e. L is the scope of

each of the variables x1, x2, . . . xm.
2. (L1 L2 · · · Lm) denotes (· · · (L1 L2) · · · Lm) i.e. application is left-

associative.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 218 of 314 Quit

Substitution
Definition 15.2 For any terms L, M and N and any variable x, the substi-
tution of the term N for a variable x is defined as follows:
{N/x}x ≡ N
{N/x}y ≡ y if y . x
{N/x}λx[L] ≡ λx[L]
{N/x}λy[L] ≡ λy[{N/x}L] if y . x and y < FV(N)
{N/x}λy[L] ≡ λz[{N/x}{z/y}L] if y . x and y ∈ FV(N) and z is “fresh”
{N/x}(L M) ≡ ({N/x}L {N/x}M)

• In the above definition it is necessary to ensure that the free variables
of N continue to remain free after substitution.
• The phrase “z is fresh” may be taken to mean z < FV(N) ∪ Var(L).
• z could be “fresh” even if z ∈ BV(N).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 219 of 314 Quit

α-equivalence
Definition 15.3 (α-equivalence) λx[L] ≡α λy[{y/x}L] provided y <
Var(L).

•Here again if y ∈ FV(L) it must not be captured by a change of bound
variables.
•On the other hand if y ∈ BV(L) then the substitution will replace all free

occurrences of x in L and bind some of them to an inner binding of y.

In the sequel we will often omit the subscript α and consider two alpha
equivalent terms to be syntactically equivalent.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 220 of 314 Quit

Untyped λ-Calculus: Basic β-Reduction
Definition 15.4
• Any (sub-)term of the form (λx[L] M) is called a β-redex
• Basic β-reduction is the relation

(λx[L] M)→β {M/x}L′ (6)

where L′ ≡α L.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 221 of 314 Quit

Untyped λ-Calculus: 1-step β-Reduction
Definition 15.5 A 1-step β-reduction→1

β is the smallest (under the ⊆
ordering) relation such that

β1
L→β M
L→1

β M β1Abs
L→1

β M

λx[L]→1
β λx[M]

β1AppL
L→1

β M

(L N)→1
β (M N)

β1AppR
L→1

β M

(N L)→1
β (N M)

•→1
β is the compatible closure of basic β-reduction to all contexts.

•We will often omit the superscript 1 as understood.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 222 of 314 Quit

Untyped λ-Calculus: β-Reduction
Definition 15.6
• For all integers n ≥ 0, n-step β-reduction→n

β is defined by induction on
1-step β-reduction

βnBasis L→0
β

L βnInduction
L→m

β M→1
β N

L→m+1
β N

(m ≥ 0)

• β-reduction→∗β is the reflexive-transitive closure of 1-step β-reduction.
That is,

β∗
L→n

β M
L→∗β M (n ≥ 0)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 223 of 314 Quit

Untyped λ-Calculus: Normalization
Definition 15.7
• A term is called a β-normal form (β-nf) if it has no β-redexes.
• A term is weakly normalising (β-WN) if it reduces to a β-normal form.
• A term L is strong normalising (β-SN) if it has no infinite reduction se-

quence L→1
β L1→

1
β L2→

1
β · · ·

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 224 of 314 Quit

Untyped λ-Calculus: Examples
Example 15.8

1. K
d f
= λx y[x], I

d f
= λx[x], S

d f
= λx y z[((x z) (y z))], ω

d f
= λx[(x x)] are all

β-nfs.

2. Ω
d f
= (ω ω) has no β-nf. Hence it is neither weakly nor strongly normal-

ising.
3. (K (ω ω)) cannot reduce to any normal form because it has no finite

reduction sequences. All its reductions are of the form

(K (ω ω))→1
β (K (ω ω))→1

β (K (ω ω))→1
β · · ·

or at some point it could transform to

(K (ω ω))→1
β λy[(ω ω)]→1

β λy[(ω ω)]→1
β · · ·

4. ((K ω) Ω) is weakly normalising because it can reduce to the normal
form ω but it is not strongly normalising because it also has an infinite
reduction sequence

((K ω) Ω)→1
β ((K ω) Ω)→1

β · · ·

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 225 of 314 Quit

Examples of Strong Normalization
Example 15.9
1. ((K ω) ω) is strongly normalising because it reduces to the normal form
ω in a single step.

2. Consider the term ((S K) K). Its reduction sequences go as follows:

((S K) K)→1
β λz[((K z) (K z))]→1

β λz[z] ≡ I

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 226 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 227 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 228 of 314 Quit

16. 16: Notions of Reduction

16: Notions of Reduction

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 229 of 314 Quit

Reduction
For any function such as p = λx[3.x.x + 4.x + 1],

(p 2) = 3.2.2 + 4.2 + 1 = 21

However there is something asymmetric about the identity, in the sense
that while (p 2) deterministically produces 3.2.2 + 4.2 + 1 which in turn
simplifies deterministically to 21, it is not possible to deterministically in-
fer that 21 came from (p 2). It would be more accurate to refer to this
sequence as a reduction sequence and capture the asymmetry as follows:

(p 2) ; 3.2.2 + 4.2 + 1 ; 21

And yet they are behaviourally equivalent and mutually substitutable in all
contexts (referentially transparent).

1. Reduction (specifically β-reduction) captures this asymmetry.
2. Since reduction produces behaviourally equal terms we have the follow-

ing notion of equality.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 230 of 314 Quit

Untyped λ-Calculus: β-Equality
Definition 16.1 β-equality or β-conversion (denoted =β) is the smallest
equivalence relation containing β-reduction (→∗β).

The following are equivalent definitions.

1. =β is the reflexive-symmetric-transitive closure of 1-step β-reduction.
2. =β is the smallest relation defined by the following rules.

=β Basis
L→∗β M
L =β M

=β Reflexivity L =β L

=β Symmetry
L =β M
M =β L =β Transitivity

L =β M, M =β N
L =β N

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 231 of 314 Quit

Compatibility
Definition 16.2 A binary relation ρ ⊆ Λ × Λ is said to be compatible if
L ρ M implies
1. for all variables x, λx[L] ρ λx[M] and
2. for all terms N, (L N) ρ (M N) and (N L) ρ (N M).

Example 16.3
1. ≡α is a compatible relation
2.→1

β is by definition a compatible relation.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 232 of 314 Quit

Compatibility of Beta-reduction and
Beta-Equality

Theorem 16.4 β-reduction→∗β and β-equality =β are both compatible re-
lations.

2

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 233 of 314 Quit

Proof of theorem 16.4

Proof: (→∗β) Assume L →∗β M. By definition of β-reduction L →n
β M for some n ≥ 0. The proof proceeds

by induction on n

Basis. n = 0. Then L ≡M and there is nothing to prove.

Induction Hypothesis (IH).

The proof holds for all k, 0 ≤ k ≤ m for some m ≥ 0.

Induction Step. For n = m + 1, let L ≡ L0 →
m
β Lm →

1
β M. Then by the induction hypothesis and the

compatibility of→1
β we have

By definition of→n
β

for all x ∈ V, λx[L]→m
β λx[Lm], λx[Lm]→1

β λx[M] λx[L]→n
β λx[M],

for all N ∈ Λ, (L N)→m
β (Lm N), (Lm N)→1

β (M N) (L N)→n
β (M N)

for all N ∈ Λ, (N L)→m
β (N Lm), (N Lm)→1

β (N M) (N L)→n
β (N M)

End (→∗β)

(=β) Assume L =β M. We proceed by induction on the length of the proof of L =β M using the definition
of β-equality.

Basis. n = 1. Then either L ≡ M or L →∗β M. The case of reflexivity is trivial and the case of L →∗β M
follows from the previous proof.

Induction Hypothesis (IH).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 234 of 314 Quit

For all terms L and M, such that the proof of L =β M requires less than n steps for n ≥ 1, the compatibility
result holds.

Induction Step. Suppose the proof requires n steps and the last step is obtained by use of either =β
Symmetry or =β Transitivity on some previous steps.

Case (=β Symmetry). Then the (n− 1)-st step proved M =β L. By the induction hypothesis and then by
applying =β Symmetry to each case we get

By =β Symmetry
for all variables x, λx[M] =β λx[L] λx[L] =β λx[M]
for all terms N, (M N) =β (L N) (L N) =β (M N)
for all terms N, (N M) =β (N L) (N M) =β (N L)

Case (=β Transitivity). Suppose L =β M was inferred in the n-th step from two previous steps which
proved L =β P and P =β M for some term P. Then again by induction hypothesis and then applying
=β Transitivity we get

By =β Transitivity
for all variables x, λx[L] =β λx[P], λx[P] =β λx[M] λx[L] =β λx[M]
for all terms N, (L N) =β (P N), (P N) =β (M N) (L N) =β (M N)
for all terms N, (N L) =β (N P), (N P) =β (N M) (N L) =β (N P)

End (=β)

QED

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 235 of 314 Quit

Eta reduction
Given any term M and a variable x < FV(M), the syntax allows us to
construct the term λx[(M x)] such that for every term N we have

(λx[(M x)] N)→1
β (M N)

In other words,
(λx[(M x)] N) =β (M N) for all terms N

We say that the two terms λx[(M x)] and M are extensionally equiva-
lent i.e. they are syntactically distinct but there is no way to distinguish
between their behaviours.
So we define basic η-reduction as the relation

λx[(L x)]→η L provided x < FV(L) (7)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 236 of 314 Quit

Eta-Reduction and Eta-Equality
The following notions are then defined similar to the corresponding no-
tions for β-reduction.

• 1-step η-reduction→1
η is the closure of basic η-reduction to all contexts,

•→n
η is defined by induction on 1-step η-reduction

• η-reduction→∗η is the reflexive-transitive closure of 1-step η-reduction.

• the notions of strong and weak η normal forms η-nf.
• the notion of η-equality or η-conversion denoted by =η.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 237 of 314 Quit

Exercise 16.1

1. Prove that η-reduction and η-equality are both compatible relations.

2. Prove that η-reduction is strongly normalising.

3. Define basic βη-reduction as the application of either (6) or (7). Now prove that →1
βη, →

∗

βη and =βη are all
compatible relations.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 238 of 314 Quit

The Paradoxical Combinator
Example 16.5 Consider Curry’s paradoxical combinator

YC
d f
= λ f [(C C)]

where
C

d f
= λx[(f (x x))]

For any term L we have

(YC L) →1
β (λx[(L (x x))] λx[(L (x x))])
≡α (λy[(L (y y))] λx[(L (x x))])
→

1
β (L (λx[(L (x x))] λx[(L (x x))])︸ ︷︷ ︸)

=β (L
︷ ︸︸ ︷
(YC L))

Hence (YC L) =β (L (YC L)) . However (L (YC L)) will never β-reduce to
(YC L).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 239 of 314 Quit

Recursion and the Y combinator.

Since the lambda calculus only has variables and expressions and there is no place for names themselves
(we use names such as K and S for our convenience in discourse, but the language itself allows only
(untyped) variables and is meant to define functions anonymously as expressions in the language). In
such a situation, recursion poses a problem in the language.

Recursion in most programming languages requires the use of an identifier which names an expression
that contains a call to the very name of the function that it is supposed to define. This is at variance with
the aim of the lambda calculus wherein the only names belong to variables and even functions may be
defined anonymously as mere expressions.

This notion of recursive definitions may be generalised to a system of mutually recursive definitions.

The name of a recursive function, acts as a place holder in the body of the definition (which in turn has the
name acting as a place holder for a copy of the body of the definition and so on ad infinitum). However
no language can have sentences of infinite length.

The combinator YC helps in providing copies of any lambda term L whenever demanded in a more
disciplined fashion. This helps in the modelling of recursive definitions anonymously. What the YC

combinator provides is mechanism for recursion “unfolding” which is precisely our understanding of
how recursion should work. Hence it is easy to see from (YC L) =β (L (YC L)) that

(YC L) =β (L (YC L)) =β (L (L (YC L))) =β (L (L (L (YC L)))) =β · · ·

Many other researchers have defined other combinators which mimic the behaviour of the combinator

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 240 of 314 Quit

YC. Of particular interest is Turing’s combinator YT
d f
= (T T) where T

d f
= λx y[(y ((x x) y))]. Notice that

(T T)
≡ (λx y[(y ((x x) y))] T)
→

1
β λy[(y ((T T) y))]
≡ λy[(y (YT y))]

from which, by compatible closure, for any term L we get

(YT L)
≡ ((T T) L)
→
∗

β (λy[(y (YT y))] L)
→

1
β (L (YT L))

Thus YT is also a recursion unfolding combinator yielding

(YT L) =β (L (YT L)) =β (L (L (YT L))) =β (L (L (L (YT L)))) =β · · ·

Notice however that unlike the case of (YC L) which never directly reduces to (L (YC L)), (YT L) does directly
reduce to its unfolded version. That is,

(YT L) −→∗β (L (YT L)) −→∗β (L (L (YT L))) −→∗β (L (L (L (YT L)))) −→∗β · · ·

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 241 of 314 Quit

17. 17: Representing Data in the Untyped Lambda Calculus

The Boolean Constants

True
d f
= λx[λy[x]] (True)

False
d f
= λx[λy[y]] (False)

Negation

Not
d f
= λx[((x False) True)] (not)

The Conditional

Ite
d f
= λx y z[(x y z)] (ite)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 242 of 314 Quit

Exercise 17.1

1. Prove that

(Not True) =βη False (8)
(Not False) =βη True (9)

2. Prove that

(Ite True L M) =βη L (10)
(Ite False L M) =βη M (11)

(12)

3. We know from Theorem 7.7 that the boolean constants and the conditional form a functionally complete (adequate)
set for propositional logic. Use the conditional combinator Ite and the constant combinators True and False to
express the following boolean operators upto βη-equivalence.

• Not. Verify that it is α-equivalent to (not).
• And: conjunction
• Or: disjunction
• Xor: exclusive OR

4. Prove the de Morgan laws for the boolean combinators, using only βη-reductions.

5. Does ((And K) I) have a βη-normal form?

http://www.cse.iitd.ac.in/~sak
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf#p329

Home Page JJ J I II
ILFP

Go Back Full Screen Close 243 of 314 Quit

The Church Numerals There are many ways to represent the natural numbers as lambda expressions.
Here we present Church’s original encoding of the naturals in the λ-calculus. We represent a natural n as
a combinator n.

0
d f
= λ f x[x] (numeral-0)

1
d f
= λ f x[(f x)] (numeral-1)
. . .

n + 1
d f
= λ f x[(f (f n x))] (numeral-n+1)
. . .

where (f n x) denotes the n-fold application of f to x. That is, (f n x) = (f (f . . . (f x) . . .))︸ ︷︷ ︸
f applied n times

.

“Arithmagic”

We follow the operators of Peano arithmetic and the postulates of first order arithmetic (as treated in any
course in first order logic) and obtain “magically”1 the following combinators for the basic operations of
arithmetic and checking for 0.

1There are geniuses out there somewhere who manage to come up with these things. Don’t ask me how they thought of them!

http://www.cse.iitd.ac.in/~sak
http://www.cse.iitd.ernet.in/~sak/courses/ilcs/2018-19/ilcs.pdf

Home Page JJ J I II
ILFP

Go Back Full Screen Close 244 of 314 Quit

Succ
d f
= λn f x[((n f) (f x))] (Succ)

Add
d f
= λm n f x[((m f) (n f x))] (Add)

IsZero
d f
= λn[(n λx[False] True)] (13)

The only way to convince oneself that the above are correct, is to verify that they do produce the expected
results.

Exercise 17.2

1. Prove the following.

(a) (Succ 0) =βη 1
(b) (Succ n) =βη n + 1
(c) (IsZero 0) =βη True
(d) (IsZero (Succ n)) =βη False
(e) (Add 0 n) =βη n
(f) (Add m 0) =βη m
(g) (Add m n) =βη p where p denotes the combinator for p = m + n

2. Try to reduce (Add K S) to its β-normal form. Can you interpret the resulting lambda term as representing
some meaningful function?

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 245 of 314 Quit

Ordered Pairs and Tuples

Pair
d f
= λx y p[(p x y)] (14)

Fst
d f
= λp[(p True)] (15)

Snd
d f
= λp[(p False)] (16)

(17)

We may define an n-tuple inductively as a pair consisting of the first element of the n-tuple and an n − 1
tuple of the other n − 1 elements. Let 〈L,M〉 represent a pair. We then have for any n > 2

〈L1, . . . ,Ln〉 = (Pair L1 〈L2, . . . ,Ln〉)

Note the isomorphism between lists of length n and n-tuples for each n ≥ 2 (ordered pairs are 2-tuples).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 246 of 314 Quit

Exercise 17.3

1. Let P
d f
= (Pair L M). Verify that (Pair (Fst P) (Snd P)) =βη P.

2. Let Sfst
d f
= (Fst S) and Ssnd

d f
= (Snd S).

(a) Compute the βη normal form of (Pair Sfst Ssnd)? Is it βη-equal to S?
(b) Now compute the βη normal forms of (Fst (Pair Sfst Ssnd)) and (Snd (Pair Sfst Ssnd)). What are their

βη normal forms?
(c) What can you conclude from the above?

3. For any k, 0 ≤ k < n, define combinators which extract the k-th component of an n-tuple.

4. (a) Define a combinator Bintree that constructs binary trees from λ-terms with node labels drawn from the
Church numerals.

(b) Define combinators Root, Lst and Rst which yield respectively the root, the left subtree and the right subtree
of a binary tree.

(c) Prove that for any such binary tree B expressed as a λ-term, (Bintree (Root B) (Lst B) (Rst B)) =βη B.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 247 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 248 of 314 Quit

18. 18: Confluence Definitions

18: Confluence

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 249 of 314 Quit

Reduction Relations
Definition 18.1 For any binary relation ρ on Λ

1. ρ1 is the compatible closure of ρ

2. ρ+ is the transitive closure of ρ1

3. ρ∗ is the reflexive-transitive-closure of ρ1 and is a preorder

4. ((ρ1) ∪ (ρ1)−1)∗ (denoted =ρ) is the reflexive-symmetric-transitive clo-
sure of ρ1 and is an equivalence relation.

5. =ρ is also called the equivalence generated by ρ.

We will often use −→ (suitably decorated) as a reduction relation instead
of ρ. Then −→1, −→+, −→∗ and ∗

←→ denote respectively the compat-
icble closure, the transitive closure, the reflexive transitive closure and
the equivalence generated by −→

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 250 of 314 Quit

The Diamond Property
Definition 18.2 Let ρ be any relation on terms. ρ has the diamond prop-
erty if for all L, M, N,

M
ρ

L
ρ

N

⇒ ∃P :

M
ρ

P
ρ

N

We often use a decorated version of the symbol −→ for a reduction rela-
tion and depict the diamond property as

M

−
→

−
→

L ⇒ ∃ P
−
→

−
→

N

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 251 of 314 Quit

Reduction Relations: Termination
Let −→ be a reduction relation, −→∗ the least preorder containing −→ and
∗
←→ the least equivalence relation containing −→∗. Then
Definition 18.3 −→ is terminating iff there is no infinite sequence of the
form

L0 −→ L1 −→ · · ·

Lemma 18.4 −→η is a terminating reduction relation.

Proof: By induction on the structure of terms. QED

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 252 of 314 Quit

18.1. Why confluence?

We are mostly interested in β-reduction which is not guaranteed to terminate. We already know that
there are several terms which are only weakly normalising (β-WN). This means that there are several
possible reduction sequences, some of which may yield β-normal forms while the others may yield
infinite computations. Hence in order to obtain normal forms for such terms we need to schedule the
β-reductions carefully to be guaranteed a normal form. The matter would be further complicated if there
are multiple unrelated normal forms.

Each β-reduction step may reveal fresh β-redexes. This in turn raises the disquieting possibility that
each termination sequence may yield a different β-normal form. If such is indeed the case, then it raises
fundamental questions on the use of β-reduction (or function application) as a notion of reduction. If beta-
reduction is to be considered fundamental to the notion of computation then all β-reduction sequences
that terminate in β-nfs must yield the same β-nf upto α-equivalence.

Hence our interest in the notion of confluence. Since the issue of confluence of β-reduction is rather
complicated we approach it in terms of inductively easier notions such as local confluence, and semi-
confluence which finally lead up to confluence and the Church-Rosser property.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 253 of 314 Quit

Reduction: Local Confluence
Definition 18.5 −→ is locally confluent if for all L, M, N,

N←− L −→M⇒ ∃P : N −→∗ P ∗←−M

which we denote by
M

−
→

−
→
∗

L ⇒ ∃ P
−
→

−
→

∗

N

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 254 of 314 Quit

Reduction: Semi-confluence
Definition 18.6 −→ is semi-confluent if for all L, M, N,

N←− L −→∗ M⇒ ∃P : N −→∗ P ∗←−M

which we denote by
M

−
→

−
→
∗

L ⇒ ∃ P
−
→
∗

−
→

∗

N

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 255 of 314 Quit

Reduction: Confluence
Definition 18.7 −→ is confluent if for all L, M, N,

N ∗←− L −→∗ M⇒ ∃P : N −→∗ P ∗←−M

which we denote as
M

−
→

∗ −
→
∗

L ⇒ ∃ P
−
→
∗

−
→

∗

N
Fact 18.8 Any confluent relation is also semi-confluent.

�

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 256 of 314 Quit

Reduction: Church-Rosser
Definition 18.9 −→ is Church-Rosser if for all L, M,

L ∗
←→M⇒ ∃P : L −→∗ P ∗←−M

which we denote by
L ∗

←→ M
−
→
∗ ⇓

−
→

∗

∃P

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 257 of 314 Quit

Equivalence Characterization
Lemma 18.10
1. ∗
←→ is the least equivalence containing −→.

2. ∗
←→ is the least equivalence containing −→∗.

3. L ∗
←→ M if and only if there exists a finite sequence L ≡

M0,M1, . . .Mm ≡M, m ≥ 0 such that for each i, 0 ≤ i < m, Mi −→Mi+1
or Mi+1 −→Mi. We represent this fact more succinctly as

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mm ≡α M (18)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 258 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 259 of 314 Quit

Proof of lemma 18.10

Proof:

1. Just prove that ∗
←→ is a subset of every equivalence that contains −→.

2. Use induction on the length of proofs to prove this part

3. For the last part it is easy to see that the existence of the “chain equation” (18) implies L ∗
←→ M by transitivity. For the

other part use induction on the length of the proof.

QED

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 260 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 261 of 314 Quit

19. 19: Confluence Characterizations

20: Confluence Characterization

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 262 of 314 Quit

The Church-Rosser Property

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 263 of 314 Quit

Confluence and Church-Rosser
Lemma 19.1 Every confluent relation is also semi-confluent

�

Theorem 19.2 The following statements are equivalent for any reduction
relation −→.
1. −→ is Church-Rosser.
2. −→ is confluent.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 264 of 314 Quit

Proof of theorem 19.2

Proof: (1⇒ 2) Assume −→ is Church-Rosser and let

N ∗
←− L −→∗ M

Clearly then N ∗
←→M. If −→ is Church-Rosser then

∃P : N −→∗ P ∗←−M

which implies that it is confluent.

(2⇒ 1) Assume −→ is confluent and let L ∗
←→M. We proceed by induction on the length of the chain (18).

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mm ≡α M

Basis. m = 0. This case is trivial since for any P, L −→∗ P iff M −→∗ P

Induction Hypothesis (IH).

The claim is true for all chains of length k, 0 ≤ k < m.

Induction Step. Assume the chain is of length m = k + 1. i.e.

L ≡α M0 −→ /←−M1 −→ /←− · · · −→ /←−Mk −→ /←−Mk+1 ≡α M

Case Mk −→M. Then by the induction hypothesis and semi-confluence we have

L ∗
←→ Mk

−
→
∗ ⇓

−
→

∗

−
→

∃Q M
−
→
∗ ⇓

−
→

∗

∃P

which proves the claim.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 265 of 314 Quit

Case Mk ←−M. Then the claim follows from the induction hypothesis and the following diagram

L ∗
←→ Mk ←−M

−
→
∗ ⇓

−
→

∗

∃P

QED

Lemma 19.3 If a terminating relation is locally confluent then it is semi-confluent.

Proof: Assume L −→ M and L −→∗ N. We need to show that there exists P such that M −→∗ P and N −→∗ P. We prove this
by induction on the length of L −→∗ N. If L ≡α N then P ≡α M, otherwise assume L −→ N1 −→ · · · −→ Nn = N for some n > 0.
By the local confluence we have there exists P1 such that M −→∗ P1. By successively applying the induction hypothesis we get
terms P2, . . . ,Pn such that P j−1 −→

∗ P j and N j −→
∗ P j for each j, 1 ≤ j ≤ m. In effect we complete the following rectangle

L −→ N1 −→ N2 −→ · · · −→ Nn ≡M
↓ ↓ ↓ · · · ↓

M −→ P1 −→ P2 −→ · · · −→ Pn

QED

From lemma 19.3 and theorem 19.2 we have the following theorem.

Theorem 19.4 If a terminating relation is locally confluent then it is confluent.

Proof:

−→ on Λ is given to be terminating and locally confluent. We need to show that it is confluent. That is for any L, we are given
that

1. there is no infinite sequence of reductions of L, i.e. every maximal sequence of reductions of L is of length n for some n ≥ 0.

2.
N1

1
←− L −→1 M1 ⇒ ∃P : M1 −→

∗ P ∗←− N1 (19)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 266 of 314 Quit

We need to show for any term L that
N ∗
←− L −→∗ M⇒ ∃S : M −→∗ S ∗←− N (20)

Let L be any term. Consider the graph G(L) = 〈Γ(L),−→1
〉 such that Γ(L) = {M | L −→∗ M}. Since −→ is a terminating reduction

Fact 19.5 The graph G(L) is acyclic for any term L.

If G(L) is not acyclic, there must be a cycle of length k > 0 such that M0 −→
1 M1 −→

1
· · · −→

1 Mk−1 −→
1 M0 which implies there

is also an infinite reduction sequence of the form L −→∗ M0 −→
k M0 −→

k
· · · which is impossible.

Since there are only a finite number of sub-terms of L that may be reduced under −→, for each L there is a maximum number
p ≥ 0, which is the length of the longest reduction sequence.

Fact 19.6 For every M ∈ Γ(L),

1. G(M) is a sub-graph of G(L) and

2. For every M ∈ Γ(L) − {L}, the length of the longest reduction sequence of M is less than p.

We proceed by induction on p.

Basis. p = 0. Then Γ(L) = {L} and there are no reductions possible, so it is trivially confluent.

Induction Hypothesis (IH).

For any L whose longest reduction sequence is of length k, 0 ≤ k < p, property (20) holds.

Induction Step. Assume L is a term whose longest reduction sequence is of length p > 0. Also assume N ∗
←− L −→∗ M i.e.

∃m,n ≥ 0 : N n
←− L −→m M.

Case m = 0. If m = 0 then M ≡α L and hence S ≡α N.
Case n = 0. Then N ≡α L and we have S ≡α M.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 267 of 314 Quit

Figure 1: Case m > 0 and n > 0

1

1

L

M

M

N

N

P

Q

R

S

*

*

*

*

*

*

*

*

1

1

*

Case m,n > 0. Then consider M1 and N1 such that

N ∗
←− N1

1
←− L −→1 M1 −→

∗ M (21)

See figure (1). By (19), ∃P : M1 −→
∗ P ∗←− N1. Clearly M1,N1,P ∈ Γ(L) − {L}. Hence by fact 19.6, G(M1), G(N1) and G(P) are

all sub-graphs of G(L) and all their reduction sequences are of length smaller than p. Hence by induction hypothesis, we
get

P ∗←−M1 −→
∗ M⇒ ∃Q : M −→∗ Q ∗

←− P (22)

and
N ∗
←− N1 −→

∗ P⇒ ∃R : P −→∗ R ∗←− N (23)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 268 of 314 Quit

But by (22) and (23) and the induction hypothesis we have

R ∗←− P −→∗ Q⇒ ∃S : Q −→∗ S ∗←− R (24)

Combining (24) with (21), (22) and (23) we get

N ∗
←− L −→∗ M⇒ ∃S : M −→∗ S ∗←− N (25)

QED

Theorem 19.7 If a terminating relation is locally confluent then it is Church-Rosser.

Proof: Follows from theorem 19.4 and theorem 19.2 QED

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 269 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 270 of 314 Quit

20. 20: The Church-Rosser Property

19: The Church-Rosser Property

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 271 of 314 Quit

Parallel Beta Reduction
Definition 20.1 The parallel-β or ||β reduction is the smallest relation for
which the following rules hold.

||β1 L −→1
||β

L ||β1Abs1
L −→1

||β
L′

λx[L] −→1
||β
λx[L′]

||β1App
L −→1

||β
L′,M −→1

||β
M′

(L M) −→1
||β

(L′ M′)
||β1Abs2

L −→1
||β

L′,M −→1
||β

M′

(λx[L] M) −→1
||β
{M′/x}L′

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 272 of 314 Quit

Parallel Beta: The Diamond Property
Lemma 20.2
1. L −→1

β L′⇒ L −→1
||β

L′.

2. L −→1
||β

L′⇒ L −→∗β L′.

3. The smallest preorder containing −→1
||β

is −→∗
||β

=−→∗β.

4. If L −→1
β L′ and M −→1

||β
M′ then {M/x}L −→1

||β
{M′/x}L′.

Proof: By induction on the structure of terms or by induction on the
number of steps in any proof. QED

Theorem 20.3 −→1
||β

has the diamond property.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 273 of 314 Quit

Proof of theorem 20.3

Proof: We need to prove for all L
N 1
||β←− L −→1

||β M⇒ ∃P : N −→1
||β P 1

||β←−M

We prove this by induction on the structure of L and a case analysis of the rule applied in definition 20.1.

Case L ≡ x ∈ V. Then L ≡M ≡ N ≡ P.

Before dealing with the other inductive cases we dispose of some trivial sub-cases that arise in some or all of them.

Case L ≡α M. Choose P ≡α N to complete the diamond.

Case L ≡α N. Then choose P ≡α M.

Case M ≡α N. Then there is nothing to prove.

In the sequel we assume N .α L .α M .α N and proceed by induction on the structure of L.

Case L ≡ λx[L1]. Then clearly M and N were both obtained in proofs whose last step was an application of rule ||β1Abs1 and so
M ≡ λx[M1] and N ≡ λx[N1] for some M1 and N1 respectively and hence N1

1
||β←− L1 −→

1
||β M1. By the induction hypothesis we

have
∃P1 : N1 −→

1
||β P1

1
||β←−M1

Hence by choosing P ≡ λx[P1] we obtain the required result.

Case L ≡ (L1 L2) and L1 is not an abstraction.

The rule ||β1App is the only rule that must have been applicable in the last step of the proofs of N 1
||β←− L −→1

||β M. Clearly then
there exist M1, M2, N1, N2 such that N1

1
||β←− L1 −→

1
||β M1 and N2

1
||β←− L2 −→

1
||β M2. Again by the induction hypothesis, we have

∃P1 : N1 −→
1
||β P1

1
||β←−M1

and
∃P2 : N2 −→

1
||β P2

1
||β←−M2

By choosing P ≡ (P1 P2) we obtain the desired result.

Case L ≡ (λx[L1] L2).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 274 of 314 Quit

Here we have four sub-cases depending upon whether each of M and N were obtained by an application of ||β1App or ||β1Abs2.
Of these the sub-case when both M and N were obtained by applying ||β1App is easy and similar to the previous case. That
leaves us with three subscases.

Sub-case: Both M and N were obtained by applying rule ||β1Abs2.
Then we have

{N2/x}N1 ≡ N 1
||β←− L ≡ (λx[L1] L2) −→1

||β M ≡ {M2/x}M1

for some M1, M2, N1, N2 such that
N1

1
||β←− L1 −→

1
||β M1

and
N2

1
||β←− L2 −→

1
||β M2

By the induction hypothesis
∃P1 : N1 −→

1
||β P1

1
||β←−M1

and
∃P2 : N2 −→

1
||β P2

1
||β←−M2

and the last part of lemma 20.2 we have

∃P ≡ {P2/x}P1 : N −→1
||β P 1

||β←−M

completing the proof.
Sub-case: M was obtained by applying rule ||β1Abs2 and N by ||β1App.
Then we have the form

(λx[N1] N2) ≡ N 1
||β←− L ≡ (λx[L1] L2) −→1

||β M ≡ {M2/x}M1

where again
N1

1
||β←− L1 −→

1
||β M1

and
N2

1
||β←− L2 −→

1
||β M2

By the induction hypothesis
∃P1 : N1 −→

1
||β P1

1
||β←−M1

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 275 of 314 Quit

and
∃P2 : N2 −→

1
||β P2

1
||β←−M2

and finally we have
∃P ≡ {P2/x}P1 : N −→1

||β P 1
||β←−M

completing the proof.
Sub-case: M was obtained by applying rule ||β1App and N by ||β1Abs2.
Similar to the previous sub-case.

QED

Theorem 20.4 −→1
||β is confluent.

Proof: We need to show that for all L, M, N,

N ∗

||β←− L −→∗
||β M⇒ ∃P : N −→∗

||β P ∗
||β←−M

We prove this by induction on the length of the sequences

L −→1
||β M1 −→

1
||β M2 −→

1
||β · · · −→

1
||β Mm ≡M

and
L −→1

||β N1 −→
1
||β N2 −→

1
||β · · · −→

1
||β Nn ≡ N

where m,n ≥ 0. More specifically we prove this by induction on the pairs of integers (j, i) bounded by (n,m), where (j, i) < (j′, i′)
if and only if either j < j′ or (j = j′) and i < i′. The interesting cases are those where both m,n > 0. So we repeatedly apply
theorem 20.3 to complete the rectangle

L −→
1
||β M1 −→

1
||β M2 −→

1
||β · · · −→

1
||β Mm ≡M

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1

N1 −→
1
||β P11 −→

1
||β P12 −→

1
||β · · · −→

1
||β P1m

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1
...

...
... · · ·

...

||β↓1 ||β↓1 ||β↓1 · · · ||β↓1

Nn −→
1
||β Pn1 −→

1
||β Pn2 −→

1
||β · · · −→

1
||β Pnm ≡ P

QED �

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 276 of 314 Quit

Corollary 20.5 −→1
β is confluent.

Proof: Since −→∗β=−→
∗

||β it follows from theorem 20.4 that −→1
β is confluent. QED

Corollary 20.6 If a term reduces to a β-normal form then the normal form is unique (upto ≡α).

Proof: If N1
∗

β←− L −→∗β N2 and both N1 N2 are β-nfs, then by the corollary 20.5 they must both be β-reducible to a third element
N3 which is impoosible if both N1 and N2 are β-nfs. Hence β-nfs are unique whenever they exist. QED

Corollary 20.7 −→1
β is Church-Rosser.

Proof: Follows from corollary 20.5 and theorem 19.2. QED

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 277 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 278 of 314 Quit

21. 21: An Applied λ-Calculus

An Applied Lambda-Calculus

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 279 of 314 Quit

A Simple Language of Terms: FL0
Let X be an infinite collection of variables (names). Consider the lan-
guage (actually a collection of abstract syntax trees) of terms TΩ(X) de-
fined by the following constructors (along with their intended meanings).

Construct Arity Informal Meaning
Z 0 The number 0
T 0 The truth value true
F 0 The truth value false
P 1 The predecessor function on numbers
S 1 The successor function on numbers
ITE 3 The if-then-else construct (on numbers and truth values)
IZ 1 The is-zero predicate on numbers
GTZ 1 The greater-than-zero predicate on numbers

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 280 of 314 Quit

FL(X): Language, Datatype or Instruction
Set?

The set of terms TΩ(X) may be alternatively defined by the BNF:

t ::= x ∈ X Z (P t) (S t) T F (ITE 〈t, t1, t0〉) (IZ t) (GTZ t)
(26)

• It could be thought of as a user-defined data-type
• It could be thought of as the instruction-set of a particularly simple

hardware machine.
• It could be thought of as a simple functional programming language

without recursion.
• It is a language with two simple types of data: integers and booleans
•Notice that the constructor (ITE 〈t, t1, t0〉) is overloaded.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 281 of 314 Quit

Extending the language
To make this simple language safe we require
Type-checking : to ensure that arbitrary expressions are not mixed in

ways they are not “intended” to be used. For example
• t cannot be a boolean expression in S(t), P(t), IZ(t) and GTZ(t)
• ITE(t, t1, t0) may be used as a conditional expression for both integers

and booleans, but t needs to be a boolean and either both t1 and t0
are integer expressions or both are boolean expressions.

Functions : To be a useful programming language we need to be able to
define functions.

Recursion : to be able to define complex functions in a well-typed fashion.
Recursion should also be well-typed

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 282 of 314 Quit

Typing FL Expressions
We have only two types of objects – integers and booleans which we
represent by int and bool respectively. We then have the following ele-
mentary typing annotations for the expressions, which may be obtained
by pattern matching.
1. Z : int
2. T : bool
3. F : bool
4. S : int→ int
5. P : int→ int
6. IZ : int→ bool
7. GTZ : int→ bool
8. ITEI : bool ∗ int ∗ int→ int
9. ITEB : bool ∗ bool ∗ bool→ bool

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 283 of 314 Quit

Λ+FL(X): The Power of Functions
To make the language powerful we require the ability to define functions,
both non-recursive and recursive. We define an applied lambda-calculus
of lambda terms ΛΩ(X) over this set of terms as follows:

L,M,N ::= t ∈ TΩ(X) λx[L] (L M) (27)
This is two-level grammar combining the term grammar (26) with λ-
abstraction and λ-application.
While this makes it possible to use the operators of TΩ(X) as part of
functions (λ-expressions), it does not allow us to use the operators of
TΩ(X) outside of λ-abstractions and λ-applications.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 284 of 314 Quit

Λ+FL(X): Lack of Higher-order Power?
Example 21.1 The grammar (27) does not allow us to define expressions
such as the following:
1. the successor of the result of an application (S (L M))
2. higher order conditionals e.g. λx[(ITE 〈(L x), (M x), (N x)〉)] where (L x)

yields a boolean value for an argument of the appropriate type.
3. In general, it does not allow the constructors to be applied to λ-

expressions.

So we extend the language by allowing a free intermixing of λ-terms and
terms of the sub-language TΩ(X).

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 285 of 314 Quit

ΛFL(X): Higher order functions
We need to flatten the grammar of (27) to allow λ-terms also to be used as
arguments of the constructors of the term-grammar (26). The language
of applied λ-terms (viz. ΛΩ(X)) now is defined by the grammar.

L,M,N ::= x ∈ X Z

(P L) (S L)

T F

(IZ L) (GTZ L)

(ITE 〈L,M,N〉)
λx[L] (L M)

(28)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 286 of 314 Quit

The Normal forms for Integers
We need reduction rules to simplify (non-recursive) expressions.
Zero . Z is the unique representation of the number 0 and every integer

expression that is equal to 0 must be reducible to Z.
Positive integers . Each positive integer k is uniquely represented by the

expression Sk(Z) where the super-script k denotes a k-fold application
of S.

Negative integers . Each negative integer −k is uniquely represented by
the expression Pk(Z) where the super-script k denotes a k-fold applica-
tion of P.

δ-rules

(P (S x)) −→δ x (29)
(S (P x)) −→δ x (30)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 287 of 314 Quit

Reduction Rules for Boolean Expressions
Pure Boolean Reductions . The constructs T and F are the normal forms

for boolean values.

(ITE 〈b, x, x〉) −→δ x (31)
(ITE 〈T, x, y〉) −→δ x (32)
(ITE 〈F, x, y〉) −→δ y (33)

Testing for zero .

(IZ Z) −→δ T (34)
(IZ (S n)) −→δ F, where (S n) is a δ-nf (35)
(IZ (P n)) −→δ F, where (P n) is a δ-nf (36)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 288 of 314 Quit

Testing for Positivity

(GTZ Z) −→δ F (37)
(GTZ (S n)) −→δ T, where (S n) is a δ-nf (38)
(GTZ (P n)) −→δ F, where (P n) is a δ-nf (39)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 289 of 314 Quit

Other Non-recursive Operators
We may “program” the other boolean operations as follows:

NOT
d f
= λx[ITE 〈x, F, T〉]

AND
d f
= λ〈x, y〉[ITE 〈x, y, F〉]

OR
d f
= λ〈x, y〉[ITE 〈x, T, y〉]

We may also “program” the other integer comparison operations as fol-
lows:

GEZ
d f
= λx[OR 〈(IZ x), (GTZ x)〉]

LTZ
d f
= λx[NOT (GEZ x)]

LEZ
d f
= λx[OR 〈(IZx), (LTZ x)〉]

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 290 of 314 Quit

Recursion in the Applied Lambda-calculus
The full power of a programming language will not be realised without
a recursion mechanism. The untyped lambda-calculus has “paradoxical
combinators” which behave like recursion operators upto =β.

Definition 21.2 A combinator Y is called a fixed-point combinator if for
every lambda term L, (Y L) =β (L (Y L))

Curry’s Y combinator (YC)

YC
d f
= λ f [(C C)] where C

d f
= λx[(f (x x))]

Turing’s Y combinator (YT)

YT
d f
= (T T) where T

d f
= λy x[(x (y y x))]

But the various Y combinators unfortunately will not satisfy any typing
rules that we may define for the language, because they are all “self-
applicative” in nature.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 291 of 314 Quit

ΛRecFL(X): Adding Recursion
Instead it is more convenient to use the fixed-point property and define
a new constructor with a δ-rule which satisfies the fixed-point property
(definition 21.2).
We extend the language FL with a new constructor

L ::= . . . (REC L)

and add the fixed point property as a δ-rule

(REC L) −→δ (L (REC L)) (40)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 292 of 314 Quit

Recursion Example: Addition
Consider addition on integers as a binary operation to be defined in this
language. We use the following properties of addition on the integers to
define it by induction on the first argument.

x + y =

y if x = 0
(x − 1) + (y + 1) if x > 0
(x + 1) + (y − 1) if x < 0

(41)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 293 of 314 Quit

Using the constructors of ΛRecFL(X) we require that any (curried) definition of addition on numbers should
be a solution to the following equation in ΛRecFL(X) for all (integer) expression values of x and y.

(plusc x y) =βδ ITE 〈(IZ x), y, ITE 〈(GTZ x), (plusc (P x) (S y)), (plusc (S x) (P y))〉〉 (42)

Equation (42) may be rewritten using abstraction as follows:

plusc =βδ λx[λy[ITE 〈(IZ x), y, ITE 〈(GTZ x), (plusc (P x) (S y)), (plusc (S x) (P y))〉〉]] (43)

We may think of equation (43) as an equation to be solved in the unknown variable plusc.

Consider the (applied) λ-term obtained from the right-hand-side of equation (43) by simply abstracting
the unknown plusc.

addc
d f
= λ f [λx y[ITE 〈(IZ x), y, ITE 〈(GTZ x), (f (P x) (S y)), (f (S x) (P y))〉〉]] (44)

Claim 21.3
(REC addc) −→δ (addc (REC addc)) (45)

and hence
(REC addc) =βδ (addc (REC addc)) (46)

Claim 21.4 (REC addc) satisfies exactly the equation (43). That is

((REC addc) x y) =βδ ITE 〈(IZ x), y, ITE 〈(GTZ x), ((REC addc) (P x) (S y)), ((REC addc) (S x) (P y))〉〉 (47)

Hence we may regard (REC addc) where addc is defined by right-hand-side of definition (44) as the
required solution to the equation (42) in which plusc is an unknown.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 294 of 314 Quit

The abstraction shown in (44) and the claims (21.3) and (21.4) simply go to show that M ≡α λ f [{ f/z}L] is
a solution to the equation z =βδ L, whenever such a solution does exist. Further, the claims also show that
we may “unfold” the recursion (on demand) by simply performing the substitution {L/z}L for each free
occurrence of z within L.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 295 of 314 Quit

Exercise 21.1

1. Prove that the relation −→δ is confluent.

2. The language FL does not have any operators that take boolean arguments and yields integer values. Define a standard conversion
function B2I which maps the value F to Z and T to (S Z).

3. Prove that YC and YT are both fixed-point combinators.

4. Using the combinator add and the other constructs of ΛΣ(X) to

(a) define the equation for products of numbers in the language.
(b) define the multiplication operation mult on integers and prove that it satisfies the equation(s) for products.

5. The equation (41) is defined conditionally. However the following is equally valid for all integer values x and y.

x + y = (x − 1) + (y + 1) (48)

(a) Follow the steps used in the construction of addc to define a new applied addc′ that instead uses equation (48).
(b) Is (REC addc′) =βδ (addc′ (REC addc′))?
(c) Is addc =βδ addc′?
(d) Is (REC addc) =βδ (REC addc′)?

6. The function addc was defined in curried form. Use the pairing function in the untyped λ-calculus, to define

(a) addition and multiplication as binary functions independently of the existing functions.
(b) the binary ’curry’ function which takes a binary function and its arguments and creates a curried version of the binary function.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 296 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 297 of 314 Quit

22. 22: Type Inferencing in FL

Typing FL expressions
We have already seen that the simple language FL has
• two kinds of expressions: integer expressions and boolean expres-

sions,
• there are also constructors which take integer expressions as argu-

ments and yield boolean values
• there are also function types which allow various kinds of functions to

be defined on boolean expressions and integer expressions.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 298 of 314 Quit

The Need for typing in FL
• A type is an important attribute of any variable, constant or expression,

since every such object can only be used in certain kinds of expres-
sions.
• Besides the need for type-checking rules on TΩ(X) to prevent illegal

constructor operations,
– rules are necessary to ensure that λ-applications occur only between

terms of appropriate types in order to remain meaningful.
– rules are necessary to ensure that all terms have clearly defined

types at compile-time so that there are no run-time type violations.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 299 of 314 Quit

TL: A Simple Language of Types
Consider the following language of types (in fully parenthesized form)
defined over an infinite collection ′a ∈ TV of type variables. We also have
two type constants int and bool.

σ, τ ::= int bool ′a ∈ TV (σ∗τ) (σ→τ)

Notes.
• int and bool are type constants.
• ∗ is the product operation on types and
•→ is the function operator on types.
•We require ∗ because of the possibility of defining functions of various

kinds of arities in ΛΩ(X).
• Precedence. We assume ∗ has a higher precedence than→.
•Associativity. → is right associative whereas ∗ is left associative.
• In any type expression τ, TVar(τ) is the set of type variables

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 300 of 314 Quit

Type-inference Rules: Infrastructure
The question of assigning types to complicated expressions which may
have variables in them still remains to be addressed.
Type inferencing. Can be done using type assignment rules, by a recur-

sive travel of the abstract syntax tree.
Free variables (names) are already present in the environment (symbol

table).
Constants and Constructors. May have their types either pre-defined or

there may be axioms assigning them types.
Bound variables. May be necessary to introduce “fresh” type variables in

the environment.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 301 of 314 Quit

Type Inferencing: Infrastructure
The elementary typing previously defined for the elementary expressions
of FL does not suffice
1. in the presence of λ abstraction and application, which allow for higher-

order functions to be defined
2. in the presence of polymorphism, especially when we do not want to

unnecessarily decorate expressions with their types.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 302 of 314 Quit

Type Assignment: Infrastructure
• Assume Γ is the environmenta (an association list) which may be looked

up to determine the types of individual names. For each variable x ∈ X,
Γ(x) yields the type of x i.e. Γ(x) = σ if x : σ ∈ Γ.
• For each (sub-)expression in FL we define a set C of type constraints

of the form σ = τ, where T is the set of type variables used in C.
• The type constraints are defined by induction on the structure of the

expressions in the language FL.
• The expressions of FL could have free variables. The type of the ex-

pression would then depend on the types assigned to the free vari-
ables. This is a simple kind of polymorphism.
• It may be necessary to generate new type variables as and when re-

quired during the process of inferencing and assignment.
ausually a part of the symbol table

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 303 of 314 Quit

Constraint Typing Relation
Definition 22.1 For each term L ∈ ΛΣ(X) the constraint typing relation
is of the form

Γ ` L : τ �T C
where
• Γ is called the contexta and defines the stack of assumptionsb that may

be needed to assign a type (expression) to the (sub-)expression L.
• τ is the type(-expression) assigned to L
• C is the set of constraints
• T is the set of “fresh” type variables used in the (sub-)derivations

ausually in the symbol table
bincluding new type variables

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 304 of 314 Quit

Typing axioms: Basic
The following axioms (c.f Typing FL Expressions) may be applied during
the scanning and parsing phases of the compiler to assign types to the
individual tokens.

Z
Γ ` Z : int �∅ ∅

T
Γ ` T : bool �∅ ∅

F
Γ ` F : bool �∅ ∅

S
Γ ` S : int→int �∅ ∅

P
Γ ` P : int→int �∅ ∅

IZ
Γ ` IZ : int→bool �∅ ∅

GTZ
Γ ` GTZ : int→bool �∅ ∅

ITEI
Γ ` ITE : bool∗int∗int→int �∅ ∅

ITEB
Γ ` ITE : bool∗bool∗bool→bool �∅ ∅

Notice that the constructor ITE is overloaded and actually is two con-
structors ITEI and ITEB. Which constructor is actually used will depend
on the context and the type-inferencing mechanism.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 305 of 314 Quit

Type Rules for FL: 2
Var

Γ ` x : Γ(x) �∅ ∅

Abs
Γ, x : σ ` L : τ �T C

Γ ` λx[L] : σ→τ �T C

App
Γ ` L : σ �T1 C1
Γ `M : τ �T2 C2

Γ ` (L M) : ′a �T′ C′
(Conditions 1. and 2.)

where
•Condition 1. T1 ∩ T2 = T1 ∩ TVar(τ) = T2 ∩ TVar(σ) = ∅

Condition 2. ′a < T1 ∪ T2 ∪ TVar(σ) ∪ TVar(τ) ∪ TVar(C1) ∪ TVar(C2).
• T′ = T1 ∪ T2 ∪ {

′a}
• C′ = C1 ∪ C2 ∪ {σ = τ→ ′a}

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 306 of 314 Quit

Example 22.2 Consider the following simple combinator λx[λy[λz[(x (y z))]]] which defines the function com-
position operator. Since there are three bound variables x, y and z we begin with an initial assumption Γ = x :
′a, y : ′b, z : ′c which assign arbitrary types to the bound variables, represented by the type variables ′a, ′b and ′c
respectively. Note however, that since it has no free variables, its type does not depend on the types of any variables.
We expect that at the end of the proof there would be no assumptions.Our inference for the type of the combinator
then proceeds as follows.

1. x : ′a, y : ′b, z : ′c ` x : ′a �∅ ∅ (Var)

2. x : ′a, y : ′b, z : ′c ` y : ′b �∅ ∅ (Var)

3. x : ′a, y : ′b, z : ′c ` z : ′c �∅ ∅ (Var)

4. x : ′a, y : ′b, z : ′c ` (y z) : ′d �{ ′d} { ′b = ′c→ ′d} (App)

5. x : ′a, y : ′b, z : ′c ` (x (y z)) : ′e �{ ′d, ′e} { ′b = ′c→ ′d, ′a = ′d→ ′e} (App)

6. x : ′a, y : ′b ` λz[(x (y z))] : ′c→ ′e �{ ′d, ′e} { ′b = ′c→ ′d, ′a = ′d→ ′e} (Abs)

7. x : ′a ` λx[λy[λz[(x (y z))]]] : ′b→ ′c→ ′e �{ ′d, ′e} { ′b = ′c→ ′d, ′a = ′d→ ′e} (Abs)

8. ` λx[λy[λz[(x (y z))]]] : ′a→ ′b→ ′c→ ′e �{ ′d, ′e} { ′b = ′c→ ′d, ′a = ′d→ ′e} (Abs)

Hence λx[λy[λz[(x (y z))]]] : ′a→ ′b→ ′c→ ′e subject to the constraints given by { ′b = ′c→ ′d, ′a = ′d→ ′e} which
yields λx[λy[λz[(x (y z))]]] : (′d→ ′e)→(′c→ ′d)→ ′c→ ′e

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 307 of 314 Quit

Principal Type Schemes
Definition 22.3 A solution for Γ ` L : τ �T C is a pair 〈S, σ〉 where S is a
substitution of type variables in τ such that S(τ) = σ.

• The rules yield a principal type scheme for each well-typed applied
λ-term.
• The term is ill-typed if there is no solution that satisfies the constraints.
• Any substitution of the type variables which satisfies the constraints

C is an instance of the most general polymorphic type that may be
assigned to the term.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 308 of 314 Quit

Exercise 22.1

1. The language has several constructors which behave like functions. Derive the following rules for terms in
TΩ(X) from the basic typing axioms and the rule App.

Sx
Γ ` t : τ �T C

Γ ` (S t) : int �T C ∪ {τ = int}

Px
Γ ` t : τ �T C

Γ ` (P t) : int �T C ∪ {τ = int}

IZx
Γ ` t : τ �T C

Γ ` (IZ t) : bool �T C ∪ {τ = int}

GTZx
Γ ` t : τ �T C

Γ ` (GTZ t) : bool �T C ∪ {τ = int}

ITEx

Γ ` t : σ �T C
Γ ` t1 : τ �T1 C1

Γ ` t0 : υ �T0 C0

Γ ` (ITE 〈t, t1, t0〉) : τ �T′ C′
(T ∩ T1 = T1 ∩ T0 = T0 ∩ T = ∅)

where T′ = T ∪ T1 ∪ T0 and C′ = C ∪ C1 ∪ C0 ∪ {σ = bool, τ = υ}

2. Use the rules to define the type of the combinators K and S?

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 309 of 314 Quit

3. How would you define a type assignment for the recursive function addc defined by equation (44).

4. Prove that the terms, ω = λx[(x x)] and Ω = (ω ω) are ill-typed.

5. Are the following well-typed or ill-typed? Prove your answer.

(a) (K S)
(b) ((K S) ω)
(c) (((S K) K) ω)
(d) (ITE 〈(IZ x), T, (K x)〉)

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 310 of 314 Quit

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 311 of 314 Quit

23. 26

Lecture 25: The Damas Milner Algorithm
Tuesday 13 Sep 2011

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 312 of 314 Quit

The Damas-Milner algorithm for Type Assignment

The algorithm W uses unification. Assume U(σ, τ) = V, where U is a unification algorithm on type
expressions, which takes two monotypes σ and τ as arguments and either fails or returns a substitution
V which is the mgu of σ and τ.

The INPUT: An expression e and a type environment A (which consists of the assumptions about the
types of some variables).

The OUTPUT: A substitution S and a type assignment τ to e.

The ALGORITHM: The algorithm W(A, e) = (S, τ), is presented by induction on the structure of e.

1. Case e ≡ x and A(x) = ∀α1 . . . αn[σ] . Then S = ε and for each new βi, 1 ≤ i ≤ n τ = σ{βi/αi | 1 ≤ i ≤ n}.

2. Case e ≡ (e1 e2). Then let W(A, e1) = (S1, τ1) and W(A, e2) = (S2, τ2) and U(τ1S2, τ2 → β) = V, where β is
new. Then S = S1 ◦ S2 ◦ V and τ = βV.

3. Case e ≡ λx[e1]. Then let β be a new type variable, and A′ = {x : β} :: A be a modified environment such
that W(A′, e1) = (S1, τ1). Then S = S1 and τ = βS1 → τ1.

4. Case e ≡ let x = e1 in e2. Let W(A, e1) = (S1, τ1), A′ = {x : γ} :: A, where γ = τ1S1, A′′ = A′S1 and
W(A′′, e2) = (S2, τ2). Then S = S2 ◦ S1 and τ = τ2.

5. When any of the above conditions is not met then W fails.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 313 of 314 Quit

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Unviersity Press, Cambridge, U.K., 1998.

[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier Science B. V., Amsterdam, The
Netherlands, 1984.

[3] R. Hindley and J. Seldin. Combinators, λ-calculus. London Mathematical Society, U.K., 1985.

[4] R. Sethi. Programming Languages (Second Edition). Addison-Wesley Publishing Company, New York, U.S.A.,
1996.

http://www.cse.iitd.ac.in/~sak

Home Page JJ J I II
ILFP

Go Back Full Screen Close 314 of 314 Quit

Thank You!
Any Questions?

http://www.cse.iitd.ac.in/~sak

	 1: Introduction
	 2: Functional Programming
	 3: Standard ML Overview
	 4: Standard ML Computations
	 5: Standard ML Scope Rules
	 6: Sample Sort Programs
	Insertion Sort
	Selection Sort

	 7: Higher-order Functions
	 8: Datatypes
	 9: Information Hiding
	 10: Abstract Data Types to Modularity
	 11: Signatures, Structures & Functors
	Axiomatic Specifications
	The Stack Datatype

	Closing Equational Specifications

	 12: Example: Tautology Checking
	 13: Example: Tautology Checking (Contd)
	 14: The Lambda Calculus: Introduction
	Motivation for
	The -abstraction

	 15: The Pure Untyped Lambda Calculus: Basics
	 16: Notions of Reduction
	17: Representing Data in the Untyped Lambda Calculus
	 18: Confluence Definitions
	Why confluence?

	 19: Confluence Characterizations
	 20: The Church-Rosser Property
	21: An Applied -Calculus
	22: Type Inferencing in FL
	 26

