Name: Entry: Gp: 1

CSL 102: Introduction to Computer Science

Minor 2 Mon 21 Mar 2005 VI 301(Gps 1-6)& VI 401(Gps 7-8) 9:30-10:30 Max Marks 40

1. Answer in the space provided on the question paper.
2. The answer booklet you have been given is for rough work only
3. The answer booklet will not be collected.

Q1 Q2 Q3 Q4 TOTAL
10 9 9 12 40

Note:

1. You may use ML notation wherever necessary, in addition to the usual algorithmic
notations that we use in lectures

2. Correctness is of paramount importance

3. The more time and space efficient your solution the more the marks you will be given

Name: Entry: Gp: 2

1. For the
datatype ’a bintree = Empty | Node of ’a * ’a bintree * ’a bintree
we defined the following preorder traversal function.

local
fun pre (Empty, L) =L
| pre (Node (x, left, right), L) =
let val M = pre (right, L);
val N = pre (left, M)

in x::N
end
in fun preorder2 (T) = pre (T, [])

end

State and prove a correctness theorem for the function preorder2.
(10 marks)
Solution.

Since preorder2 depends upon the function pre we need to first prove a lemma for the correctness
of pre and then a theorem for preorder2 which will use the lemma.

Let preorder(T) be the function that mathematically describes preorder traversal. It may be
inductively defined as follows:

preorder(Empty) I

preorder(Node(x,left,right)) = x :: preorder(left)@preorder(right)
Lemma. pre(T,L) = preorder(T)QL for all binary trees T and lists L.
Proof. By induction on the structure of the tree T.
Basis. (T = Empty). Then pre(T,L) = L = preorder(T)QL.

Induction Hypothesis. For all binary trees, T, of depth at most m, for some m > 0 and all lists L,

’ pre(T,L) = preorder(T)QL ‘

Induction step. Let T = Node (x, TL, TR), where the trees TL and TR are each of depth at most
m. Then

:: pre(TL, M)

:: pre(TL, pre(TR,L))

:: pre(TL, preorder(TR)QL) Ind. hypothesis
:: (preorder(TL)Q(preorder(TR)QL)) Ind. hypothesis
:: (preorder(TL)@preorder(TR))QL Associativity of @
(x :: (preorder(TL)@preorder(TR))@QL Property of :: and @
= preorder(T)QL

QED

The property (z :: L)@QM = x :: (LQM) and the associativity of @ can be proven by induction on
the lengths of lists. We leave their proofs to the interested reader.

Theorem. preorder2(T) = preorder(T) for all binary trees T.
Proof. preorder2(T) = pre(T, []) = preorder(T)Q[] = preorder(T).
QED

Name: Entry: Gp: 3

2. Consider a list of real numbers [ay,, ap—1,- .., a¢] with a, # 0.0 representing the polynomial
n
p(x) = Z a;x’
i=0

in one variable x, where the empty list represents the value 0.0. Design a function deriv L which
computes the derivative of the polynomial as a list of coefficients in the same order.

(9 marks)
Solution.

We directly give the ML version of the algorithm as it is a really simple problem in which the only
challenge is to compute the derivative as we traverse through the list of coefficients. Otherwise, one
would use the length of the list to find the coefficient.

The function auxDeriv here keeps track of the multiplicative factor for each coefficient.

local exception EmptyList;
fun auxDeriv []
| auxDeriv [h]
| auxDeriv (h::L)
let val (D, e) = auxDeriv L
in (h*real(e+1))::D
end

raise EmptyList
(0.0, 0)

in fun deriv [] = 0.0
| deriv L #1 (auxDeriv L)

end

Name: Entry: Gp: 4

3. Consider the datatype

datatype poly = COEFF of real | VAR of string | POWER of poly * int |
PLUS poly * poly | MULT poly * poly

which may be used to represent polynomials of several variables and in any form such as products of
monomials or sums of monomial terms or even mixtures of them. In the above datatype definition

e COEFF stands for a coefficient,

[

e VAR to denote that a certain string such as “x” stands for a variable,
e POWER for the exponent of a variable,
e PLUS for the addition operation, and

e MULT for the multiplication operation.

Consider a list of real numbers (as in Question 2) representing a polynomial of one variable 2. Write
a function convert which converts a list of reals into an element of the datatype poly.

(9 marks)
Solution.

Here again we directly code the ML function to convert a polynomial represented as a list of
coefficients into the given datatype poly. However, rather than give a direct conversion (since

that requires knowing the power to which the variable needs to be raised in each case) we follow
n

Arden’s rule which allows us to represent the polynomial Z a;z" in the equivalent form (- - - (((a,z+
i=0

Gp—1)T + ap_2)x + -+)+ a1)x + ap, by factoring out z in each case. This form of the polynomial

does not require any counting and we can directly write the code of the conversion function through

an auxiliary function auxConvert.

local fun auxConvert ([], p)
| auxConvert (h::L, p) =
auxConvert (L, PLUS (MULT (p, VAR(‘‘x’’)), COEFF(h)))
in
fun convert []
| convert (h::L)

P

COEFF(0.0)
auxConvert (L, COEFF(h))

end

Name: Entry: Gp: 5

4. Tt is often possible to check whether a program works correctly for a given input by writing another
checking program. Assume there is a function sort R L which sorts a list L: ’a list under an
ordering relation R: ’a * ’a -> bool. In general if

e sort has not been proven to be correct, or
e R is a very complicated relation, or

e the input list L is too long that it is tedious or difficult to check that the result of sorting is
correct, or

e a combination of the above reasons,

then it is often useful to use a checking program before using the result for other purposes.
Write a function sortCheck which checks whether sort works correctly for each input. But before
you write it answer the following questions.

(a) What input arguments does sortCheck take?
(b) What is the value returned by the function sortCheck?
(¢) What properties should sortCheck check?

(d) sortCheck

(14+1+4+2+8=12 marks)

Solution.

(a) Two possible answers:
e R, L and the output list of sort, or
e R, L and sort itself.

(b) Boolean
(¢) The permutation property and the ordering property.

(d) We will assume that sortCheck takes the relation, the input list L and the ouput list M produced
by sort as arguments.

local fun ordered (R, []) = true
| ordered (R, [h]) = true
| ordered (R, h1::h2::M) = R(hl, h2) andalso ordered (R, h2::M)

fun perm ([1, [1) = true
| perm (_, [1) = false
| perm ([], _) = false
| perm (hil::L, h2::M) =
if h1=h2 then perm (L, M)
else let fun belongsRemove (h, []) = (false, [])

Name: Entry: Gp: 6

| belongsRemove (h, [h]) = (true, [1)
| belongsRemove (h, h2::M) =
if h=h2 then (true, M)
else let val (B, L) =
in (B, h2::M)
end
val (C, N) = belongsRemove (hil, M)
in C andalso perm (L, N)
end

belongsRemove (h, M)

Here the function belongsRemove removes a single copy of an element h from a list L provided
it is present in the list. If it does not belong in the list it returns a value false and also the
list. This function ensures that we do not check for an element separately and then remove it
in another traversal.

