CSL 102: Introduction to Computer Science

II semester 2004-05
Minor 1 Mon 07 Feb 2005 VI 301\& VI 401 9:30-10:30 Max Marks 40

1. Answer in the space provided on the question paper.
2. The answer booklet you have been given is for rough work only
3. The answer booklet will not be collected.

Q1	Q2	Q3	Q4	Q5	TOTAL
7	7	7	7	12	40

Consider a decimal computer which has only the following primitive operations:

- addition of decimal integers of arbitrary size
- nonnegative powers of 10 (i.e. 10^{m} for all integers $m \geq 0$)
- multiplication by nonnegative powers of 10
- m div 10 and $m \bmod 10$ for all integers m

Now answer the following questions for this particular computer keeping in mind that

1. correctness is of paramount importance
2. the more time and space efficient your solution the more the marks you will be given
3. Give a technically complete algorithmic definition of a function mult_by_digit (m, d) which multiplies any nonnegative integer m by a single digit $d(0 \leq d \leq 9)$.

Solution.

We begin by giving a simple recursive definition and then move on to a more efficient solution.

$$
\text { rec_mult_by_digit }(m, d)= \begin{cases}\perp & \text { if } m<0 \text { or } d<0 \text { or } d>9 \\ 0 & \text { if } m=0 \text { or } d=0 \\ 10(\text { rec_mult_by_digit }(m \text { div } 10, d)) & \\ +(m \bmod 10) * d & \text { else }\end{cases}
$$

Exercise: Prove the correctness of this definition and that its time complexity is $O\left(l g_{10} m\right)$ singledigit multiplications (with the same assumptions as in Problem 3 and its space complexity is also $O\left(l g_{10} m\right)$ (with the same assumptions as in Problem 4).
While it is not possible to improve the time complexity, we give a different definition to yield a constant space requirement. The final solution therefore is

$$
\text { mult_by_digit }(m, d)=t r _m u l t _b y _d i g i t(m, d)
$$

where

$$
\text { tr_mult_by_digit }(m, d)= \begin{cases}\perp & \text { if } m<0 \text { or } d<0 \text { or } d>9 \\ \text { mult_by_digit_iter }(m, d, 0,0) & \text { else }\end{cases}
$$

where

$$
\text { mult_by_digit_iter }(m, d, p, s)= \begin{cases}\perp & \text { if } m<0 \text { or } d<0 \text { or } d>9 \\ s & \text { if } m=0 \text { or } d=0 \\ \text { mult_by_digit_iter } & \\ (m \text { div 10,d, } p+1, & \text { else } \\ s+10^{p}((m \bmod 10) * d)\end{cases}
$$

2. State and prove a correctness theorem for your solution to the above problem.

Solution.

Lemma (Correctness of mult_by_digit_iter). For all nonnegative integers m, p, s and digits d, $0 \leq d \leq 9$,

$$
\text { mult_by_digit_iter }(m, d, p, s)=s+10^{p} m d
$$

Proof. By induction on m (PMI Version 2).
Basis. When $m=0$, mult_by_digit_iter $(0, d, p, s)=s=s+10^{p} m d$.

Induction Hypothesis. For $m>0$,

$$
\begin{array}{|lll}
\hline \text { For all } l, 0 \leq l<m, \text { and all } p \geq 0, s \geq 0, \text { mult_by_digit_iter }(l, d, p, s)=s+10^{p} l d \\
\hline
\end{array}
$$

Induction step. For $m>0, m$ div $10<m$ and $m=10(m$ div 10$)+(m \bmod 10)$. Hence

$$
\begin{array}{rlr}
& \text { mult_by_digit_iter }(m, d, p, s) \\
= & \text { mult_by_digit_iter }\left(m \text { div } 10, d, p+1, s+10^{p}((m \bmod 10) * d)\right) \\
= & {\left[s+10^{p}((m \bmod 10) * d)\right]+10^{p+1}((m \operatorname{div} 10) * d)} & \\
= & {\left[s+10^{p}(m \bmod 10) d\right]+10^{p+1}(m \operatorname{div} 10) d} \\
= & s+10^{p}[10(m \text { div } 10)+(m \bmod 10)] d \\
= & s+10^{p} m d
\end{array}
$$

QED
Theorem (Correctness of mult_by_digit). For all nonnegative integers m and digits $d, 0 \leq d \leq 9$,

$$
m u l t _b y _d i g i t(m, d)=t r _m u l t _b y _d i g i t(m, d)=m d
$$

Proof. If $m=0$, it is clear that for all digits $d, 0 \leq d \leq 9$,

$$
\text { mult_by_digit }(0, d)=t r _m u l t _b y _d i g i t(0, d)=0 * d=0
$$

For $m>0,0<d \leq 9$ we have

```
    mult_by_digit \((m, d)\)
\(=\) tr_mult_by_digit \((m, d)\)
\(=\) mult_by_digit_iter \((m, d, 0,0)\)
\(=10^{0} \mathrm{md}+0 \quad\) Correctness of mult_by_digit_iter
\(=m d\)
```

3. Assume that single-digit-multiplication is the most expensive operation on this computer and that all other operations are insignificant and take no time at all. State and prove a theorem giving the time-complexity of your algorithm in units of single-digit-multiplications.

Theorem (Correctness).

Proof.

Solution.
Lemma. \mathcal{T} (mult_by_digit_iter $(m, d, p, s)) \leq k+1$, where $10^{k} \leq m<10^{k+1}$, i.e. $k+1$ is the number of digits in the decimal representation of m.

Proof. By induction on $k \geq 0$.
Basis. For $k=0$ it is clear that m is a single digit number. Hence m div $10=0$ and $m \bmod 10=m$. Hence

$$
\begin{aligned}
& \text { mult_by_digit_iter }(m, d, p, s) \\
= & \text { mult_by_digit_iter }\left(0, d, p+1, s+10^{p}(m * d)\right) \\
= & s+10^{p}(m * d)
\end{aligned}
$$

which involves just one single digit multiplication. Hence \mathcal{T} (mult_by_digit_iter $(m, d, p, s))=1 \leq$ $k+1$.
Induction hypothesis. For some $k>0$ and all d, p, s and $m, 10^{k} \leq m<10^{k+1}$,

$$
\mathcal{T}(\text { mult_by_digit_iter }(m, d, p, s)) \leq k+1
$$

Induction step. Let $10^{k+1} \leq m<10^{k+2}$. Then $10^{k} \leq m$ div $10<10^{k+1}$ and $0 \leq m \bmod 10 \leq 9$. Then we have

$$
\begin{array}{rlr}
& \mathcal{T}(\text { mult_by_digit_iter }(m, d, p, s)) & \\
= & \mathcal{T}\left(\text { mult_by_digit_iter }\left(m \text { div } 10, d, p+1, s+10^{p}((m \bmod 10) * d)\right)\right) & \\
\leq & (k+1)+1 & \text { IH and }(*) \\
= & k+2 &
\end{array}
$$

QED
Theorem. $\mathcal{T}($ mult_by_digit $(m, d))=O\left(\left\lceil l g_{10} m\right\rceil\right)$ Proof. If $10^{k} \leq m$ div $10<10^{k+1}$ then $\left\lceil l g_{10} m\right\rceil=k+1$

$$
\begin{array}{rlr}
& \mathcal{T}(\text { mult_by_digit }(m, d)) & \\
= & \mathcal{T}(\text { mult_by_digit_iter }(m, d, 0,0)) & \\
\leq & \left\lceil l g_{10} m\right\rceil & \text { By the previous Lemma } \\
= & O\left(\left\lceil l g_{10} m\right\rceil\right) &
\end{array}
$$

4. Assume that each integer occupies a single cell of memory. State and prove a theorem giving the space complexity of your algorithm in units of memory cells.

Solution.

Lemma. $\mathcal{S}($ mult_by_digit_iter $(m, d, p, s)) \leq k$, for some constant $k>0$.
Proof. By induction on $m \geq 0$.
Basis. For $m=0$ it is clear that \mathcal{S} (mult_by_digit_iter $(m, d, p, s)) \leq k$
Induction hypothesis. For all $n<m$ and all d, p, s and some constant k,

$$
\mathcal{S}(\text { mult_by_digit_iter }(n, d, p, s)) \leq k
$$

Induction step. We have

$$
\begin{aligned}
& \mathcal{S}(\text { mult_by_digit_iter }(m, d, p, s)) \\
= & \mathcal{S}\left(\text { mult_by_digit_iter }\left(m \operatorname{div} 10, d, p+1, s+10^{p}((\bmod 10) * d)\right)\right) \\
\leq & k
\end{aligned}
$$

QED
Theorem. $\mathcal{S}($ mult_by_digit $(m, d))=O(1)$ Proof. When $m>0$ we have

$$
\begin{aligned}
& \mathcal{S}(\text { mult_by_digit }(m, d)) \\
= & \mathcal{S}(\text { mult_by_digit_iter }(m, d, 0,0)) \\
\leq & k \\
= & O(1)
\end{aligned} \quad \text { for some constant } k, \text { by the previous Lemma }
$$

5.
6. (a) Use the function mult_by_digit to give a technically complete algorithmic definition of the function $\operatorname{prod}(m, n)$ which computes the product of any two integers m, n.

$$
\operatorname{prod}(m, n)= \begin{cases}0 & \text { if } m=0 \text { or } n=0 \\ \operatorname{prod}_{i} \operatorname{ter}(m, n, 0,0) & \text { else }\end{cases}
$$

where

$$
\operatorname{prod}_{i} \operatorname{ter}(m, n, p, s)= \begin{cases}s & \text { if } m=0 \text { or } n=0 \\ \operatorname{prod}_{i} \operatorname{ter}(m, n \operatorname{div} 10, p+1, & \text { else } \\ \left.s+10^{p}(\text { mult_by_digit }(m, n \bmod 10))\right)\end{cases}
$$

(b) What is the time-complexity of your algorithm in units of mult_by_digit operations? No need to prove!
$\mathcal{T}(\operatorname{prod}(m, n))=O\left(l g_{10} m\right)$
(c) What is the time complexity of your algorithm in units of "single-digit-multiplications"? No need to prove!
$\mathcal{T}(\operatorname{prod}(m, n))=O\left(\left(l g_{10} m\right)\left(\left(l g_{10} n\right)\right)\right.$
(d) What is the space complexity of your algorithm? No need to prove!
$\mathcal{S}(\operatorname{prod}(m, n))=O(1)$

