CSL105: Discrete Mathematical Structures

I semester 2007-08

Tutorial sheet: Basics of Graph Theory
Last updated Mon Oct 1 09:58:56 IST 2007

1. The towers of hanoi is a problem whose solution may be modelled as a problem of state transitions. Consider the towers of Hanoi problem with 3 rings and model all the transition possibilites as a directed graph.
2. Many recreational problems may be regarded as graph problems for the purpose of modelling. Given 3 uncalibrated vessels A, B and C of capacities 8 litres, 5 litres and 3 litres respectively. Vessel A is filled to the brim with a liquid. It is required to divide the liquid in the vessel A into 2 equal volumes using the other two vessels, without adding or dropping any more liquid
(a) Model the problem as a directed graph on states with transitions being the act of transferring an amount of liquid from the one vessel to another so that the source vessel becomes empty or the target vessel becomes full.
(b) Show that there is a directed path from the initial state viz. the one in which vessel A is full and the others empty to a state in which the liquid is divided into two vessels which contain 4 litres each.
(c) What are the invariant properties satisfied by the states that are reachable from the initial state? Are there any states satisfying all these invariant properties, which is not reachable?
3. Prove that in a directed or undirected graph of n vertices, if there is a path from vertex u to v then there is a path of length no more than $n-1$ edges from u to v.
4. Prove that a simple graph with n vertices must be connected if it has more than $(n-1)(n-2) / 2$ edges.
5. Prove that a connected undirected graph remains connected after removing a particular edge e, if and only if e is in some circuit of the graph.
6. The union of two undirected graphs $G_{1}=\left\langle V_{1}, E_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, E_{2}\right\rangle$, denoted $G_{1} \cup G_{2}$ is a third graph $G_{3}=\left\langle V_{3}, E_{3}\right\rangle$ such that $V_{3}=V_{1} \cup V_{2}$ and $E_{3}=E_{1} \cup E_{2}$. Similarly the intersection $G_{1} \cap G_{2}$ is the graph consisting of only those vertices and edges that are in both G_{1} and G_{2}. The xor graph of G_{1} and G_{2} (denoted $G_{1} \oplus G_{2}$) is the graph $G_{3}=\left\langle V_{3}, E_{3}\right\rangle$ such that $V_{3}=V_{1} \cup V_{2}$ and $E_{3}=E_{1} \oplus E_{2}$.
(a) Prove that each of the three operations on undirected graphs is commutative.
(b) Prove that if G_{1} and G_{2} are edge-dsijoint then $G_{1} \oplus G_{2}=G_{1} \cup G_{2}$.
(c) Prove that union and intersection are idempotent operations and $G \oplus G$ is a null graph.
7. A graph G is said to be decomposed into two subgraphs G_{1} and G_{2} if $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}$ is a null graph. Prove that a connected undirected graph is an Euler graph iff it can be decomposed into circuits.
8. The notions of Eulerian paths and circuits may be extended to directed graphs as well. An Euler digraph is a directed graph with no isolated vertices, which has a directed Eulerian circuit.
(a) Prove that a directed graph (with no isolated vertices) is an Euler digraph iff it is strongly or weakly connected and $\delta^{+}(v)=\delta^{-}(v)$ for every vertex v
(b) Prove that a directed graph (with no isolated vertices) has a directed Eulerian path or circuit iff it is strongly or weakly connected and

- $\delta^{+}(v)=\delta^{-}(v)$ for every vertex v or
- $\delta^{+}(v)=\delta^{-}(v)$ for every vertex v except two vertices u and w for which $\delta^{+}(u)=\delta^{-}(u)+1$ and $\delta^{-}(w)=\delta^{+}(w)+1$.

