Tutorial sheet: Well-orderings, Countability and Uncountability

- 1. Let X and Y be any (finite, countably infinite or uncountably infinite) sets such that X is not equipollent to Y (i.e. $X \not\simeq Y$) but there exists a total injective function from Y to X. Prove that there does not exist any total injective function from X to Y.
- 2. Let (A, \leq_A) and (B, \leq_B) be two well-founded sets. Prove that their cartesian product is also well-founded. What is the ordering on $A \times B$?
- 3. Consider the lexicographic ordering on \mathbb{N}^2 defined by $(m, n) \prec (p, q)$ iff m < p or (m = p and n < q)and the partial order \preceq defined by $(m, n) \preceq (p, q)$ iff $(m, n) \prec (p, q)$ or (m, n) = (p, q).
 - (a) Prove that \leq well-orders \mathbb{N}^2 .
 - (b) How will you define a lexicographic ordering which well-orders \mathbb{N}^i for any given $i \geq 0$?
 - (c) Prove that $\mathbb{N}^* = \bigcup_{i \ge 0} \mathbb{N}^i$ is also well-ordered by an ordering that preserves the lexicographic ordering on \mathbb{N}^i for each *i*.
- 4. Prove the following principle of well-ordered induction.

Let (A, \leq) be well-ordered set. Let $B \subseteq A$ be a set such that

Basis The least element of A is in B,

Induction-step For any $a \in A$, if for all $b \in A$, b < a implies $b \in B$, then $a \in B$.

Then B = A.

- 5. Let (A, \leq) be a well-ordered set and let $B \subseteq A$ be a set such that $f : A \to B$ is an order-preserving isomorphism
 - (a) Prove that for all $a \in A$, $a \leq f(a)$.
 - (b) If $S_b = \{c \in A | c < b\}$ for any $b \in A$, prove that there is no isomorphism between A and S_b .
- 6. Let (A, \leq) be a well-ordered set. For each $a \in A$ define $S_a = \{b \in A | b < a\}$.
 - (a) Prove that A is not isomorphic to any S_a .
 - (b) Prove that (A, \leq) is order isomorphic to $(\mathscr{S}_A, \subseteq)$, where $\mathscr{S}_A = \{S_a | a \in A\}$
 - (c) If for each $a \in A$, S_a is isomorphic to an ordinal, then A is isomorphic to an ordinal.
- 7. Prove that the following sets are countably infinite.
 - (a) The set \mathbb{N}^k of k-tuples of natural numbers for any k > 1.
 - (b) The set \mathbb{Z} of integers.
 - (c) The set \mathbb{Q} of rational numbers.
 - (d) The set A^* of finite sequences of elements from a *finite nonempty* set A.
 - (e) The set A^* of finite sequences of elements from a *countably infinite* set A.
 - (f) The set Exp of arithmetic expressions involving only natural numbers and the operators for addition and multiplication.
- 8. Prove that
 - (a) $|\{f \mid f : \mathbb{N} \to \mathbb{N}\}| = \aleph_1$
 - (b) $|\{f \mid f : \mathbb{R} \to \mathbb{R}\}| = \aleph_2$

- 9. Prove the following:
 - (a) Any infinite subset of a countably infinite set is also countably infinite.
 - (b) Let $\{A_i \mid i \in \mathbb{N}\}$ be a collection of mutually disjoint *countably infinite* sets. Then $\bigcup_{i \in \mathbb{N}} A_i$ is a countably infinite set.
 - (c) Use the above result to show that the set of all tuples of naturals is countably infinite.
- 10. From the following theorem it trivially follows that the set of irrationals is uncountably infinite. Let A be an uncountably infinite set and let $B \subset A$ be countably infinite. Then $C = A \setminus B$ is an uncountably infinite set.