Tutorial sheet: Sets, Relations and Partitions

- 1. Let A, B and C be sets. Prove that
 - (a) $A \cap \overline{B} = A \cap \overline{C}$ if and only if $A \cap B = A \cap C$.
 - (b) If $A \cup B \subseteq A \cup C$ and $A \cap B \subseteq A \cap C$ then $B \subseteq C$.
 - (c) Assume $A \cup B = A \cup C$ and $A \cap B = A \cap C$. The does it necessarily imply that B = C? Prove your answer or give a counterexample to show that that B = C does not necessarily hold.
- 2. Let the symmetric difference of two sets A and B be defined as $A \triangle B = (A B) \cup (B A)$. What is the relationship between the following pairs of sets given that X, Y and Z are themselves sets? Prove your answers.
 - (a) $X \bigtriangleup (Y \cup Z)$ and $(X \bigtriangleup Y) \cup (X \bigtriangleup Z)$.
 - (b) $X \bigtriangleup (Y \cap Z)$ and $(X \bigtriangleup Y) \cap (X \bigtriangleup Z)$.
- 3. Prove that the relation divisorOf = $\{(a, b) | a \text{ is a divisor of } b\}$ is a partial order on the set \mathbb{P} of positive integers.
- 4. Consider the following relation R on the set \mathbb{C} of complex numbers. $R = \{(w, z) \in \mathbb{C} \times \mathbb{C} | |w| \le |z|\}$. Determine whether this relation is a preorder. Is it a partial order? If so prove it, if not give an example to show that it is not partial order.
- 5. For any relation $R \subseteq A \times B$, the *converse* of R (denoted R^{-1}) is defined as the relation $\{(b, a) | (a, b) \in R\}$.
 - (a) Prove that a relation on a set is symmetric if and only if it equals its converse.
 - (b) Prove that the converse of a preorder is a preorder and the converse of a partial order is a partial order.
- 6. A relation R on a set A is called a *total order* if R is a partial order on A such that $(a, b) \in R$ or $(b, a) \in R$ for each $a, b \in A$. In general a binary relation is *total* if for any two elements $a, b \in A$, a = b or $(a, b) \in R$ or $(b, a) \in R$. A set A is said to be *linearly ordered* by a transitive relation R on A, if for every $a, b \in A$, exactly one of the following conditions holds:

$$a = b \qquad (a, b) \in R \qquad (b, a) \in R$$

- (a) Prove that any linear order on A is irreflexive
- (b) Prove that $L = R Id_A$ is a linear order if R is a total order.
- (c) Prove that a relation is a linear order iff it is total, irreflexive and transitive.
- 7. A binary relation on a set is said to be *compatible* if it is reflexive and symmetric. Let R and S be compatible relations on a set A. Which of the following are compatible relations? In each case, either prove that the relation is compatible or construct an example and show that it is <u>not</u> compatible.
 - (a) R^{-1} the converse of R (see 5).
 - (b) $R \cup S$.
 - (c) $R \cap S$.
- 8. Let $\subseteq \subseteq A \times A$ be a preorder on A. The set $\cong = \{(a, b) \mid a \subseteq b \text{ and } b \subseteq a\}$ is called the *kernel* of the preorder \subseteq .
 - (a) Prove that the kernel \cong of the preorder \subset on A is an equivalence relation on A.

(b) Let $\subseteq \subseteq A/\cong \times A/\cong$ be the relation on the set of equivalence classes of A defined by

$$\sqsubseteq = \{ ([a]_{\cong}, [b]_{\cong}) \mid a \sqsubset b \}$$

Prove that \sqsubseteq is a partial order on A/\cong .

- (c) What is the kernel of each of the following preorders?
 - i. The \leq relation on the set \mathbb{R} of real numbers.
 - ii. The divisorOf relation on the set \mathbb{P} .
 - iii. The relation R in problem 4.
- 9. Let $R \subseteq A \times B$ be a relation. Define for any $A' \subseteq A$, the set $R(A') = \{b \in B | \exists a \in A' : (a, b) \in R\}$.
 - (a) Prove that for all A₁, A₂ ⊆ A,
 Monotonicity. A₁ ⊆ A₂ implies R(A₁) ⊆ R(A₂).
 Union preservation R(A₁ ∪ A₂) = R(A₁) ∪ R(A₂)
 Intersection preservation R(A₁ ∩ A₂) ⊆ R(A₁) ∩ R(A₂)
 - (b) What can you say about the relationship between $R(A-A_1)$ and $R(A-A_2)$ when $A_1, A_2 \subseteq A$?
- 10. Let \sqsubseteq denote the refinement relation on partitions. Let \mathbb{Z} be the set of integers and for each $k \in \mathbb{P}$, let $\mathbb{Z}/=_k$ denote the set of equivalence classes of the integers modulo k. Prove that for all $k, m \in \mathbb{P}$, $\mathbb{Z}/=_k \sqsubseteq \mathbb{Z}/=_m$ if and only if k is a multiple of m.