Tutorial sheet: Partial orders, Lattices and Boolean Algebras

- 1. (a) Prove that for any irreflexive-transitive binary relation < on a nonempty set A, the relation \leq on A defined by $a \leq b$ iff a = b or a < b is a partial order on A.
 - (b) Conversely prove that if \leq is a partial order on a nonempty set *A*, then $\leq -Id_A$ is an irreflexive-transitive relation on *A*.
- 2. Let (A, \leq_A) and (B, \leq_B) be partial orders. Prove that $(A \times B, \leq_{AB})$ and $(A \times B, \leq_{lex})$ are also partial orders, where
 - \leq_{AB} is the *pointwise ordering* defined by $(a_1, b_1) \leq_{AB} (a_2, b_2)$ iff $a_1 \leq_A a_2$ and $b_1 \leq_B b_2$ and
 - \leq_{lex} is the *lexicographic ordering* defined by $(a_1, b_1) \leq_{lex} (a_2, b_2)$ iff $a_1 <_A a_2$ or $(a_1 = a_2 \text{ and } b_1 \leq_B b_2)$
- 3. A partially ordered set (A, \leq) is said to be *dense* if for all $a, b \in A$, a < b implies there exists $c \in A$ such that a < c < b. Prove that a dense poset with at least two distinct comparable elements is not well-founded.
- 4. Prove that the set of nonempty strings of lower-case roman characters under the lexicographic ordering is neither dense nor well-founded.
- 5. A *linear extension* of a partial order \leq on a set is a total order \leq_t such that $\leq \subseteq \leq_t$. Prove that
 - (a) every finite partial order has at least one linear extension and
 - (b) every finite partial order is the intersection of all its linear extensions.
 - (c) Give an algorithm to construct a linear extension of a finite partial order.
- 6. A company has a finite collection P of projects and a finite totally ordered set R of security restrictions ordered by <. Consider the set of security classes defined by $R \times 2^{P}$. Information is permitted to flow from one security class $S_{1} = (r_{1}, Q_{1})$ to another $S_{2} = (r_{2}, Q_{2})$ iff $r_{1} \leq r_{2}$ and $Q_{1} \subseteq Q_{2}$. Prove that the set of security classes is a lattice under the information flow ordering (\Box).
- 7. Let $\Pi(A)$ denote the set of all possible partitions of a non-empty set A, and let \sqsubseteq denote the partition-refinement relation.
 - (a) Show that \sqsubseteq is a partial order.
 - (b) Define the least upper bound (lub) and the greatest lower bound (glb) of a subset of Π . Prove that they are indeed the lub and the glb.
 - (c) Prove that $(\Pi(A), \sqsubseteq)$ is a complete lattice.
- 8. Prove that the composition of two continuous functions on a complete lattice (L, \sqsubseteq) yields another continuous function.
- 9. Let \mathbb{Z} be the set of integers and let $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\perp, \top\}$ be the set extended with the two new elements \perp and \top . Let \sqsubseteq be the binary relation on $\mathbb{Z}_{\perp}^{\top}$ defined by $a \sqsubseteq b$ iff a = b or $a \sqsubset b$, where $a \sqsubset b$ iff $(a = \perp \text{ and } b \neq \perp)$ or $(a \neq \top \text{ and } b = \top)$.
 - (a) Prove that (ℤ^T_⊥, ⊑) is a complete lattice by clearly defining the operations □ and □ for every nonempty subset of (ℤ^T_⊥.
 - (b) Any partial function $f : \mathbb{Z} \to \mathbb{Z}$ may be extended to the total function $f_{\perp}^{\top} : \mathbb{Z}_{\perp}^{\top} \to \mathbb{Z}_{\perp}^{\top}$ so that

$$f_{\perp}^{\top}(a) = \begin{cases} \perp & \text{if } a = \perp \text{ or } f(a) \text{ is undefined} \\ \top & \text{if } a = \top \\ f(a) & \text{ otherwise} \end{cases}$$

Prove that f_{\perp}^{\top} is monotonic in $(\mathbb{Z}_{\perp}^{\top}, \sqsubseteq)$.

- (c) Give an example of a function on \mathbb{Z} whose extension (as in the previous part) is <u>not</u> continuous.
- 10. Prove that in a complemented distributive lattice (L, \sqsubseteq) ,
 - (a) \perp and \top are complements of each other
 - (b) the complementation operation is *antimonotonic* i.e. $a \sqsubseteq b$ implies $c(b) \sqsubseteq c(a)$.
- 11. A homomorphism between lattices (L_1, \sqsubseteq_1) and (L_2, \sqsubseteq_2) is a total function $h : L_1 \to L_2$ such that the following properties hold:
 - $h(T_1) = T_2$
 - $h(\perp_1) = \perp_2$
 - $h(a_1 \sqcup_1 b_1) = h(a_1) \sqcup_2 h(b_1)$
 - $h(a_1 \sqcap_1 b_1) = h(a_1) \sqcap_2 h(b_1)$
 - (a) Prove that a homomorphism is a monotonic function.
 - (b) Prove that not all monotonic functions are homomorphisms.