1

CSL105: Discrete Mathematical Structures I semester 2008-09 Last updated: September 15, 2008

Tutorial sheet: Induction Principles

- 1. Prove the following using one of the principles of mathematical induction.
 - (a) The unique prime factorization theorem for positive integers greater than 1.
 - (b) The binomial theorem.
 - (c) Prove that

$$1(1!) + 2(2!) + 3(3!) + \dots + n(n!) = (n+1)! - 1$$

Find the fallacy in the proof of the following theorem. Rectify it and again prove it using one of the principles of mathematical induction. **Theorem.**

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(m-1)m} = \frac{3}{2} - \frac{1}{m}$$

Proof: For n = 1 the LHS is 1/2 and so is RHS. Assume the theorem is true for $n \ge 1$. We then prove the induction step.

$$LHS = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{(n-1)n} + \dots + \frac{1}{n \times (n+1)}$$
$$= \frac{3}{2} - \frac{1}{n} + \frac{1}{n(n+1)}$$
$$= \frac{3}{2} - \frac{1}{n} + \frac{1}{n} - \frac{1}{(n+1)}$$
$$= \frac{3}{2} - \frac{1}{n(n+1)}$$

which was required to be proved.

- **2.** Let A be any set with a reflexive and transitive binary relation \leq defined on it. That is to say, $\leq \subseteq A \times A$ satisfies the following conditions.
 - (a) For every $a \in A$, $a \leq a$.
 - (b) For all $a, b, c \in A$, $a \le b$ and $b \le c$ implies $a \le c$. Then show by induction that $\le; R = \le^n; R$ for all $n \ge 1$ for any binary relation $R \subseteq A \times A$.
- 4. Let Σ be any finite set and let A be the set defined inductively from $B = \{\varepsilon\}$ and $K = \{.\}$ by the rules $\varepsilon \in A$, and for all $u, v \in A$, $uv \in A$. Let ε denote the empty string and satisfies the identities $u.\varepsilon = \varepsilon.u = u$ for all $u \in \Sigma^*$.
 - (a) Prove that $A = \Sigma^*$.
 - (b) Give examples of strings in *A* that may be constructed in more than one way. A is said to be *ambiguously* generated if there is such an element of *A*.
 - (c) A is said to be *unambiguously generated* if every a ∈ A is either in B or there is a unique constructor f ∈ K and unique elements a₁,..., a_{a(f)} ∈ A such that a = f(a₁,..., a_{a(f)})
 Give a different definition of the set Σ* which allows every non-empty string to be constructed uniquely from unique components.
- 5. Let $A \subseteq U$ be unambiguously generated from *B* and *K*. Prove that *A* is a well-founded set. What is the ordering on *A*?
- 6. Let *A* be any set. Then the set BT(A) of *A*-labelled binary trees is the subset of $U = (A \cup \{\emptyset, (,), \})^*$ inductively defined by the basis set $\{\emptyset\}$ and the single constructor $bt : A \times U \times U \rightarrow U$ such that bt(a, l, r) = (a, l, r).
 - (a) Define by structural induction, the functions $h, \#, l : BT(A) \to \mathbb{N}$ which respectively yield the height, the number of nodes and the number of leaves in any member of BT(A).

- (b) Prove by the *Principle of Structural Induction* that for any $t \in BT(A)$, $\#(t) \le 2^{h(t)} 1$ and $l(t) \le 2^{h(t)-1}$
- (c) Let $BT_{\infty}(A) = \bigcup_{n \in \mathbb{N}} BT_n$ where $BT_0(A) = \{\emptyset\}$ and $BT_{k+1}(A) = BT_k \cup \{(a, l, r) \mid a \in A, l, r \in BT_k\}$. Prove that $BT(A) = BT_{\infty}(A)$.
- 7. Let $A \subseteq U$ be inductively defined by a basis set $B \neq \emptyset$ and a constructor set $K \neq \emptyset$. Let X be the set of all sets $X \subseteq U$ such that $B \subseteq X$ and for every constructor $\kappa \in K$, for all $x_1, \ldots, x_{\alpha(\kappa)} \in X$, $\kappa(x_1, \ldots, x_{\alpha(\kappa)}) \in X$. Prove that $A = \bigcap_{X \in X} X$
- 8. Let $A \subseteq U$ be inductively defined by a basis *B* and a constructor set *K*. Further let $A_{\infty} = \bigcup_{n \in \mathbb{N}} A_n$ where $A_0 = B$ and $A_{k+1} = A_k \cup \{f(a_1, \dots, a_{\alpha(f)}) | f \in K, a_1, \dots, a_{\alpha(f)} \in A_k\}$. Prove that $A = A_{\infty}$.
- 9. Let *A* be any alphabet and let *A*^{*} be the set of all strings of characters from *A*. A *language* over *A* is any subset of *A*^{*}. The set *Q* of *rational languages* over *A* is defined inductively as follows:

Basis $\emptyset \in Q$ and for every $a \in A$, $\{a\} \in Q$,

- **Induction Steps** . If $L, M \in Q$ then $L \cup M$, L.M and L^* also belong to Q, where $L.M = \{u.v \mid u \in L, v \in M\}$ and $L^* = \{\varepsilon\} \cup L.L^*$.
- (a) For any language L define $L^R = \{w^R | w \in L\}$, i.e. L^R is the language obtained from L by reversing every string in L. Prove that if $L \in Q$ then $L^R \in Q$.
- (b) Let $Pref(L) = \{u \in A^* \mid \exists v \in A^* : uv \in L\}$ be the set of prefixes of strings in *L*. Prove that if $L \in Q$ then $Pref(L) \in Q$.