# CSL105: Discrete Mathematical Structures 

I semester 2008-09
Last updated: November 19, 2008

## Tutorial sheet: Graph Theory

1. Prove that any undirected graph with $n>0$ vertices and $0<k \leq n$ components has at least $n-k$ edges.
2. Prove that in a directed complete graph $G=\langle V, E\rangle$, with $|V|=n\rangle 0$,

$$
\sum_{v \in V} \delta^{+}(v)^{2}=\sum_{v \in V} \delta^{-}(v)^{2}
$$

3. A casual walk of length $n \geq 0$ on an undirected graph is a sequence $\sigma$ of the form $v_{0} \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \ldots \xrightarrow{e_{n}}$ $v_{n}$, where not all edges or vertices are distinct. $\sigma$ is a closed casual walk of length $n$ if $v_{0}=v_{n}$.
(a) Show that in a tree any closed casual walk is of even length.
(b) Prove that any closed casual walk of $\underline{o d d}$ length in an undirected graph contains a cycle (in which all edges are distinct).
4. Prove that any connected undirected graph with $2 k$ vertices of odd degree may be decomposed into $k$ edge-disjoint subgraphs such that each subgraph has an Euler path.
5. In an old mansion which has only a single entrance, there is a ghost in every room which has an even number of doors. The ghosts are harmless but still scary. Prove that any visitor to the mansion can eventually find a room in which there are no ghosts.
6. Consider Euler graphs which have Hamiltonian circuits. An example of an Euler graph of $n \geq 3$ nodes which also has a Hamiltonian circuit is the graph which looks like an $n$-sided polygon (may also contain "diagonals" so as to give every vertex an even degree). This is the trivial case.
(a) Construct a non-trivial undirected Euler graph of at least 5 vertices and at least 7 edges such that the graph has a Hamiltonian circuit. If it is impossible prove that such a graph cannot exist. Otherwise name all the vertices and edges and specify the Eulerian circuit and the Hamiltonian circuit.
(b) Is it possible to construct non-trivial Euler graphs of $n$ vertices and $n$ edges whose Eulerian circuit is also a Hamiltonian circuit? Prove your case.
7. Let $d(u, v)$ denote the distance of node $v$ from node $u$ in a tree $T=(V, E)$. For any node $u \in V, M(u)=$ $\max \{d(u, v) \mid v \in V\}$ is the distance of the node that is farthest from $u . u$ is said to be a centre of $T$ if $M(u)=\min \{M(v) \mid v \in V\}$.
(a) Prove that every tree has exactly one or two centres.
(b) One of your colleagues ${ }^{1}$ made the following claims. Prove or disprove each claim.

Claim 1 In any tree with a single centre, every maximal path passes through the centre.
Claim 2 In any tree with two centres, there is an edge between the two centres and every maximal path contains the edge between the two centres.

[^0]
[^0]:    ${ }^{1}$ That guy there! No, no, not that one. The other one sitting beside him. That's the one!

