CSL105: Discrete Mathematical Structures

I semester 2008-09
Last updated: August 11, 2008

Tutorial sheet: Algebra of Relations and Functions

1. Prove that
(a) for any equivalence relations \sim_{1} and \sim_{2} on a set $A \neq \emptyset, \pi_{\sim_{1}} \sqsubseteq \pi_{\sim_{2}} \underline{\text { if and only if }} \sim_{1} \subseteq \sim_{2}$.
(b) the set Π of all partitions of a set is partially ordered by the refinement relation.
2. Prove that relational composition is monotonic, i.e. for any binary relations $R, R^{\prime} \subseteq A \times B$ and $S, S^{\prime} \subseteq B \times C$, if $R \subseteq R^{\prime}$ and $S \subseteq S^{\prime}$ then $R ; S \subseteq R^{\prime} ; S^{\prime}$.
3. Prove that for any binary relations R and S on a set A,
(a) $\left(R^{-1}\right)^{-1}=R$
(b) $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$
(c) $(R \cup S)^{-1}=R^{-1} \cup S^{-1}$
(d) $(R-S)^{-1}=R^{-1}-S^{-1}$
4. Let A, B, C, D be sets and let $R, R_{1}, R_{2} \subseteq A \times B, S \subseteq \subseteq B \times C$, and $T \subseteq C \times D$ be binary relations. Let ; denote the relational composition operation, where the relation $R ; S \subseteq A \times C$ is defined as $R ; S=\{(a, c) \mid \exists b \in B:(a, b) \in R$ and $(b, c) \in S\}$ Prove or disprove ${ }^{1}$ the following properties of relational composition. Where set equality or equivalence does not hold explore whether either one side of the equality is a subset or implies the other.

Left Monotonicity. $R_{1} \subseteq R_{2} \Rightarrow R_{1} ; S \subseteq R_{2} ; S$
Right Monotonicity. $S_{1} \subseteq S_{2} \Rightarrow R ; S_{1} \subseteq R ; S_{2}$
Associativity. $(R ; S) ; T=R ;(S ; T)$
Left Distributivity over union. $R ;\left(S_{1} \cup S_{2}\right)=\left(R ; S_{1}\right) \cup\left(R ; S_{2}\right)$.
Right Distributivity over union. $\left(R_{1} \cup R_{2}\right) ; S=\left(R_{1} ; S\right) \cup\left(R_{2} ; S\right)$.
Left Distributivity over intersection. $R ;\left(S_{1} \cap S_{2}\right)=\left(R ; S_{1}\right) \cap\left(R ; S_{2}\right)$.
Right Distributivity over intersection. $\left(R_{1} \cap R_{2}\right) ; S=\left(R_{1} ; S\right) \cap\left(R_{2} ; S\right)$.
5. Prove that for any binary relations R and S on a set A,
(a) $\left(R^{-1}\right)^{-1}=R$
(b) $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$
(c) $(R \cup S)^{-1}=R^{-1} \cup S^{-1}$
(d) $(R-S)^{-1}=R^{-1}-S^{-1}$
6. Prove or disprove ${ }^{2}$ that relational composition satisfies the following distributive laws, where $R \subseteq$ $A \times B$ and $S, T \subseteq B \times C$.
(a) $R ;(S \cup T)=(R ; S) \cup(R ; T)$
(b) $R ;(S \cap T)=(R ; S) \cap(R ; T)$
(c) $R ;(S-T)=(R ; S)-(R ; T)$
(d) $(R ; S)^{-1}=\left(S^{-1}\right) ;\left(R^{-1}\right)$
7. Consider the set $\mathbf{2}^{A \times A}$ of all binary relations on a set $A \neq \emptyset$. Prove that

[^0](a) $\mathbf{2}^{A \times A}$ is a monoid under relational composition. What is the identity element of the monoid?
(b) Given that $\mathbf{2}^{A \times A}$ is closed under the relational inverse operation, show why it is not a group?
8. Let R be a binary relation on $A \neq \emptyset$. Consider the relations $R^{+}=\bigcup_{n \in \mathbb{P}} R^{n}$ and $R^{*}=\bigcup_{n \in \mathbb{N}} R^{n}$, where $R^{0}=I d_{A}$ and $R^{m+1}=R ; R^{m}$, for each $m \in \mathbb{N}$.
(a) Prove that R^{*} is a preorder ${ }^{3}$.
(b) Under what conditions, is it guaranteed that
i. R^{+}is irreflexive?
ii. R^{+}is asymmetric?
iii. R^{*} is an equivalence?

Prove your answer in each case.
(c) Fixpoint Prove that R^{*} is a solution of the equation $I d_{A} \cup X ; R=X$.

Least fixpoint. Prove that R^{*} is the smallest set (under the \subseteq ordering) solution.
Closure Prove that $\left(R^{*}\right)^{*}=R^{*}$.
Other fixpoints Let $S \subseteq A \times A$ be any other solution of the equation. Under what conditions would S be different from R. Give an example of a relation R and a relation S such that S is a solution of the equation but $S \neq R^{*}$.
9. Let $f: A \rightarrow B$ be a total function where A and B are nonempty sets. For any set X, let $I d_{X}$ denote the identity function on X. Prove that
(a) $f(X \cup Y)=f(X) \cup f(Y)$ for all $X, Y \subseteq A$
(b) $f(X \cap Y) \subseteq f(X) \cap f(Y)$ for all $X, Y \subseteq A$
(c) If f is injective then $f(X \cap Y)=f(X) \cap f(Y)$ for all $X, Y \subseteq A$
(d) $f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)$ for all $X, Y \subseteq A$
(e) $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$ for all $X, Y \subseteq A$
(f) f is injective $\underline{i f f}$ for all $X \subseteq A, f^{-1}(f(X))=X$
(g) f is surjective iff for all $Y \subseteq B, f\left(f^{-1}(Y)\right)=Y$
(h) f is injective iff there exists $g: B \rightarrow A$ such that $g \circ f=I d_{A}$ (g is called the left inverse of f),
(i) f is surjective iff there exists $g: B \rightarrow A$ such that $f \circ g=I d_{B}$ (g is called the right inverse of f),
(j) f is bijective $\underline{i f f}$ there exists $g: B \rightarrow A$ such that $f \circ g=I d_{B}$ and $g \circ f=I d_{A}$ (g is called the inverse of f and denoted f^{-1}).
10. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be total functions where A, B and C are nonempty sets. Prove that
(a) f and g are both injective then so is $g \circ f$,
(b) If f and g are both surjective then so is $g \circ f$,
(c) If f and g are both bijective then so is $g \circ f$,
(d) If $g \circ f$ is injective then f is injective,
(e) If $g \circ f$ is surjective then g is surjective,
(f) If $g \circ f$ is injective and f is surjective then g is injective,
(g) If $g \circ f$ is surjective and g is injective then f is surjective,

[^1]
[^0]: ${ }^{1}$ A property is disproved only by finding an example of an appropriate relation(s) which satisfy all the assumptions but do not satisfy the property
 ${ }^{2}$ that is, find an example of appropriate relations which actually violate the equality

[^1]: ${ }^{3} R^{*}$ is called the reflexive transitive closure of R

