CSL105: Discrete Mathematical Structures

I semester 2008-09
Last updated: November 3, 2008

Tutorial sheet: Elementary Number Theory

1. Prove that
(a) the square of any integer is of the form $3 k$ or $3 k+1$,
(b) the cube of an integer has one of the forms $9 k, 9 k+1$ or $9 k+8$,
(c) the fourth power of any integer is of the form $5 k$ or $5 k+1$, and
(d) for any integer $a, 3 a^{2}-1$ is never a perfect square.
2. Prove that $g c d$ is also a multiplicative function in a certain sense viz., If $\operatorname{gcd}(b, c)=1$ then

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \operatorname{gcd}(a, c)
$$

3. Prove that
(a) If p and q are odd primes and $q \mid a^{p}-1$, then either $q \mid a-1$ or $q=2 k p+1$ for some integer k
(b) Fromt he above show that the prime divisors of $2^{p}-1$, where p is any odd prime are of the form $2 k p+1$.
4. If p is an odd prime, then prove that there are infinite primes of the form $2 k p+1$. (Hint: If b is prime, then $x^{a}={ }_{b} 1$).
5. Prove that, for any number m, there must be a Fibonacci number F_{k} such that $F_{k} \equiv_{m} 0$, and further that, $k \leq m^{2}$
6. Show that, every possible divisor of the number $2^{2^{n}}+1, n \geq 5$, has the form

$$
d=h \cdot 2^{n+2}+1
$$

for some integer h.
7. Define $S(m)=\{a \mid \phi(a)=m, a>0\}$. Prove that
(a) $S(m)$ is finite.
(b) $S(m)=\emptyset$ whenever $m>1$ is an odd integer.
8. Assume that p and q are distinct odd primes such that $p-1 \mid q-1$. If $\operatorname{gcd}(a, p q)=1$, show that $a^{q-1}={ }_{p q} 1$
9. Show the more general result of the mulitplicativity of Euler's function, i.e, Show that

$$
\begin{equation*}
\phi(a b)=\frac{d \phi(a) \phi(b)}{\phi(d)} \tag{1}
\end{equation*}
$$

where $d=\operatorname{gcd}(a, b)$.
10. Prove that, $x^{2} \equiv_{n} x$ has exactly 2^{k} different solutions, where k is the number of distinct prime divisors of n.
11. Consider numbers written in base 10 .
(a) Prove that $n-n^{R}$ is divisible by 9 where n^{R} denotes the number obtained by reversing the digits of n.
(b) n is a palindrome if $n=n^{R}$. Prove that any palindrome with an even number of digits is divisible by 11.

