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CSL105: Discrete Mathematical Structures

I semester 2008-09
Major Wed 27 Nov 2008 VI 301(G123) VI401(G4) 10:30-12:30 MaxMarks 60

1. Open notes exam. No borrowing of notes etc. and no text books allowed.
2. Answer in the space provided on the question paper in ink (no pencils or other easily eraseable writing

instruments allowed).
3. The answer booklet you have been given is for rough work only and will not be collected.

Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

1. [5+5=10 marks]

(a) Prove that in adirected complete graphG = 〈V, E〉, with |V | = n > 0,
∑

v∈V

δ+(v)2
=

∑

v∈V

δ−(v)2 .

Solution

In any directed graph complete graphG = 〈V, E〉 we have
∑

v∈V

δ+(v) =
∑

v∈V

δ−(v) (1)

and for everyv ∈ V,
δ+(v) + δ−(v) = n − 1 (2)

From (1) and (2) we get
∑

v∈V

(δ+(v) + δ−(v)) = n(n − 1) (3)

which yields
∑

v∈V

δ+(v) =
n(n − 1)

2
=

∑

v∈V

δ−(v) (4)

Again from (2) we get

δ+(v) = (n − 1)− δ−(v)
⇒ δ+(v)2

= (n − 1)2 − 2(n − 1)δ−(v) + δ−(v)2

⇒
∑

v∈V

δ+(v)2
=

∑

v∈V

(n − 1)2 − 2(n − 1)
∑

v∈V

δ−(v) +
∑

v∈V

δ−(v)2

= n(n − 1)2 − 2(n − 1)
n(n − 1)

2
+

∑

v∈V

δ−(v)2

=

∑

v∈V

δ−(v)2
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(b) Prove that any connected undirected graph with 2k vertices of odd degree may be decomposed intok
edge-disjoint subgraphs such that each subgraph has an Euler path.

Solution

AssumeG is a connected undirected (multi-)graph ofn vertices andu1, . . . , uk andv1, . . . , vk are the
2k < n distinct vertices of odd degree in the (multi-)graphG. Let G be the subsgraph ofG∗ which has
all the vertices and edges ofG and in addition hask newedgesui—vi, 1 ≤ i ≤ k. ClearlyG∗ is an Euler
(multi-)graph since it is connected and every vertex is of even degree. Hence by Euler’s theorem for
Euler graphs,G∗ has an Eulerian circuit, say

ǫ = w0—w1— · · ·—wn−1—w0

in which each of the newedgesui—vi is also present (in addition to all the edges ofG and every
edge occurs exactly once inǫ). Deleting thek new edges fromǫ yields exactlyk edge-disjoint paths
ǫ0, . . . , ǫk−1 containing only and all the edges of the original (multi-)graphG. Each of thesek paths
defines a subgraph ofG which has an Euler path. Further all the subgraphs so defined are edge-disjoint
(though they may not be vertex-disjoint).
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2. [5+5=10 marks] DefineS (m) = {a | φ(a) = m, a > 0}, whereφ(a) is the Euler function on positive integers.
Prove that

(a) S (m) is finite.

(b) S (m) = ∅ wheneverm > 1 is an odd integer.

Solution

Let the unique prime factorization of any integera be given by:

a = p1
k1 p2

k2 . . . pr
kr (5)

Therefore,

φ(a) =

i=r
∏

i=1

(pki
i − pki−1

i ) (6)

=

i=r
∏

i=1

pki−1
i (pi − 1) (7)

(a) If φ(a) = m, then surely (pi − 1)|m for all 1 ≤ i ≤ r. Since there are only finite number of divisors of
m, then our possible choices forpi are restricted. Ifm hasdm different divisors, then we can choose a
maximum ofdm different primes. Further, since (pi − 1)|m, we have

pki−1
i ≤ m, 1 ≤ i ≤ r. (8)

or ki ≤ 1+
logm
log pi

(9)

≤ 1+
logm
log 2

(10)

Hence, we have a finite upper bound on the possible prime factors and also their exponents. Therefore,
the number ofa’s such thatφ(a) = m, is finite. In fact,

|S (m)| ≤ dm

(

1+
logm
log 2

)

(11)

(b) We knowφ(2) = 1. For anya = 2n, n > 1, we haveφ(a) = 2n−1 which is always even. Ifa is not a
power of 2, then it must be of the forma = pk.q wherep is an odd prime andp is not a divisor ofq.
By the multiplicative nature ofφ, we getφ(a) = (p − 1)pk−1.φ(q). But sincep − 1 is even ,φ(a) is also
even. Hence for all oddm > 1, S (m) = ∅.
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3. [10 marks] Let f : Z → Z be a function expressed only using the operations of addition, subtraction and

multiplication on integers. Letn =
k

∏

i=1

ni, wheregcd(ni, n j) = 1 for all 1 ≤ i < j ≤ k. Prove that the

number of roots of the equationf (x) =n 0 equals the product of the number of roots of each of the equations
f (x) =ni 0, 1≤ i ≤ k.

Solution

Let f (x) =ni 0 haveri roots. Letαi, 1 ≤ i ≤ k be some arbitrarily chosen roots of the equationsf (x) =ni 0,
1 ≤ i ≤ k respectively. Then the system of equations

y =n1 α1, · · · , y =nk αk

has a unique solutionαmodulon =
k

∏

i=1

ni. Sincef is made up of only the operations of addition, subtraction

and multiplication on integers, it follows thatf (α) =ni 0, for eachi, 1 ≤ i ≤ k, which implies thatα is a
solution of the equationf (x) =n 0. Since eachαi can be picked inri ways, the number of different tuples of

solutions (α1, . . . , αk) (which yield a solution tof (x) =n 0 that is unique modulon) is
k

∏

i=1

ri.
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4. [1+3+7=10]

P5 (0) = 1

P5 (1) = 5

P5 (2) = 12

The concept of triangular numbers (P3(k) = (k + 1)(k + 2)/2) may be generalized to “polygonal” numbers,
Pn(k) wheren is the number of sides of a regular polygon andk is its position in the sequence. Assume
for all n ≥ 3, Pn(0) = 1 andPn(1) = n. The figure above shows an example of how the sequence of
“pentagonal” numbersP5(0), P5(1), P5(2) may be constructed. By this construction,Pn(k) is the number of
dots inside and ona n-sided polygon with sides of lengthk. Notice also that the sequenceP4 by a similar
construction is simply the sequence of perfect squares where P4(k) = (k + 1)2.

(a) Just to make sure you understand the construction, give the values ofP5(4) andP6(3).

(b) Write a recurrence relation forPn(k) for k > 1, wheren is fixed.

(c) Assumingn is a constant of the equation, solve the recurrence equationby any method (an inductive
“guess” would have to be justified by an inductive proof that your guess is indeed the correct solution
of the equation).

Solution

(a) P5(4) = 35 andP6(3) = 28.

(b) Let us consider the construction in the figure for the general case of constructingPn(k) from Pn(k − 1).
Note that each edge of lengthk units hask + 1 dots on it. Given thatPn(k − 1) already exists, the
construction ofPn(k) in a counter-clockwise fashion starting from the left arm of the diagram proceeds
as follows:

• One new dot appears on the left arm, completing the first side of the polygon
• Each of the next (n − 2) sides (which are not already in inPn(k − 1)) is constructed by measuring

out k dots for each side. The last dot in this process appears on theright arm of the diagram,
completing the polygonPn(k).

This yields the recurrence

Pn(k) = Pn(k − 1)+ (n − 2)k + 1

(c) Fork > 0 we have the sequence of identities

Pn(k) − Pn(k − 1) = (n − 2)k + 1
Pn(k − 1)− Pn(k − 2) = (n − 2)(k − 1)+ 1

...
...

...

Pn(1)− Pn(0) = (n − 2).1+ 1

Summing both sides of the above sequence we get

Pn(k) − Pn(0) = (n − 2).
k

∑

i=1

i +
k

∑

i=1

1

Pn(k) − 1 = (n − 1).
k(k + 1)

2
+ k

⇒ Pn(k) =
(k + 1)

2
.[(n − 2).k + 2]
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5. [10 marks] Prove that the ring of integers modulo 2 (i.e.Z/ =2) is a boolean ring, by

(a) clearly identifying the sum and product operations, and

(b) proving that it satisfies all the properties of a boolean ring.

Solution

The intuition behind this is that it is possible to define a homomorphic mapping from the ring of integers to
the 2-element boolean ring, using the property

odd : Z→ {0,1}

where

odd(m) =

{

1 if m is odd
0 if m is even

Note that the value ofodd(m) = m mod 2. Further,

• the sum of two odd integes is even

• the sum of two even integers is also even, but

• the sum of an odd integer and an even integer is odd

• the product of two odd integes is odd

• the product of two even integers is even, and

• the product of an odd integer and an even integer is even

Hence when sums and products are taken modulo 2 we get 1 or 0 accordingly

(a) sum. a ⊕ b = (a + b) mod 2

product. a.b = (a.b) mod 2

(b) It is easy to verify the following properties of the boolean ring.

associativity of product and sum a.(b.c) = (a.b).c anda ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

commutativity of product and sum a.b = b.a anda ⊕ b = b ⊕ a

distributivity of product over sum a.(b ⊕ c) = (a.b) ⊕ (a.c)

identity for product and sum 1 and 0 respectively

annihilator for product and sum 0 and 1 respectively

idempotence of product a.a = a

self-cancellation a ⊕ a = 0.
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6. [5+5=10 marks]

(a) Prove that if (A,≤) is a well-ordered set (not necessarily finite, and not necessarily countable) and
f : A→ B is an order-preserving isomorphism fromA to a subsetB ⊆ A, then for allx ∈ A, x ≤ f (x).

(b) Let (A,≤A) and (B,≤B) be equipollent well-ordered sets. Then prove that there isexactly one order-
preserving isomorphism fromA to B.

Solution

(a) LetC = {x ∈ A | x � f (x)} = {x ∈ A | f (x) < x} ⊆ A. If C , ∅, sinceC ⊆ A andA is well-ordered,C
must have a least elementx0 and f (x0) < x0. Let x1 = f (x0) < x0 and sincef is order-preserving we
have f (x1) < f (x0) = x1, which impliesx1 ∈ C andx0 is not the least element ofC, contradicting our
assumption.

(b) Let f , g : A → B both be order-preserving isomorphisms fromA to B and leth = g; f −1
= f −1 ◦ g.

Clearlyh is also an order-preserving isomorphism fromA to B. Further from (6a) we get that for each
x ∈ A, x ≤ h(x) which implies that for eachx ∈ A, f (x) ≤ f (h(x)) = f ( f −1(g(x))) = g(x).

By a similar reasoning, it follows thati = f ; g−1
= g−1 ◦ f is also an order-preserving isomorphism and

yields for eachx ∈ A, g(x) ≤ f (x). From the two inequalities we getf = g and hence there is exactly
one order-preserving isomorphism fromA to B.


