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2. Answer in the space provided on the question paper in ink (no pencils or other easily eraseable writing

instruments allowed).
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1. [5+5=10 marksg]

(a) Prove that in @irected complete graphG = (V, E), with |V| =n > 0,

Solution

Z 5T (V)2 = Z 5 (V)2 |

veV veV

In any directed graph complete graBh= (V, E) we have

and for every € V,

From (1) and (2) we get

which yields

Z §T(V) = Z 5 (V)

veV veV
SFM+6(v=n-1

D) +67(W) = n(n-1)
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Again from (2) we get

6" (V) = (n-1-6()

= W2 = (N-12-20n-1)0" (V) + 5 (V)?

= Z ST(V)? = Z(n —1?%-2(n- 1)2 5 (V) + Z 6 (v)?
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(b) Prove that any connected undirected graph witlhréXtices of odd degree may be decomposed knto

edge-digoint subgraphs such that each subgraph has an Euler path.
Solution

AssumeG is a connected undirected (multi-)graphrofertices andls, ..., ux andvs, ...,V are the
2k < n distinct vertices of odd degree in the (multi-)graphLet G be the subsgraph @&* which has
all the vertices and edges Gfand in addition hak newedgess—v;, 1 < i < k. ClearlyG* is an Euler
(multi-)graph since it is connected and every vertex is @restegree. Hence by Euler's theorem for
Euler graphsG* has an Eulerian circuit, say

€ = Wo—Wi— - —Wn_1—Wp

in which each of the nevedgesui—v; is also present (in addition to all the edges@fand every

edge occurs exactly once #). Deleting thek new edges frone yields exactlyk edge-disjoint paths
€, ..., €1 containing only and all the edges of the original (multigjgihG. Each of thesd paths

defines a subgraph & which has an Euler path. Further all the subgraphs so defieeetige-disjoint
(though they may not be vertex-disjoint).
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2. [5+5=10 marks] DefineS(m) = {a| ¢(a) = m,a > 0}, whereg(a) is the Euler function on positive integers.
Prove that

(&) S(m) is finite.
(b) S(m) = ® whenevemm > 1 is an odd integer.

Solution
Let the unique prime factorization of any integele given by:

a= plkl p2k2 - er (5)
Therefore,
p@ = [0 -p (6)
i=1
= P (p - 1) ©)

i=1

(@) If p(a) = m, then surely  — L)imfor all 1 < i < r. Since there are only finite number of divisors of
m, then our possible choices for are restricted. Ifn hasd,, different divisors, then we can choose a
maximum ofdy, different primes. Further, sincgj(- 1)im, we have

Pt < mil<isr (8)
logm

ork < 1+ —— 9

ki log pi )
logm

1+ Tog2 (20)

Hence, we have a finite upper bound on the possible primerfaatal also their exponents. Therefore,
the number oft’s such that(a) = m, is finite. In fact,

logm

(b) We knowe(2) = 1. For anya = 2", n > 1, we havap(a) = 2" which is always even. I&is not a
power of 2, then it must be of the form= pX.q wherep is an odd prime ang is not a divisor off.
By the multiplicative nature ap, we getp(a) = (p — 1)p“L.¢(q). But sincep — 1 is even g(a) is also
even. Hence for all odth > 1, S(m) = 0.
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3. [10 marks] Let f : Z — Z be a function expressed only using the operations of additobtraction and
k

multiplication on integers. Leh = nni, whereged(n;,n;) = 1 forall1 <i < j < k. Prove that the

i=1
number of roots of the equatidi{x) =, 0 equals the product of the number of roots of each of the emsat
f(X) = 0,1<i<k

Solution

Let f(x) =, O haver; roots. Letai, 1 < i < k be some arbitrarily chosen roots of the equatiéfg =p, O,
1 <i < krespectively. Then the system of equations

y:nla’l, "‘,yznkak

k
has a unique solutiom modulon = 1—[ n;. Sincef is made up of only the operations of addition, subtraction

i=1
and multiplication on integers, it follows thd{a) =, O, for eachi, 1 < i < k, which implies thatv is a
solution of the equatiofii(x) =, 0. Since eachy; can be picked im; ways, the number of éfierent tuples of

k
solutions {4, . . ., ax) (which yield a solution tdf(x) =, 0 that is unique modula) is l—[ ri.
i=1
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4. [1+3+7=10]

P5(0) =1
P5(1)=5
P5 (2) = 12

The concept of triangular numbems(k) = (k + 1)(k + 2)/2) may be generalized to “polygonal” numbers,
Pn(k) wheren is the number of sides of a regular polygon dni$ its position in the sequence. Assume
forall n > 3, P,(0) = 1 andP,(1) = n. The figure above shows an example of how the sequence of
“pentagonal” number®s(0), Ps(1), Ps(2) may be constructed. By this constructiéf(k) is the number of
dots inside and oa n-sided polygon with sides of length Notice also that the sequenBg by a similar
construction is simply the sequence of perfect squareseWgk) = (k + 1)°.

(a) Just to make sure you understand the construction, lyggvealues oPs(4) andPg(3).
(b) Write a recurrence relation fé¥, (k) for k > 1, wheren is fixed

(c) Assumingn is a constant of the equation, solve the recurrence equlyi@my method (an inductive
“guess” would have to be justified by an inductive proof thatiyguess is indeed the correct solution
of the equation).

Solution

(a) Ps(4) = 35 andPg(3) = 28.

(b) Letus consider the construction in the figure for the galnease of constructinB, (k) from Pp(k — 1).
Note that each edge of lengkhunits hask + 1 dots on it. Given thaP,(k — 1) already exists, the
construction oP,(k) in a counter-clockwise fashion starting from the left arithe diagram proceeds
as follows:

e One new dot appears on the left arm, completing the first ditleeqoolygon
e Each of the nextr(- 2) sides (which are not already in iy (k — 1)) is constructed by measuring
out k dots for each side. The last dot in this process appears origifiearm of the diagram,
completing the polygo,(K).
This yields the recurrence

[ Pa(K) = Po(k— 1)+ (n - 2)k + 1]
(c) Fork > 0 we have the sequence of identities

Pn(kK) — Pa(k— 1) (n—-2)k+1
Pok-1)-Prk-2) = (n-2)k-1)+1

Pa(1) - Pn(0) (n-2)1+1

Summing both sides of the above sequence we get

k k
Pa(K) - Pa(0) = (n- 2).2 i+ Z 1
i=1 i=1
Pa(K) - 1 - (n-1) k(k; D,k
(k+1)
= Pk - [(n—2)k+ 2]

—
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5. [10 marks] Prove that the ring of integers modulo 2 (. =,) is a boolean ring, by
(a) clearly identifying the sum and product operations, and

(b) proving that it satisfies all the properties of a booleag.r

Solution
The intuition behind this is that it is possible to define a lomorphic mapping from the ring of integers to
the 2-element boolean ring, using the property

odd: Z — {0,1}

where
1 if misodd

odd(m) = { 0 if miseven

Note that the value afdd(m) = mmod 2. Further,

the sum of two odd integes is even

the sum of two even integers is also even, but

the sum of an odd integer and an even integer is odd

the product of two odd integes is odd

the product of two even integers is even, and

the product of an odd integer and an even integer is even
Hence when sums and products are taken modulo 2 we get 1 oofflatgly

(&) sum. a®b=(a+b)mod2
product. a.b = (a.b) mod 2
(b) Itis easy to verify the following properties of the boatering.
associativity of product and sum a.(b.c) = (ab).canda® (b®c) = (adb)ac
commutativity of product and sum a.b=b.aanda®b=boa
distributivity of product over sum a.(b® c) = (a.b) @ (a.c)
identity for product and sum 1 and O respectively
annihilator for product and sum 0 and 1 respectively
idempotence of product aa=a
self-cancellation a®a=0.
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6. [5+5=10 marksg]

(a) Prove that if A, <) is a well-ordered set (not necessarily finite, and not resrély countable) and
f : A— Bis an order-preserving isomorphism frakto a subseB C A, then for allx € A, x < f(X).

(b) Let (A,<a) and B, <g) be equipollent well-ordered sets. Then prove that thesxéctly one order-
preserving isomorphism fror to B.

Solution

(@) LetC={xe Alx£ f(X)} ={xe Al f(X) < x} C A If C#0,sinceC c AandA is well-orderedC
must have a least elemexgand f(xg) < Xp. Let x; = f(Xg) < Xp and sincef is order-preserving we
havef(x;) < f(xg) = X1, which impliesx; € C andxg is not the least element &, contradicting our

assumption.

(b) Let f,g: A — B both be order-preserving isomorphisms fréno B and leth = g; f~* = f1og.
Clearlyhis also an order-preserving isomorphism fréno B. Further from (6a) we get that for each
x € A, x < h(x) which implies that for eack € A, f(x) < f(h(X)) = f(f1(9(x))) = 9(X).
By a similar reasoning, it follows that= f; g™ = g~ o f is also an order-preserving isomorphism and
yields for eachx € A, g(x) < f(x). From the two inequalities we gét= g and hence there is exactly
one order-preserving isomorphism frakio B.



