Additive Guarantees for Degree Bounded Directed Network Design

Nikhil Bansal
IBM T. J. Watson Research Yorktown Heights, NY, USA nikhil@us.ibm.com

Rohit Khandekar
IBM T. J. Watson Research
Yorktown Heights,NY, USA
rohitk@us.ibm.com

Viswanath Nagarajan ${ }^{*}$
Tepper School of Business
CMU, Pittsburgh, PA, USA
viswa@cmu.edu

Abstract

We present polynomial-time approximation algorithms for some degree-bounded directed network design problems. Our main result is for intersecting supermodular connectivity with degree bounds: given a directed graph $G=(V, E)$ with nonnegative edge-costs, a connectivity requirement specified by an intersecting supermodular function f, and upper bounds $\left\{a_{v}, b_{v}\right\}_{v \in V}$ on in-degrees and out-degrees of vertices, find a minimum-cost f-connected subgraph of G that satisfies the degree bounds. We give a bicriteria approximation algorithm that for any $0 \leq \epsilon \leq \frac{1}{2}$, computes an f-connected subgraph with in-degrees at most $\left\lceil\frac{a_{v}}{1-\epsilon}\right\rceil+4$, out-degrees at most $\left\lceil\frac{b_{v}}{1-\epsilon}\right\rceil+4$, and cost at most $\frac{1}{\epsilon}$ times the optimum. This includes, as a special case, the minimum-cost degree-bounded arborescence problem. We also obtain similar results for the (more general) class of crossing supermodular requirements. Our result extends and improves the $\left(3 a_{v}+4,3 b_{v}+4,3\right)$ approximation of Lau et al. [13]. Setting $\epsilon=0$, our result gives the first purely additive guarantee for the unweighted versions of these problems. Our algorithm is based on rounding an LP relaxation for the problem. We also prove that the above cost-degree trade-off (even for the degree-bounded arborescence problem) is optimal relative to the natural LP relaxation. For every $0<\epsilon<1$, we show an instance where any arborescence with out-degrees at most $\frac{b_{v}}{1-\epsilon}+O(1)$ has cost at least $\frac{1-o(1)}{\epsilon}$ times the optimal LP value. For the special case of finding a minimum degree arborescence (without costs), we give a stronger +2 additive approximation. This improves on a result of Lau et al. [13] that gives a $2 \Delta^{*}+2$ guarantee, and Klein et al. [11] that gives a $(1+\epsilon) \Delta^{*}+O\left(\log _{1+\epsilon} n\right)$ bound, where Δ^{*} is the degree of the optimal arborescence. As a corollary of our result, we (almost) settle a conjecture of Bang-Jensen et al. [1] on low-degree arborescences.

Our algorithms use the iterative rounding technique of

*Supported in part by NSF grant CCF-0728841. Work done while visiting IBM T.J. Watson Research Center.

[^0]Jain [9], which was used by Lau et al. [13] and Singh and Lau [19] in the context of degree-bounded network design. It is however non-trivial to extend these techniques to the directed setting without incurring a multiplicative violation in the degree bounds. This is due to the fact that known polyhedral characterization of arborescences has the cutconstraints which, along with degree-constraints, are unsuitable for arguing the existence of integral variables in a basic feasible solution. We overcome this difficulty by enhancing the iterative rounding steps and by means of stronger counting arguments. Our counting technique is quite general, and it also simplifies the proofs of many previous results.

We also apply the technique to undirected graphs. We consider the minimum crossing spanning tree problem: given an undirected edge-weighted graph G, edge-subsets $\left\{E_{i}\right\}_{i=1}^{k}$, and non-negative integers $\left\{b_{i}\right\}_{i=1}^{k}$, find a minimum-cost spanning tree (if it exists) in G that contains at most b_{i} edges from each set E_{i}. We obtain a $+(r-1)$ additive approximation for this problem, when each edge lies in at most r sets; this considerably improves the result of Bilò et al. [2]. A special case of this problem is degree-bounded minimum spanning tree, and our result gives a substantially easier proof of the recent +1 approximation of Singh and Lau [19].

Categories and Subject Descriptors

F. 2.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms

Algorithms

1. INTRODUCTION

The problem of finding a minimum spanning tree that satisfies given degree bounds on vertices has received much attention in the field of combinatorial optimization recently. This problem was first studied by Fürer and Raghavachari [6]. Their motivation was to find a broadcast tree in a communication network along which the maximum overload of any node, proportional to its degree, is minimized. Assuming unit edge-costs, they gave a local-search based polynomialtime algorithm for computing a spanning tree with maximum degree at most $\Delta^{*}+1$ as long as there exists a spanning tree with maximum degree at most Δ^{*}. This is essentially the best possible since computing the optimum is NP-hard.

Earlier in this decade, a variety of techniques were developed in attempts to generalize this result to the case of arbitrary edge-weights. Ravi et al. [18], using a matching-based
augmentation technique, gave a bi-criteria approximation algorithm that violates both the cost and the degree bounds by a multiplicative logarithmic factor. Könemann and Ravi [12] used a Lagrangian relaxation based method to get $O(1)$ approximation on the cost while violating the degrees by a constant factor plus an additive logarithmic term. Chaudhuri et al. [3] based their algorithms on the augmenting-path and push-relabel frameworks from the maximum flow problem and obtained either logarithmic additive violation or constant multiplicative violation on degrees. In a recent breakthrough result, Goemans [8] presented an algorithm, based on matroid intersection techniques, that computes a spanning tree with cost at most that of the optimum and with degrees at most the bounds plus 2. This line of research recently culminated in the "best possible" plus 1 result of Singh and Lau [19]. Their algorithm used an iterative rounding approach of Jain [9] while obtaining a spanning tree with cost at most that of the optimum while violating the degrees by at most an additive +1 term.

In this paper, we consider directed network design problems with either in-degree or out-degree (or both) constraints on the vertices. Directed graphs naturally arise in communication networks. In fact our original motivation was a problem that arose at IBM in the context of maximizing throughput in peer to peer networks. Here, we are given a network where a root node r wishes to transmit packets to all the nodes in the network. However, each node has limited network resources which determines how many packets it can transmit per unit time. It turns out that computing the maximum achievable throughput of this network is equivalent to determining the number of r-arborescences that can be packed in the network subject to out-degree bounds.

As we discuss below, the directed setting turns out to be substantially harder than the undirected setting, and much fewer results are known in this case. First we give some relevant definitions.

1.1 Preliminaries

A family \mathcal{A} of subsets of V is intersecting (resp. crossing) if $S, T \in \mathcal{A}$ with $S \cap T \neq \emptyset$ (resp. $S \cap T, V \backslash(S \cup T) \neq \emptyset)$ implies $S \cap T, S \cup T \in \mathcal{A}$. A set function $f: \mathcal{A} \rightarrow \mathbb{Z}_{+}$is called intersecting supermodular (resp. crossing supermodular), if for any $S, T \in \mathcal{A}$ with $S \cap T \neq \emptyset$ (resp. $S \cap T, V \backslash(S \cup T) \neq \emptyset)$, it holds that $f(S \cup T)+f(S \cap T) \geq f(S)+f(T)$.

For a directed graph $G=(V, E)$ and a subset S of vertices, we use $\delta_{G}^{-}(S)$ (resp. $\delta_{G}^{+}(S)$) to denote the set of edges entering (resp. leaving) S. When the graph G is clear from the context, we drop the subscript G. Consider any nonnegative real-value assignment $x: E \rightarrow \mathbb{R}^{+}$to the edges; we use $x\left(\delta^{-}(S)\right.$) (resp. $x\left(\delta^{+}(S)\right)$) to denote the total x-value of the edges entering (resp. leaving) S.

Given a directed graph $G=(V, E)$ and an intersecting (or crossing) supermodular set function $f: \mathcal{A} \rightarrow \mathbb{Z}_{+}$for some set-family \mathcal{A}, a subgraph $H=\left(V, E^{\prime}\right)$ of G is said to be f-connected or satisfy requirement f if $\left|\delta_{H}^{-}(S)\right| \geq f(S)$ for every $S \in \mathcal{A}$. In the basic directed network design problem $[5,16,7]$, given an edge-weighted graph and an intersecting or crossing supermodular set function f, the goal is to compute the minimum-cost f-connected subgraph. In the degree-bounded variant of network design, there are additional constraints bounding the in-degree and out-degree at each vertex. The degree-bounded directed network design problem is the following: given a directed graph $G=(V, E)$
with edge-costs $c: E \rightarrow \mathbb{R}_{+}$, an intersecting (or crossing) supermodular set function f and integers $\left\{a_{v}, b_{v}\right\}_{v \in V}$, compute a minimum-cost f-connected subgraph in which each vertex v has in-degree at most a_{v} and out-degree at most b_{v}. The intersecting supermodular requirements are general enough to include the problem of packing k-edge disjoint arborescences, and choosing the minimum-cost edges to increase the rooted connectivity of a directed graph [5, 16]. The crossing supermodular requirements include the problem of computing a minimum cost k strongly-connected spanning subgraph and several other problems on graphs and hypergraphs, a detailed discussion of which can be found in [7].

We shall consider bicriteria approximation algorithms for which the output may violate the degree-constraints to some extent and its cost is compared to the optimal solution that does not violate any constraints. For functions $\alpha, \beta: \mathbb{Z}_{+} \rightarrow$ \mathbb{Z}_{+}and value $\rho \geq 1$, an algorithm for degree-bounded directed network design is called an (α, β, ρ) approximation if for each instance $\left\langle G, c, f,\left\{a_{v}, b_{v}\right\}_{v \in V}\right\rangle$, the algorithm returns an f-connected subgraph H of cost at most ρ times the optimal f-connected subgraph (that satisfies degree-constraints), with $\left|\delta_{H}^{-}(v)\right| \leq \alpha\left(a_{v}\right)$ and $\left|\delta_{H}^{+}(v)\right| \leq \beta\left(b_{v}\right)$ for all $v \in V$.

A family of sets $\left\{S_{1}, \ldots, S_{k}\right\}$ is called laminar if for every two sets, either they are disjoint or one is contained in the other; i.e., for every $1 \leq i, j \leq k, i \neq j$, either $S_{i} \cap S_{j}=\emptyset$ or $S_{i} \subset S_{j}$ or $S_{j} \subset S_{i}$.

1.2 Our results and previous work

Degree-bounded arborescence problem (no costs). Let $G=(V, E)$ be a directed graph with root r, and let b_{v} be the bounds on out-degree for each vertex v. The goal in the degree bounded arborescence problem is to compute an (out-)arborescence from r that satisfies the degree bounds or declare that it is infeasible. Since in any arborescence, every vertex except the root has in-degree exactly one, we do not consider bounds on in-degree here. This problem was first considered by Fürer and Raghavachari [6] who gave a polynomial time algorithm to compute an arborescence that violates the degree bound by at most a logarithmic multiplicative factor. Klein et al. [11] gave a quasi-polynomial time algorithm with degree violation $(1+\epsilon) b_{v}+O\left(\log _{1+\epsilon} n\right)$ for any $\epsilon>0$. Their algorithm starts with a solution and successively applies local improvement steps to reduce high degrees. Recently, Lau et al. [13], using an iterative rounding technique, obtained a polynomial-time algorithm that computes an arborescence with degrees at most $2 \cdot b_{v}+2$. We obtain the first result with only additive violation in the degree bounds. In fact, assuming $P \neq N P$, our result is almost best possible.

ThEOREM 1. There is a polynomial time algorithm that given a directed graph with out-degree bounds $\left\{b_{v}\right\}_{v \in V}$, either constructs an (out-) arborescence such that any vertex v has out-degree at most $b_{v}+2$ or shows that no arborescence satisfies the degree bounds exactly.

In particular, this implies a +2 additive approximation for the minimum degree arborescence problem [11]: given a rooted directed graph find an out-arborescence whose maximal outdegree is as small as possible. Call a directed graph k -arc-strong if every directed cut has at least k edges. Our techniques also imply the following result: any k-arc-strong graph G contains an arborescence T with $\delta_{T}^{+}(v) \leq\left\lceil\frac{\delta_{G}^{+}(v)}{k}\right\rceil+$

2 for all vertices v in G. This (almost) settles the following conjecture, for which the previously best known result [1] was an existence of an arborescence T with $\delta_{T}^{+}(v) \leq$ $\frac{\delta_{G}^{+}(v)}{2^{\left\lfloor\log _{2} k\right\rfloor}}+\left\lfloor\log _{2} k\right\rfloor$.

Conjecture 1 (Bang-Jensen et al. [1]). Let G be k -arc-strong directed graph. There exists a spanning arborescence T with $\delta_{T}^{+}(v) \leq \frac{\delta_{G}^{+}(v)}{k}+1$ for all vertices v in G.

General connectivity requirements with degree bounds.

 We consider the network design problem in directed graphs where the connectivity requirement is specified by an arbitrary intersecting supermodular function [5], and there are both in-degree and out-degree bounds $\left\{\left(a_{v}, b_{v}\right)\right\}_{v \in V}$ on vertices. The goal here is to find a minimum-cost subgraph (if it exists) that satisfies the connectivity requirement and degree bounds on vertices. The previously best known results for this problem are a $\left(3 a_{v}+4,3 b_{v}+4,3\right)$ approximation in general, and a $\left(2 a_{v}+2,2 b_{v}+2,2\right)$ approximation for the special case of $0-1$ valued functions [13]. We extend and improve this result as follows.Theorem 2. For any $\epsilon \in\left[0, \frac{1}{2}\right]$, there is a polynomial time $\left(\left\lceil\frac{a_{v}}{1-\epsilon}\right\rceil+4,\left\lceil\frac{b_{v}}{1-\epsilon}\right\rceil+4, \frac{1}{\epsilon}\right)$ approximation algorithm for degree bounded network design with intersecting supermodular requirement. Here $\frac{1}{0}=\infty$.
Note that setting $\epsilon=0$, gives the first additive guarantee for the unweighted (no edge-costs) version of the these problems. As in Lau et al. [13], our algorithm is based on rounding the fractional solution to a natural linear relaxation of the problem (described later); hence the cost guarantee is relative to the optimal value of this LP relaxation.

Surprisingly, it also turns out that the above trade-off between the cost blowup and the degree-bound violation, is optimal for the LP relaxation. In fact this integrality gap holds even for the basic arborescence problem. The following theorem captures this more formally (the $O(1)$ and $o(1)$ terms below are independent of ϵ).

Theorem 3. For any $0<\epsilon<1$, there is an instance of the minimum-cost degree-bounded arborescence problem such that, any arborescence with out-degrees at most $\frac{b_{v}}{(1-\epsilon)}+O(1)$ for all vertices v has cost at least $\left(\frac{1-o(1)}{\epsilon}\right)$ times the optimal LP value.

Note that our dependences on ϵ in Theorems 2 and 3 are identical, (i.e. we do not have any hidden constant factors in the O or Ω notation), and hence we obtain the optimum possible trade-off between cost and degree violation (modulo some additive terms). Theorem 3 suggests that computing low-cost arborescence subject to degree bounds might be an inherently harder problem in the directed setting unlike the undirected case.

For degree-bounded network design under the more general crossing supermodular connectivity requirements, Lau et al. [13] gave an $\left(3 a_{v}+4,3 b_{v}+4,3\right)$ approximation algorithm. We show that Theorem 2 can be used to obtain the following trade-off in this case.

Theorem 4. For any $\epsilon \in\left[0, \frac{1}{2}\right]$, there is a polynomial time $\left(\left\lceil\frac{a_{v}}{1-\epsilon}\right\rceil+4+f_{\max },\left\lceil\frac{b_{v}}{1-\epsilon}\right\rceil+4+f_{\max }, \frac{2}{\epsilon}\right)$ approximation algorithm for degree-bounded network design with crossing supermodular requirement f, where $f_{\text {max }}=\max _{S \subseteq V} f(S)$.

An interesting corollary of Theorems 2 and 4 is for the unweighted case (no edge-costs). Setting $\epsilon=0$, we obtain +4 additive approximation in degree for intersecting supermodular requirements, and $+\left(f_{\max }+4\right)$ additive approximation for crossing supermodular requirements. Again, these are the first purely additive guarantees in the unweighted case. For example, this implies a +6 additive approximation for the degree-bounded 2-strongly-connected subgraph problem.

Minimum crossing spanning tree problem (MCSP). Given an undirected graph $G=(V, E)$, costs $c_{e} \geq 0$ on the edges $e \in E$, subsets of edges $E_{i} \subseteq E$ for $1 \leq i \leq k$, and integers $b_{i} \geq 0$ for $1 \leq i \leq k$, the MCSP is to find a minimum-cost spanning tree (if it exists) in G that contains at most b_{i} edges from set E_{i} for $1 \leq i \leq k$. We obtain the following result for this problem.

THEOREM 5. There is a polynomial-time algorithm that for any instance $\left\langle G, c,\left\{E_{i}, b_{i}\right\}_{i=1}^{k}\right\rangle$ of the MCSP problem, either computes a spanning tree of cost at most the optimum and with at most $b_{i}+r-1$ edges from E_{i} (for all $1 \leq i \leq k)$; or shows that the instance is infeasible. Here $r=\max _{e \in E}\left|\left\{i \mid e \in E_{i}, 1 \leq i \leq k\right\}\right|$, is the maximum number of sets $\left\{E_{i}\right\}$ that any edge lies in.

This significantly improves on the results of Bilò et al. [2], who consider unweighted instances in which all b_{i} are equal to b and find a spanning tree containing at most $O(b \cdot r \log n)$ edges in each set E_{i}. Theorem 5 has the following special cases.
If the sets E_{i} are pairwise-disjoint, the MCSP problem can be cast as finding a minimum-cost basis in the graphic matroid for G that is independent in a partition matroid (where an independent set must have at most b_{i} elements from set $\left.E_{i}\right)$. This problem is an instance of the matroid intersection problem which is known to be solvable in polynomial time [4, 15].
If on the other hand, E_{i} denotes the set of edges incident to vertex i and b_{i} denotes the degree bound on vertex i, the MCSP problem is same as the degree-bounded minimum spanning tree problem. Our algorithm matches the best possible +1 bound for this problem obtained by Singh and Lau [19]; we note that our proof of Theorem 5 is considerably simpler than that in [19]. In fact, Theorem 5 readily extends to a generalization of MCSP: that of computing a minimum-cost basis in a matroid subject to 'degree bounds'. This problem was recently considered by Király et al. [10] who obtained similar guarantees.

1.3 Our approach

Our algorithms are based on the iterative rounding technique of Jain [9] which was recently used by Lau et al. [13] and Singh and Lau [19] in the context of degree-bounded network design problems. The iterative rounding technique, which has been extensively used in network design problems, proceeds as follows. First the problem is formulated as an integer program, and an LP relaxation is obtained. An extreme point solution, a.k.a. basic feasible solution, to this linear program is then computed. The extreme point solutions are proved to exhibit useful structural properties, for example, the existence of an integral variable. Such variables are then fixed to their integral values and the residual problem is solved iteratively. For example, Singh and

Lau [19] use a clever counting argument to show that in any extreme point solution to their LP formulation of degreebounded spanning tree problem, either there is an integral edge-variable, or the degree bound constraint of some vertex can be dropped without violating it by more than +1 in the subsequent steps. The algorithm then either sets such an edge to its integral value or drops such a constraint; thereby reducing the size of the linear program and repeats.

Challenges in extension to the directed case. In the directed setting, the arborescence polytope (without degree bounds) has a linear formulation using the cut-covering constraints; it is not known to have a formulation similar to the edge-subset formulation for spanning-trees, which was used in [19] for the undirected case. One difficulty in working with the cut formulation is that when used along with degree bounds, the cut-constraints may alone contribute $2|V|-1$ tight linearly-independent constraints in a basic solution. Using some additional arguments, Lau et al. [13] show that either there exists an edge e with $x_{e} \geq \frac{1}{2}$ or there is a vertex v with small degree in the support. Based on this, their algorithm iteratively does one of the following: round edge e to 1 or drop the degree-constraint of vertex v. Since this algorithm rounds $\frac{1}{2}$-edges to 1 , the degree bounds may be violated by a multiplicative factor of 2 .

We overcome these difficulties by introducing additional iterative rounding steps and stronger counting arguments, and obtain improved guarantees. We continue to use the idea of dropping degree constraints from Lau et al. [13]; so at any iteration the degree bounds are present only at a subset W of the vertices. The degree-bound relaxation step used in Lau et al. [13] only considers vertices that have a small degree in the support. We extend this step by considering all vertices that have small spare (i.e., difference of support degree and fractional degree). We note that such a relaxation step was also used in the +1 algorithm for bounded degree MST [19], but not in the directed counterpart [13]. In addition, we also use some new relaxation steps that involve treating edges leaving W vertices and non- W vertices differently; this is the basis of the cost/degree trade-off. Finally, as is the case with iterative rounding algorithms, we need a careful counting argument to show that a progress is possible at every iteration. These arguments $[9,16,13$, 19] usually involve a token-assignment scheme that first distributes tokens to variables and then extracts tokens from constraints. The novelty in our counting arguments is that the token-assignment to each variable depends on the fractional value of that variable in the basic solution. To the best of our knowledge, the earlier proofs based on iterative rounding used only integral token-assignment schemes. We note that our token-assignment scheme is quite simple and lends itself to global counting arguments.

We believe that our counting technique is fairly general. In this paper we have applied them to (both directed and undirected) degree bounded network design problems. Subsequent to this work, Nagarajan et al. [17] employed a similar token-assignment scheme for the undirected Steiner network problem to obtain a substantially simpler proof of Jain's 2approximation algorithm [9].

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we consider the degree-bounded arborescence problem (un-

- Set $F \leftarrow \emptyset$ and $W \leftarrow V$.
- If $P(E, F, W)$ is infeasible, output "infeasible".
- Repeat while $E \backslash F \neq \emptyset$

1. Compute a basic feasible solution x to $P(E, F, W)$.
2. Remove from E all edges $e \in E \backslash F$ with $x_{e}=0$.
3. Add to F all edges $e \in E \backslash F$ with $x_{e}=1$.
4. For all $v \in W$ such that there are at most $b_{v}-\left|\delta_{F}^{+}(v)\right|+2$ edges leaving v in $E \backslash F$,
(a) Remove v from W.
(b) Add to F all out-going edges from v in $E \backslash F$.

- Output any (out-)arborescence rooted at r in F.

Figure 1: Algorithm for degree-bounded arborescence
weighted) and prove Theorem 1. This result contains the basic ideas used in the rest of the paper as well. In Section 3, we consider degree-bounded network design under intersecting supermodular connectivity requirements and prove Theorem 2. In Section 4, we complement our approximation guarantee by showing a tight integrality gap of the natural LP relaxation for even the minimum-cost degree-bounded arborescence problem (Theorem 3). In Section 5 we consider the undirected minimum crossing spanning tree problem and prove Theorem 5. Due to lack of space, we omit the proof of Theorem 4.

2. DEGREE-BOUNDED ARBORESCENCE PROBLEM

In this section, we prove Theorem 1. Our algorithm, given in Figure 1, proceeds in several iterations. In a general iteration of the algorithm, we denote E to be the candidate set of edges, initially containing all the edges. The set $F \subseteq E$ denotes the edges that we have already picked in our solution and the set $W \subseteq V$ denotes the vertices on which the outdegree bounds constraints are present. Initially, $F=\emptyset$ and $W=V$. In any iteration, we work with the following linear program with variables x_{e} for $e \in E \backslash F$. Let $E^{\prime}=E \backslash F$. For brevity, we use δ^{-}(resp. δ^{+}) to denote $\delta_{E^{\prime}}^{-}\left(\right.$resp. $\left.\delta_{E^{\prime}}^{+}\right)$.

$$
\begin{array}{rr}
P(E, F, W): \\
x\left(\delta^{-}(S)\right) \geq 1-\left|\delta_{F}^{-}(S)\right| \quad \forall S \subseteq V \backslash\{r\} & \text { (cut-constraints) } \\
x\left(\delta^{+}(v)\right) \leq b_{v}-\left|\delta_{F}^{+}(v)\right| \forall v \in W & \text { (degree-constraints) } \\
0 \leq x_{e} \leq 1 \quad \forall e \in E^{\prime}=E \backslash F &
\end{array}
$$

In the beginning of the iteration, we compute a basic feasible solution x in the polytope $P(E, F, W)$ using standard linear programming techniques. We then update the sets E, F, and W as explained in Figure 1. The algorithm, in the end, outputs any arborescence contained in the set of edges F.

The following lemma is easily seen, and we omit the proof.
Lemma 1. Assume that $P(E, F, W)$ is feasible at the beginning of the algorithm. If the algorithm terminates, it outputs an arborescence T such that $\left|\delta_{T}^{+}(v)\right| \leq b_{v}+2$ for all $v \in V$.

The rest of the section is devoted to proving that the algorithm indeed terminates. We show that if $|E|$ and $|F|$ do not change in Steps 2 and 3, then $|W|$ must decrease in this iteration. Assume that the conditions in Steps 2 and 3 do
not hold, i.e., all $e \in E^{\prime}$ satisfy that $0<x_{e}<1$. In such a case, all the tight constraints in the basic feasible solution x come from the cut-constraints and the degree-constraints. Moreover, since all edges leaving v are added to F as soon as v is removed from W, every edge in $E \backslash F$ must be out-going from a W-vertex. ${ }^{1}$ The following lemma is standard and obtained by using the fact that the RHS of the cut-constraints is a supermodular set function.

Lemma 2 ([13]). For any basic solution x to $P(E, F, W)$ such that $0<x_{e}<1$ for all $e \in E^{\prime}$, there exists a set $T \subseteq W$ and a laminar family \mathcal{L} of subsets of V such that x is the unique solution to the linear system:

$$
\begin{array}{ll}
x\left(\delta^{-}(S)\right)=1 & \forall S \in \mathcal{L} \\
x\left(\delta^{+}(v)\right)=b_{v}-\left|\delta_{F}^{+}(v)\right| & \forall v \in T
\end{array}
$$

Furthermore, the following two conditions are satisfied

1. The characteristic vectors $\left\{\chi_{\delta^{-}(S)} \mid S \in \mathcal{L}\right\} \cup\left\{\chi_{\delta^{+}(v)} \mid\right.$ $v \in T\}$ are linearly independent.
2. The size of the support is equal to $\left|E^{\prime}\right|=|T|+|\mathcal{L}|$.

For $v \in W$, we define its spare, $\operatorname{Sp}(v)$, as the difference between its degree in the support and its fractional degree:

$$
\operatorname{Sp}(v)=\sum_{e \in \delta^{+}(v)}\left(1-x_{e}\right)=\left|\delta^{+}(v)\right|-\sum_{e \in \delta^{+}(v)} x_{e}
$$

For $v \in W$, let $d_{v}=b_{v}-\left|\delta_{F}^{+}(v)\right|$ be the current degree bound on v. Since x_{e} is a feasible LP solution, $\sum_{e \in \delta^{+}(v)} x_{e} \leq d_{v}$ and hence $\operatorname{Sp}(v) \geq\left|\delta^{+}(v)\right|-d_{v}$. Thus $\operatorname{Sp}(v)$ is an upper bound on the degree violation of vertex v if its degree bound is dropped.

To complete the proof of Theorem 1, we prove the following lemma that shows that if neither Step 2 nor Step 3 in the algorithm apply, then Step 4 applies.

Claim 1. If neither Step 2 nor Step 3 is applicable, then there exists $v \in W$ such that $\left|\delta^{+}(v)\right|-d_{v} \leq 2$.

Proof. We first argue that it is enough to show that

$$
\begin{equation*}
|\mathcal{L}|<\sum_{e \in E^{\prime}} x_{e}+2|W| \tag{1}
\end{equation*}
$$

Suppose (1) holds. Consider the quantity $\sum_{v \in W} \operatorname{Sp}(v)$. As each (u, v) in E^{\prime} has its tail u in W, it follows that $\sum_{v \in W} \operatorname{Sp}(v)=$ $\left|E^{\prime}\right|-\sum_{e \in E^{\prime}} x_{e}$. Since $\operatorname{Sp}(v) \geq \delta^{+}(v)-d_{v}$, we have

$$
\begin{aligned}
& \sum_{v \in W}\left(\delta^{+}(v)-d_{v}\right) \leq\left|E^{\prime}\right|-\sum_{e \in E^{\prime}} x_{e}=|\mathcal{L}|+|T|-\sum_{e \in E^{\prime}} x_{e} \\
& \quad(\text { by Lemma 2) } \\
& \leq|\mathcal{L}|+|W|-\sum_{e \in E^{\prime}} x_{e}<3|W|
\end{aligned}
$$

(by inequality (1))
This in turn implies that there exists $v \in W$ such that $\left|\delta^{+}(v)\right|-d_{v}<3$. Since $\left|\delta^{+}(v)\right|-d_{v}$ is an integer, it must be at most 2.

The proof of (1) is based on a counting argument, as is common in iterative rounding. We assign x_{e} units of "tokens" to each $e \in E^{\prime}$ and two "tokens" to each $v \in W$. We shall show that these tokens can be redistributed among

[^1]the sets $S \in \mathcal{L}$ such that each set in \mathcal{L} gets at least one token, and moreover one token is unused, thereby proving that $|\mathcal{L}|$ is strictly smaller than the total number of tokens $\sum_{e \in E^{\prime}} x_{e}+2|W|$.

The laminar family \mathcal{L} naturally defines a forest \mathcal{T} with $S \in \mathcal{L}$ as nodes ${ }^{2}$. We call a node $S \in \mathcal{L}$ marked if there is some vertex $w \in W \cap S$; or unmarked otherwise. Recall that every edge in E^{\prime} leaves a W-vertex; hence if S is an unmarked node, no edge of E^{\prime} leaves a vertex in S and in particular, no edge of E^{\prime} is contained in S. From Lemma 2, for any set $S \in \mathcal{L}, x\left(\delta^{-}(S)\right)=1$. The assignment of tokens to nodes of \mathcal{T} is done as follows.
Leaf nodes in \mathcal{T}. Let $S \in \mathcal{L}$ be a leaf in \mathcal{T}. Recall that $x\left(\delta^{-}(S)\right)=1$. The tokens of edges $e \in \delta^{-}(S)$, which sum up to 1 , are assigned to S.
Unmarked non-leaf nodes in \mathcal{T}. We in fact show that such nodes do not exist in \mathcal{T} at all. Let on the contrary, $S \in \mathcal{L}$ be such a node, and $C_{1}, \cdots, C_{t} \subset S$ with $t \geq 1$ be its children in \mathcal{T}. Since S is unmarked, no edge of E^{\prime} lies completely inside S, hence $\delta^{-}\left(C_{i}\right) \subseteq \delta^{-}(S)$ for all i, and thus $\sum_{i=1}^{t} x\left(\delta^{-}\left(C_{i}\right)\right) \leq x\left(\delta^{-}(S)\right)$. As $x\left(\delta^{-}(S)\right)=x\left(\delta^{-}\left(C_{i}\right)\right)=1$ for all i, this implies that $t=1$ and $\chi_{\delta^{-}(S)}=\chi_{\delta^{-}\left(C_{1}\right)}$. But this contradicts the linear independence in Lemma 2.

Marked nodes in \mathcal{T}. Let $\mathcal{M} \subseteq \mathcal{T}$ denote the sub-forest induced on the marked nodes in \mathcal{T}. Call a node $S \in \mathcal{M}$ high-degree if S has at least 2 children in \mathcal{M}; low-degree if S has exactly 1 child in \mathcal{M}; all other nodes are leaves in \mathcal{M}.

Since leaves in \mathcal{M} correspond to disjoint sets, every such node contains at least one distinct W-vertex. We next argue that each low-degree node in \mathcal{M} also contains a distinct W vertex, distinct also from the W-vertices contained in the leaves of \mathcal{M}. Let $S \in \mathcal{M}$ be a low-degree node in \mathcal{M}, and $C \in \mathcal{M}$ be its unique child in \mathcal{M}. To establish the above property, it is enough to show that $W \cap(S \backslash C) \neq \emptyset$. Suppose this is not the case. As $S \backslash C$ does not contain any W vertex, there are no edges from $S \backslash C$ to C; so $\delta^{-}(C) \subseteq$ $\delta^{-}(S)$. As $x\left(\delta^{-}(C)\right)=x\left(\delta^{-}(S)\right)=1$, we get $\chi_{\delta^{-}(S)}=$ $\chi_{\delta-(C)}$ contradicting the linear independence.

Thus we proved that the total number of leaves and lowdegree vertices in \mathcal{M} is at most $|W|$. Now observe that the number of high-degree nodes in \mathcal{M} is strictly less than the number of leaves in \mathcal{M}. Therefore the total number of nodes in \mathcal{M} is strictly less than $2|W|$. Assign each node in \mathcal{M} a distinct token out of $2|W|$ tokens from vertices in W leaving at least one token unassigned.

By the token assignment given above, each set in \mathcal{L} gets at least one token with one token unassigned. Thus the proof is complete.

Our technique implies the following slightly weaker version of Conjecture 1 of Bang-Jensen et al. [1].

Corollary 1. Let $G=(V, E)$ be a k-arc-strong graph, i.e., a directed graph in which every directed cut has at least k edges. For any $r \in V$, there exists an r-rooted arborescence T satisfying $\delta_{T}^{+}(v) \leq\left\lceil\frac{\delta_{G}^{+}(v)}{k}\right\rceil+2$ for every $v \in V$.

Proof. Consider the degree-bounded arborescence problem on G with any root $r \in V$ and degree bounds $b_{v}=$

[^2]$\left\lceil\delta_{G}^{+}(v) / k\right\rceil$ at each $v \in V$. It is clear that $x=\frac{1}{k} \cdot \chi_{E}$ is a feasible fractional solution to the linear relaxation $P(E, \emptyset, V)$ of this problem. Thus our algorithm obtains an arborescence rooted at r with the desired property.

3. INTERSECTING SUPERMODULAR CONNECTIVITY WITH COSTS

We now consider degree-bounded network design under an intersecting supermodular connectivity requirement, and prove Theorem 2. The algorithm is again iterative. Let $F \subseteq E$ denote the set of edges that have been fixed to value $1, A \subseteq V$ the vertices for which there is an in-degree bound, and $B \subseteq V$ the vertices for which there is an out-degree bound at some generic iteration. Consider the following LP which we refer to as $P(E, F, A, B)$.

$$
\begin{array}{cl}
\min & \sum_{e \in E \backslash F} c_{e} x_{e} \\
\text { s.t. } & \\
& x\left(\delta^{-}(S)\right) \geq f(S)-\left|\delta_{F}^{-}(S)\right| \quad \forall S \subseteq V \tag{2}\\
& x\left(\delta^{-}(v)\right) \leq a_{v}-(1-\epsilon)\left|\delta_{F}^{-}(v)\right| \quad \forall v \in A \\
& x\left(\delta^{+}(v)\right) \leq b_{v}-(1-\epsilon)\left|\delta_{F}^{+}(v)\right| \quad \forall v \in B \\
& 0 \leq x_{e} \leq 1 \quad \forall e \in E \backslash F
\end{array}
$$

In such an iteration, the algorithm computes an optimal basic feasible solution x. Let $E^{\prime}=E \backslash F$. The algorithm works with a parameter $0 \leq \epsilon \leq 1 / 2$ and performs one of the following steps in each iteration where $E^{\prime} \neq \emptyset$:

1. If there is an edge $e \in E^{\prime}$ with $x_{e}=0$, set $E \leftarrow E \backslash\{e\}$.
2. If there is an edge $e \in E^{\prime}$ with $x_{e} \geq 1-\epsilon$, set $F \leftarrow$ $F \cup\{e\}$.
3. If there is an edge $e=(u, v) \in E^{\prime}$ with $u \notin B$ and $v \notin A$ and $x_{e} \geq \epsilon$, set $F \leftarrow F \cup\{e\}$.
4. If there is $v \in A$ with strictly less than $a_{v}-(1-$ $\epsilon)\left|\delta_{F}^{-}(v)\right|+5$ edges in E^{\prime} entering it, set $A \leftarrow A \backslash\{v\}$.
5. If there is $v \in B$ with strictly less than $b_{v}-(1-$ $\epsilon)\left|\delta_{F}^{+}(v)\right|+5$ edges in E^{\prime} leaving it, set $B \leftarrow B \backslash\{v\}$.
It is easily verified that if at least one of these conditions holds at each iteration, then the algorithm results in a solution F satisfying the connectivity requirement, of cost at most $\frac{1}{\epsilon}$ times the optimal, while having in-degree at most $\left\lceil\frac{a_{v}}{1-\epsilon}\right\rceil+4$ and out-degree at most $\left\lceil\frac{b_{v}}{1-\epsilon}\right\rceil+4$ at each vertex $v \in V$. The rest of this section proves that one of the above conditions is true in any iteration. In particular, we show that if none of the conditions (1)-(3) are satisfied in some iteration, then at least one of (4) and (5) must be true. To this end, fix an iteration and assume that none of (1)-(3) are satisfied. As in the previous section, since conditions (1) and (2) do not hold, all the tight constraints in a basic feasible solution x come from the cut-constraints and the degreeconstraints. Based on standard uncrossing arguments, we have the following.

Lemma 3 ([13]). For any basic solution x to $P(E, F, A, B)$ such that $0<x_{e}<1$ for all $e \in E^{\prime}$, there exist sets $T^{\prime} \subseteq A$, $T^{\prime \prime} \subseteq B$, and a laminar family \mathcal{L} of subsets of V such that x is the unique solution to the linear system:

$$
\begin{array}{ll}
x\left(\delta^{-}(v)\right)=a_{v}-(1-\epsilon)\left|\delta_{F}^{-}(v)\right| & \forall v \in T^{\prime} \\
x\left(\delta^{+}(v)\right)=b_{v}-(1-\epsilon)\left|\delta_{F}^{+}(v)\right| & \forall v \in T^{\prime \prime} \\
x\left(\delta^{-}(S)\right)=f(S)-\left|\delta_{F}^{-}(S)\right| & \forall S \in \mathcal{L}
\end{array}
$$

Furthermore, the following two conditions hold:

1. For every $S \in \mathcal{L}, f(S)-\left|\delta_{F}^{-}(S)\right| \geq 1$ and is integral.
2. The characteristic vectors $\left\{\chi_{\delta-(S)} \mid S \in \mathcal{L}\right\} \cup\left\{\chi_{\delta-(v)} \mid\right.$ $\left.v \in T^{\prime}\right\} \cup\left\{\chi_{\delta^{+}(v)} \mid v \in T^{\prime \prime}\right\}$ are linearly independent; and
3. The size of the support $\left|E^{\prime}\right|=\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|+|\mathcal{L}|$.

Let $W=A \cup B$. We now classify the various types of edges in the support E^{\prime} :

1. Let E_{0} be the set of edges $(u, v) \in E^{\prime}$ such that $u \notin W$ and $v \notin W$.
2. Let E_{+}be the set of edges $(u, v) \in E^{\prime}$ such that $u \in W$ and $v \notin W$. Similarly, let E_{-}denote the set of edges for which $v \in W$ but $u \notin W$.
3. Let $E_{ \pm}$be the remaining edges in E^{\prime} that have both endpoints in W.

For an edge e, let $\operatorname{Sp}(e)=1-x_{e}$. For a set H of edges, define $\operatorname{Sp}(H)=\sum_{e \in H}\left(1-x_{e}\right)$ and $\operatorname{Val}(H)=\sum_{e \in H} x_{e}$. Abusing the notation somewhat, for subsets $A, B \subseteq V$, we also define $\operatorname{Sp}(A)=\sum_{e=(u, v): v \in A} \operatorname{Sp}(e)$ and $\operatorname{Sp}(\bar{B})=$ $\sum_{e=(u, v): u \in B} \operatorname{Sp}(e)$. Note that $\operatorname{Sp}(A) \leq \operatorname{Sp}\left(E_{-}\right)+\operatorname{Sp}\left(E_{ \pm}\right)$ and $\operatorname{Sp}(B) \leq \operatorname{Sp}\left(E_{+}\right)+\operatorname{Sp}\left(E_{ \pm}\right)$and hence,

$$
\begin{equation*}
\operatorname{Sp}(A)+\operatorname{Sp}(B) \leq \operatorname{Sp}\left(E_{+}\right)+\operatorname{Sp}\left(E_{-}\right)+2 \operatorname{Sp}\left(E_{ \pm}\right) \tag{3}
\end{equation*}
$$

Lemma 4. To prove Theorem 2, it suffices to show that

$$
\begin{align*}
2|\mathcal{L}|<2 \mid & E_{0}\left|+\left|E_{+}\right|+\operatorname{Val}\left(E_{+}\right)+\left|E_{-}\right|+\operatorname{Val}\left(E_{-}\right)\right. \tag{4}\\
& +\operatorname{Val}\left(E_{ \pm}\right)+3|W|
\end{align*}
$$

Proof. Since $|E|=|\mathcal{L}|+\left|T^{\prime}\right|+\left|T^{\prime \prime}\right| \leq|\mathcal{L}|+|A|+|B|$ and $|W| \leq|A|+|B|$, the inequality (4) implies that

$$
\begin{align*}
2|E|<2 \mid & E_{0}\left|+\left|E_{+}\right|+\operatorname{Val}\left(E_{+}\right)+\left|E_{-}\right|+\operatorname{Val}\left(E_{-}\right)\right. \tag{5}\\
& +\operatorname{Val}\left(E_{ \pm}\right)+5|A|+5|B|
\end{align*}
$$

As $|E|=\left|E_{0}\right|+\left|E_{+}\right|+\left|E_{-}\right|+\left|E_{ \pm}\right|$and $\operatorname{Sp}(X)=|X|-$ $\operatorname{Val}(X) \leq|X|$ for any subset of edges X, the inequalities (5) and (3) imply that
$\operatorname{Sp}(A)+\operatorname{Sp}(B) \leq \operatorname{Sp}\left(E_{+}\right)+\operatorname{Sp}\left(E_{-}\right)+2 \operatorname{Sp}\left(E_{ \pm}\right)<5|A|+5|B|$.
This implies that either there is $v \in A$ with $\sum_{e \in \delta^{-}(v)} \operatorname{Sp}(e)<$ 5 or there is $v \in B$ with $\sum_{e \in \delta^{+}(v)} \operatorname{Sp}(e)<5$. This, in turn, implies that either the condition in step (4) holds for some $v \in A$ or the condition in step (5) holds for some $v \in B$, which proves Theorem 2.

3.1 Token assignment: Proof of inequality (4)

The proof of (4) is done via a "token" assignment scheme. We give some tokens to the edges in E^{\prime} and vertices in W so that the total number of tokens equals the RHS of (4). We then reassign these tokens to obtain at least 2 tokens per node in \mathcal{L}; leaving at least one token unassigned, thereby proving (4).

We give 2 tokens to each edge $e=(u, v) \in E_{0}$. Of these, $1+x_{e}$ units "lie" at the head v, and $1-x_{e}$ tokens "lie" in the "middle" of the edge. We give $1+x_{e}$ tokens to each edge $e \in E_{+} \cup E_{-}$. For an edge $(u, v) \in E_{+}$, the $1+x_{e}$ tokens lie at the head v. For an edge $(u, v) \in E_{-}$, the x_{e} tokens lie at the head v and 1 token lies in the middle. The remaining edges $e=(u, v) \in E_{ \pm}$are given x_{e} tokens that lie at the head v. We also give 3 tokens to each W-vertex. The tokens lying at
a vertex are initially assigned to the inclusion-wise minimal set in \mathcal{L} that contains that vertex; while the tokens in the middle of an edge are assigned to the inclusion-wise minimal set in \mathcal{L} that contains both end-points of that edge.

We call a node $S \in \mathcal{L}$ marked if $W \cap S \neq \emptyset$; or unmarked otherwise. Note that for any $S \in \mathcal{L}$, we have $x\left(\delta^{-}(S)\right) \geq 1$ and is an integer. The reassignment of tokens to nodes of \mathcal{L} proceeds using the following steps.

3.1.1 Unmarked leaf nodes

Let $S \in \mathcal{L}$ be such a node. Since $x\left(\delta^{-}(S)\right) \geq 1$, there are at least two edges of E^{\prime} entering S (as each edge has $x_{e}<1$). Assign the tokens at the heads of these edges to S. As S is unmarked, these must be edges of type E_{0} or E_{+}, and S receives at least $2+x\left(\delta^{-}(S)\right) \geq 3$ tokens. One extra token of these nodes is going to be reassigned to other nodes in \mathcal{L} as described later.

3.1.2 Unmarked non-leaf nodes

Let $S \in \mathcal{L}$ be such a node, and $C_{1}, \cdots, C_{t} \subset S$ its children. Let $z=x\left(E^{\prime}\left(V \backslash S, S \backslash \cup_{i=1}^{t} C_{i}\right)\right)$ denote the total x-value entering $S \backslash \cup_{i=1}^{t} C_{i}$ from outside S.

We first consider the case when $z>0$. Note that edges in $E^{\prime}\left(V \backslash S, S \backslash \cup_{i=1}^{t} C_{i}\right)$ lie either in E_{0} or E_{+}, thus if $z>0$, then they contribute at least $1+z$ tokens to S. Thus, if $z \geq 1$, then S obtains two tokens from them. Now, suppose that $z<1$. By integrality of the tight cuts, it follows that $\sum_{i=1}^{t} x\left(E^{\prime}\left(S \backslash C_{i}, C_{i}\right)\right) \geq z$. Since these are all edges in E_{0}, they contribute at least $1-z$ middle tokens to S. Thus S gets at least $(1+z)+(1-z)=2$ tokens.

We now consider the case $z=0$. By linear independence it follows that $\sum_{i} \chi_{\delta^{-}\left(C_{i}\right)} \neq \chi_{\delta^{-}(S)}$. By the integrality of connectivity requirements and since $z=0$, it follows that $\sum_{i} x\left(\delta^{-}\left(C_{i}\right)\right)-x\left(\delta^{-}(S)\right) \geq 1$ and is an integer. Since each edge $e \in \cup_{i=1}^{t} E^{\prime}\left(S \backslash C_{i}, C_{i}\right)$ satisfies $x_{e}<\epsilon \leq 1 / 2$, it is easily verified that the middle tokens of these edges contribute at least 2 tokens to S.

3.1.3 Marked nodes

Let $\mathcal{M} \subseteq \mathcal{L}$ denote the laminar family consisting of only marked nodes. Call a node $S \in \mathcal{M}$ high-degree if it has at least 2 children in \mathcal{M}; low-degree if it has exactly 1 child in \mathcal{M}; and leaf if it has no children in \mathcal{M}. We now show how to assign tokens to each of these nodes.

High-degree nodes. Note that the number of high-degree nodes in \mathcal{M} is strictly less than the number of leaf-nodes in \mathcal{M}. Arbitrarily assign each high-degree node in \mathcal{M} two tokens from a distinct W-vertex (in a distinct leaf node of M).

Leaf-nodes. For each leaf node S in \mathcal{M}, we assign 1 token from some W-vertex contained in it. For the remaining token, we argue as follows: If S is also a leaf in \mathcal{L}, then S has $x\left(\delta^{-}(S)\right) \geq 1$ and hence S receives at least 1 unit of tokens from edges in $\delta^{-}(S)$ (since every edge carries at least x_{e} tokens at its head). If S is not a leaf in \mathcal{L}, then consider the subtree rooted S. This subtree has at least one unmarked leaf node. Since each unmarked leaf node has at least 3 tokens assigned to it thus far, S borrows one token arbitrarily from one of these nodes. Note that any unmarked leaf node can be charged at most once.
Also note that each W-vertex has been charged at most 3 tokens so far.

Low-degree marked nodes. Let $S \in \mathcal{M}$ be such a node, and $C \in \mathcal{M}$ be its unique child.

Suppose that $W \cap(S \backslash C) \neq \emptyset$, and $w \in W \cap(S \backslash C)$ be such a vertex. As no node of \mathcal{M} is contained in $S \backslash C, S$ is the smallest set in \mathcal{M} that contains w. Assign node S two tokens from vertex w. Note that this vertex w cannot be charged by more than one such set S in this step. Moreover, w could not have been used in the earlier charging to W vertices since it is not contained in any leaf node of \mathcal{M}.

Henceforth we assume that $W \cap(S \backslash C)=\emptyset$. Let r denote the number of unmarked leaves of \mathcal{L} contained in $S \backslash C$. Consider the following cases:

1. $r=0$. In this case, there are no unmarked nodes in $S \backslash C$. Let $z=x\left(E^{\prime}(V \backslash S, S \backslash C)\right)$ denote the total x-value entering $S \backslash C$ from outside S. We first consider the case when $z=0$. By linear independence it follows that $\chi_{\delta-(C)} \neq \chi_{\delta^{-}(S)}$. By the integrality of connectivity requirements and since $z=0$, it follows that $x\left(\delta^{-}(C)\right)-x\left(\delta^{-}(S)\right) \geq 1$ is an integer. Consider the edges $E^{\prime}(S \backslash C, C)$. They must be either E_{0} or E_{-} edges as $S \backslash C$ does not have a W-vertex. If they are all E_{0} edges, then they must contribute at least 2 tokens to S. If at least two of them are E_{-}edges, they also contribute at least two tokens to S. If there is exactly one E_{-}edge, then it has x-value strictly less than $1-\epsilon$. Since edges in E_{0} have x-value less than ϵ, we need at least two more edges from E_{0} (and each has at least $\frac{1}{2}$ middle tokens) to ensure that $x\left(\delta^{-}(C)\right)-x\left(\delta^{-}(S)\right) \geq$ 1. These edges together provide the two tokens for S. We now consider the case when $z>0$. The edges in $E^{\prime}(V \backslash S, S \backslash C)$ are either E_{0} or E_{+}edges, so they contribute at least $1+z$ tokens to S. Thus, if $z \geq 1$, then S obtains two tokens from them. Now, suppose that $z<1$. By integrality of the tight cuts, it follows that at least z amount of x-value must also enter C from $S \backslash C$. Since these are either E_{0} or E_{-}edges, they contribute at least $1-z$ tokens to S. Thus together S has at least $(1+z)+(1-z)=2$ tokens.
2. $r \geq 2$. Consider the unmarked leaf nodes in \mathcal{L} contained in $S \backslash C$. Note that each of them has been assigned at least 3 tokens thus far (they could not have given a token to marked node in previous steps). S is assigned 2 tokens by borrowing 1 token each from any two unmarked leaf nodes in $S \backslash C$.
3. $r=1$. In this case, $\mathcal{L} \cap(S \backslash C)$ corresponds to a chain of $k \geq 1$ unmarked nodes $\mathcal{D}=\left\{D_{k} \subseteq D_{k-1} \subseteq \cdots \subseteq D_{1}\right\}$. Let $D=D_{1}$ be the unmarked child of S. We first consider the case that there is an edge e from $V \backslash S$ to $S \backslash(C \cup D)$. Here, the edge e provides at least 1 token to S. For the remaining token, we observe that the subtree rooted at D in \mathcal{L} has at least one unmarked leaf (node D_{k}). This node still has at least 3 tokens since none of its tokens could have been used for earlier reassignments. Thus S can borrow 1 token from D and get at least 2 tokens.
Henceforth, we assume that all edges from $V \backslash S$ enter either C or D. Suppose that some unmarked node (say D_{i}) in the chain \mathcal{D} has a cut value more than 1 (i.e., $\left.x\left(\delta^{-}\left(D_{i}\right)\right)=f\left(D_{i}\right)-\left|\delta_{F}^{-}\left(D_{i}\right)\right| \geq 2\right)$. In this case, we use the following Claim which is proved at the end of this section.

CLAIM 2. Let $\mathcal{D}=\left\{D_{k} \subseteq D_{k-1} \subseteq \cdots \subseteq D_{1}\right\}$ be a chain of unmarked nodes with D_{k} being a leaf node. Then a total of at least $2 k+x\left(\delta^{-}\left(D_{1}\right)\right)$ tokens are assigned to nodes of \mathcal{D}.

Applying Claim 2 to the chain $\mathcal{D}^{\prime}=\left\{D_{i}, \cdots, D_{k}\right\}$, we obtain that at least $2(k-i+1)+2$ tokens are assigned to the nodes of \mathcal{D}^{\prime}. Thus there are at least 2 extra tokens, which can be reassigned to node S (note that these unmarked nodes have not been used in earlier reassignments).
In the remaining, we assume that all nodes in \mathcal{D} have cut value exactly 1 . Let $z=x\left(E^{\prime}(V \backslash S, D)\right)$ be the x-value entering D from $V \backslash S$; note that $0 \leq z \leq 1$ since D has cut value 1 . We consider the following four cases.
Case 1: $z=0$. In this case, $\delta^{-}(S) \subseteq \delta^{-}(C)$. From linear independence and integrality of the cut values, this implies $x\left(E^{\prime}(S \backslash C, C)\right) \geq 1$. Hence as in step 1, S obtains at least 2 middle tokens from $E^{\prime}(S \backslash C, C)$ (which are type E_{0} or E_{-}edges).
Case 2: $0<z<\epsilon$. In this case, $x\left(E^{\prime}(S \backslash D, D)\right)=$ $1-z>1-\epsilon$. Since every edge has x-value less than $1-\epsilon,\left|E^{\prime}(S \backslash D, D)\right| \geq 2$. Also, $\left|E^{\prime}(V \backslash S, D)\right| \geq 1$ since $z>0$. Thus $\left|\delta^{-}(D)\right| \geq 3$. We now use the following Claim which is again proved at the end of this section.

CLAIM 3. Let $\mathcal{D}=\left\{D_{k} \subseteq D_{k-1} \subseteq \cdots \subseteq D_{1}\right\}$ be a chain of unmarked nodes with D_{k} being a leaf node, such that each node D_{i} has cut value $x\left(\delta^{-}\left(D_{i}\right)\right)=1$. Then a total of at least $2(k-1)+\left|\delta^{-}\left(D_{1}\right)\right|+1$ tokens are assigned to nodes of \mathcal{D}.

Now applying Claim 3 to chain \mathcal{D}, there are at least $2 k+2$ tokens assigned to the nodes of \mathcal{D}. Since there are 2 extra tokens, these can be reassigned to S.
Case 3: $\epsilon \leq z<1$. From the integrality of the cut values of S and $C, x\left(E^{\prime}(S \backslash C, C)\right) \geq z \geq \epsilon$. Since each edge in $E^{\prime}(S \backslash C, C)$ is type E_{0} or $E_{-}, E^{\prime}(S \backslash C, C)$ has either at least one E_{-}edge or at least two E_{0} edges (each has x-value less than ϵ). In either case S obtains at least 1 unit of middle tokens. Borrowing one token from the unmarked leaf D_{k}, S is assigned at least 2 tokens.
Case 4: $z=1$. Here it must be that $x\left(E^{\prime}(S \backslash C, C)\right) \geq$ 1: this follows from the linear independence and integrality of cuts S, C, D and the fact that $x\left(\delta^{-}(D)\right)=1$. As in step $1, S$ has at least 2 units of middle tokens.

Thus we have shown that (4) holds which implies the result.
Proof of Claim 2. Note that every edge (u, v) induced on D_{1} is an E_{0} edge and has 2 tokens: we think of it having one token at each of u and v. Every edge (u, v) in $\delta^{-}\left(D_{1}\right)$ is of type E_{0} or E_{+}and has $1+x_{(u, v)}$ tokens at $v \in D_{1}$: we think of $x_{(u, v)}$ units contributing to the $x\left(\delta^{-}\left(D_{1}\right)\right)$ term and the remaining one token lying at v. It now suffices to show that the total number of end-points of the support E^{\prime} inside D_{1} is at least $2 k$. We claim that for every $1 \leq i \leq k, D_{i} \backslash D_{i+1}$ has at least 2 end-points (setting $D_{k+1}=\emptyset$). First consider D_{k} : since $x\left(\delta^{-}\left(D_{k}\right)\right) \geq 1$ there are at least 2 edges entering D_{k} that contribute the 2 (head) end-points. Now consider node D_{i} and its child D_{i+1} : let $z=x\left(V \backslash D_{i}, D_{i} \backslash D_{i+1}\right)$ and consider the following cases.

1. $z=0$. Due to linear independence and integrality of D_{i} and D_{i+1}, we have $x\left(D_{i} \backslash D_{i+1}, D_{i+1}\right) \geq 1$, which gives at least 2 (tail) end-points.
2. $0<z<1$. This immediately gives at least 1 (head) end-point. Also we have $x\left(D_{i} \backslash D_{i+1}, D_{i+1}\right) \geq z$ (same reasons as above) which gives at least 1 (tail) endpoint.
3. $z \geq 1$. Here $\left|E^{\prime}\left(V \backslash D_{i}, D_{i} \backslash D_{i+1}\right)\right| \geq 2$ which gives at least 2 (head) end-points.

In each case, we have at least 2 end-points in $D_{i} \backslash D_{i+1}$. Thus we have the claim.

Proof of Claim 3. We first show that $\left|E^{\prime}\left(D_{i} \backslash D_{i+1}, D_{i+1}\right)\right|$ ≥ 1 for all $1 \leq i<k$. Consider any node $D_{i}(1 \leq i<k)$ and its child D_{i+1}. Since $x\left(\delta^{-}\left(D_{i}\right)\right)=x\left(\delta^{-}\left(D_{i+1}\right)\right)=1$, using linear independence it follows that there must be an edge in $E^{\prime}\left(D_{i} \backslash D_{i+1}, D_{i+1}\right)$. These $k-1$ edges (all type E_{0}) provide $2(k-1)$ tokens. Together with the tokens on edges of $\delta^{-}\left(D_{1}\right)$ (that total to at least $\left|\delta^{-}\left(D_{1}\right)\right|+1$ since each such edge contributes ($1+x_{e}$) tokens), we have the claim.

4. INTEGRALITY GAP INSTANCE

We now prove Theorem 3. Given an arbitrarily small but fixed constant $\epsilon \in(0,1)$, set $\delta=\epsilon+\epsilon^{c}$ where c is a sufficiently large constant independent of ϵ. Consider a directed graph $G(\delta)$ constructed as follows. See Figure 2 for clarity. Start with a complete k-ary outward directed tree T rooted at vertex r, with t levels (the solid edges in Figure 2), where we set $k=1 / \delta^{2 c}$ and $t=c \delta^{-c-1} \ln (2 / \delta)$. These tree edges, called T-edges, have cost 0 . Consider the natural drawing of the tree on the plane (as in Figure 2) and label the leaves from right to left as $1, \ldots, k^{t}$. The vertices of T are naturally partitioned into levels $0,1, \ldots, t$ such that the root is at level 0 and the leaves are at level t. We also label the vertices on level i as $1, \ldots, k^{i}$ in the right to left order. For a vertex v, let T_{v} denote the subtree rooted at v and let r_{v} and l_{v} denote the smallest and largest indices of leaves in T_{v} (formally if v is the j th node from the right on level i, then $l_{v}=j k^{t-i}$ and $\left.r_{v}=(j-1) k^{t-i}+1\right)$.

We add the following additional edges to obtain $G(\delta)$. For each internal vertex v, we add an edge from the leaf l_{v} to v (these are the light dotted edges in Figure 2). All these edges also have cost 0 . Finally, we add a path from the root, visiting the leaves in the order $1, \ldots, k^{t}$ (these are the heavy dashed edges) and each of these edges has cost 1.
Consider the problem of constructing the minimum-cost arborescence rooted at r, where each internal vertex has an upper bound of $b=(1-\delta) k$ on the out-degree. Consider a fractional assignment to the edges where each (solid) edge in T has value $x_{e}=1-\delta$ and every other edge has value $x_{e}=\delta$. Observe that each vertex receives 1 unit of flow from the root and the fractional out-degree of each internal vertex is $(1-\delta) k$ and hence this is a feasible LP solution with cost $L P^{*}=\delta k^{t}$.

We now show that any integral solution I where the degree at each internal vertex is at most $b /(1-\epsilon)+O(1)$ has cost at least $(1-o(1)) L P^{*} / \epsilon$. The crucial observation is the following.

Proposition 1. Suppose a leaf ℓ does not have a path from root to itself in I using only T-edges, then the edge ($\ell-1, \ell$) must necessarily lie in I.

Figure 2: The integrality gap instance with $k=3$, $t=3$. Solid arcs (on complete t-level k-ary tree T) have cost 0 and LP-value $1-\delta$. Dotted arcs have cost 0 and LP-value δ. Heavy dashed arcs have cost 1 and LP-value δ.

Proof. To see this, consider the unique path from r to ℓ in T and let (u, v) be some edge along this path that does not lie in I (such an edge must exist since ℓ is unreachable from r using T-edges). Let L denote the set of leaves $\left\{\ell, \ldots, l_{v}\right\}$, and let S_{v} denote the set of all nodes in T_{v} from which some vertex in L can be reached using T-edges. We claim that the (heavy dashed) edge ($\ell-1, \ell$) is only edge in I entering the set S_{v}. Indeed, no T-edge enters S_{v} since $(u, v) \notin I$. Moreover, no dotted edge enters S_{v} since such edge must be of the form $\left(\ell^{\prime}, w\right)$ where ℓ^{\prime} is a leaf not in S_{v} and hence $\ell^{\prime} \in\left\{r_{v}, \ldots, \ell-1\right\}$ and $w \in S_{v}$. Now by the construction of dotted edges in $G(\delta)$, this means that $\ell^{\prime}=l_{w}$, and hence $\ell_{w} \in\left\{r_{v}, \ldots, \ell-1\right\}$. But the only leaves reachable by T edges from w have indices at most ℓ_{w} which is at most $\ell-1$; this implies that none of the leaves in L can be reached by w which contradicts that $w \in S_{v}$. Thus, $(\ell-1, \ell)$ is unique edge entering S_{v} and must necessarily lie in I.

To finish the proof, consider the solution I where each internal vertex has degree at most $b /(1-\epsilon)+O(1)=(1-$ $\delta) k /(1-\epsilon)+O(1)=\left(1-\epsilon^{c} /(1-\epsilon)\right) k+O(1)$ which is at most $\left(1-\delta^{c+1}\right) k$. Thus the total number of leaves that have a path from root r using T-edges is at most $\left(1-\delta^{c+1}\right)^{t} k^{t} \leq$ $(\delta / 2)^{c} k^{t}<\epsilon^{c} k^{t}$. Thus by the above claim, at least $\left(1-\epsilon^{c}\right) \overline{k^{t}}$ cost 1 edges must lie in I, which implies that the total cost is at least $\left(1-\epsilon^{c}\right) k^{t}=\left(\left(1-\epsilon^{c}\right) L P^{*}\right) / \delta=\left(1-\epsilon^{c}\right) L P^{*} /\left(\epsilon+\epsilon^{c}\right) \geq$ $\left(1-2 \epsilon^{c-1}\right) L P^{*} / \epsilon$. Since c is arbitrarily large, this implies the result.
From the above example, we see that to achieve a purely additive $O(1)$ guarantee for degree using the LP (2), the cost has to be violated by a factor at least $\Omega\left(\frac{\log n}{\log \log n}\right)$, where n is the number of vertices in the graph.

5. GENERALIZED MINIMUM CROSSING SPANNING TREE PROBLEM

In this section, we prove Theorem 5. Our algorithm is again based on iterative rounding. Consider a general iteration. Let E denote the candidate edges which are not yet discarded, let $F \subseteq E$ denote the set of edges that we have already picked in our solution, and let $W \subseteq\{i \mid 1 \leq$ $i \leq k\}$ denote the crossing constraints that we have not yet dropped. In the beginning E is the entire edge-set, $F=\emptyset$, and $W=\{i \mid 1 \leq i \leq k\}$. In a general iteration, we work
with the following linear relaxation $P(E, F, W)$ with variables x_{e} for $e \in E^{\prime}=E \backslash F$.

$$
\begin{array}{cll}
\min & \sum_{e \in E^{\prime}} c_{e} \cdot x_{e} & \\
\text { s.t. } & & \\
& x\left(E^{\prime}(V)\right)=V-1-|F(V)| & \\
& x\left(E^{\prime}(S)\right) \leq S-1-|F(S)| & \forall S: 2 \leq|S| \leq|V|-1 \\
& x\left(E^{\prime} \cap E_{i}\right) \leq b_{i}-\left|F \cap E_{i}\right| & \forall i \in W \\
& 0 \leq x_{e} \leq 1 & \forall e \in E^{\prime}=E-F
\end{array}
$$

where $H(S)$ (for $H \subseteq E$ and $S \subseteq V$) is the set of edges in H with both end-points in S. In this iteration, the algorithm computes a basic feasible solution x to $P(E, F, W)$ and performs one of the following steps while $E^{\prime}=E \backslash F \neq \emptyset$:

1. If there is an edge $e \in E^{\prime}$ with $x_{e}=0$, set $E \leftarrow E \backslash\{e\}$.
2. If there is an edge $e \in E^{\prime}$ with $x_{e}=1$, set $F \leftarrow F \cup\{e\}$.
3. If for some $i \in W,\left|E^{\prime} \cap E_{i}\right| \leq b_{i}-\left|F \cap E_{i}\right|+r-1$, i.e. $\left|E \cap E_{i}\right| \leq b_{i}+r-1$, set $W \leftarrow W \backslash\{i\}$.

It is clear that if the algorithm terminates, it terminates with a set F containing a spanning tree with cost at most the optimum and which contains at most $b_{i}+r-1$ edges from E_{i} for $1 \leq i \leq k$.
We now argue that in each iteration, one of the above steps is always applicable. The following lemma follows by uncrossing $[8,19]$.

Lemma 5. For any basic solution x to $P(E, F, W)$ such that $0<x_{e}<1$ for all $e \in E^{\prime}$, there exists a set $T \subseteq W$ and a laminar family \mathcal{L} of subsets of V such that x is the unique solution to the linear system:

$$
\begin{array}{ll}
x\left(E^{\prime}(S)\right)=|S|-1-|F(S)| & \forall S \in \mathcal{L} \\
x\left(E^{\prime} \cap E_{i}\right)=b_{i}-\left|F \cap E_{i}\right| & \forall i \in T
\end{array}
$$

Furthermore, the characteristic vectors $\left\{\chi_{E^{\prime}(S)} \mid S \in \mathcal{L}\right\} \cup$ $\left\{\chi_{E^{\prime} \cap E_{i}} \mid i \in T\right\}$ are linearly independent, and the size of the support $\left|E^{\prime}\right|=|T|+|\mathcal{L}|$.
Assume that the conditions in steps (1) and (2) do not hold; then we prove that step (3) holds. The key component of our proof is the following lemma which is proved by a simple counting argument.

Claim 4. We have $|\mathcal{L}| \leq x\left(E^{\prime}(V)\right)$. Moreover the equality holds if and only if each edge in E^{\prime} is contained in some inclusion-wise maximal set $S \in \mathcal{L}$.

Proof. Suppose each edge $e \in E^{\prime}$ is given x_{e} tokens. These tokens are assigned to the sets $S \in \mathcal{L}$ as follows. An edge e is said to belong to S if S is the inclusion-wise minimal set in \mathcal{L} that contains both the end-points of e. If e belongs to S, then x_{e} tokens are assigned to S. We argue that each set in the laminar family is assigned a total of unit tokens, thereby proving the claim.
Since $x_{e}>0$ for all $e \in E^{\prime}$, each set $S \in \mathcal{L}$ has the RHS $|S|-1-|F(S)|$ at least 1 , and hence $x\left(E^{\prime}(S)\right) \geq 1$. This gives every leaf set $S \in \mathcal{L}$ at least a total of unit tokens. Now consider a non-leaf set $S \in \mathcal{L}$ with t children $C_{1}, \cdots, C_{t} \in \mathcal{L}$. Now $\chi_{E^{\prime}(S)}=\sum_{j=1}^{t} \chi_{E^{\prime}\left(C_{j}\right)}+\sum\left\{\chi_{e} \mid e \in E^{\prime}\right.$ belongs to $\left.S\right\}$. Since $\chi_{E^{\prime}(S)} \cup\left\{\chi_{E^{\prime}\left(C_{j}\right)}\right\}_{j=1}^{t}$ is a linearly independent set, we have $\left\{e \mid e \in E^{\prime}\right.$ belongs to $\left.S\right\} \neq \emptyset$. So, the RHS $|S|-1-$ $|F(S)|$ of the constraint for S is at least 1 more than the sum of the RHS of constraints of $\left\{C_{j}\right\}_{j=1}^{t}$. Thus S gets at least a total of unit tokens.

Now for $i \in W$, define $\operatorname{Sp}(i)=\sum_{e \in E^{\prime} \cap E_{i}}\left(1-x_{e}\right)=\mid E^{\prime} \cap$ $E_{i} \mid-x\left(E^{\prime} \cap E_{i}\right)$ and for $e \in E^{\prime}$, define $r(e)=\mid\{i \in W \mid e \in$ $\left.E^{\prime} \cap E_{i}\right\} \mid$.

Lemma 6. We have $\sum_{i \in W} \operatorname{Sp}(i)<r|W|$.
Before proving Lemma 6, we argue that it implies that the condition in step (3) holds. Lemma 6 implies that there exists $i \in W$ such that $\operatorname{Sp}(i)<r$. Since $x\left(E^{\prime} \cap E_{i}\right) \leq$ $b_{i}-\left|F \cap E_{i}\right|$, we have

$$
\left|E^{\prime} \cap E_{i}\right|=\operatorname{Sp}(i)+x\left(E^{\prime} \cap E_{i}\right)<r+b_{i}-\left|F \cap E_{i}\right| .
$$

Since $\left|E^{\prime} \cap E_{i}\right|$ and $\left|F \cap E_{i}\right|$ are integers, $\left|E^{\prime} \cap E_{i}\right| \leq r+b_{i}-$ $\left|F \cap E_{i}\right|-1$, i.e., the condition in step (3) holds for i.
Proof of Lemma 6. Lemma 5 and Claim 4 imply that $\sum_{e \in E^{\prime}}\left(1-x_{e}\right)=\left|E^{\prime}\right|-x\left(E^{\prime}(V)\right)=|\mathcal{L}|+|T|-x\left(E^{\prime}(V)\right) \leq$ $|T|=|W|-|W \backslash T|$. Therefore

$$
\begin{aligned}
\sum_{i \in W} \operatorname{Sp}(i) & =\sum_{e \in E^{\prime}} r(e)\left(1-x_{e}\right) \\
& =r \sum_{e \in E^{\prime}}\left(1-x_{e}\right)-\sum_{e \in E^{\prime}}(r-r(e))\left(1-x_{e}\right) \\
& \leq r|W|-r|W \backslash T|-\sum_{e \in E^{\prime}}(r-r(e))\left(1-x_{e}\right) .
\end{aligned}
$$

Moreover, the equality holds if and only if $|\mathcal{L}|=x\left(E^{\prime}(V)\right)$. Thus if $|\mathcal{L}|<x\left(E^{\prime}(V)\right)$ or if $r|W \backslash T|+\sum_{e \in E^{\prime}}(r-r(e))(1-$ $\left.x_{e}\right)>0$, then we obtain that $\sum_{i \in W} \operatorname{Sp}(i)<r|W|$ as desired. Assume on the contrary that this is not the case. This combined with the fact that $x_{e}<1$ for all $e \in E^{\prime}$, we have $r(e)=r$ for all $e \in E^{\prime}, W=T$, and by Claim 4 (equality condition) $\sum_{i=1}^{p} \chi_{E^{\prime}\left(S_{i}\right)}=\chi_{E^{\prime}}$, where S_{1}, \ldots, S_{p} are the inclusion-wise maximal sets in \mathcal{L}. Therefore we have $\sum_{i \in T} \chi_{E^{\prime} \cap E_{i}}=r \cdot \chi_{E^{\prime}}$. This implies that $r \cdot \sum_{i=1}^{p} \chi_{E^{\prime}\left(S_{i}\right)}=$ $\sum_{i \in T} \chi_{E^{\prime} \cap E_{i}}$, contradicting to the fact that the characteristic vectors $\left\{\chi_{E^{\prime}(S)} \mid S \in \mathcal{L}\right\} \cup\left\{\chi_{E^{\prime} \cap E_{i}} \mid i \in T\right\}$ are linearly independent. Thus the proof is complete.

Generalization to matroids and polymatroids.

The algorithm above generalizes directly to the problem of computing a minimum-cost basis in a matroid (or more generally an integer polymatroid) subject to 'degree bounds', by using the submodularity of the rank function. Details are omitted.

Concluding Remarks and Acknowledgments

We thank Zhenghua Fu for suggesting us the problem of packing arborescences subject to degree bounds, which started this project. We also thank Mohit Singh and R. Ravi for several useful discussions.
The techniques developed in this paper can also be used to solve connectivity problems on undirected graphs with costs. In particular, to obtain $O\left(f_{\max }\right)$ additive approximation with respect to degree and $O(1)$ multiplicative approximation with respect to cost for Steiner Network problem. We have recently learnt that Lau and Singh [14] have independently obtained similar results for this problem, and hence we do not present them in this paper. Király et al. [10] have recently obtained results for the matroid generalization of the MCSP problem considered in Section 5. They obtain an additive $+(2 r-1)$ approximation for the case of upper and lower bounds on the degrees and $+(r-1)$ approximation for upper bounds (or lower bounds) alone.

6. REFERENCES

[1] Jørgen Bang-Jensen, Stéphan Thomassé, and Anders Yeo. Small degree out-branchings. Journal of Graph Theory, 42(4), 2003.
[2] Vittorio Bilò, Vineet Goyal, R. Ravi, and Mohit Singh. On the crossing spanning tree problem. In APPROX-RANDOM, 2004.
[3] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. Push relabel and an improved approximation algorithm for the bounded degree MST problem. In ICALP, 2006.
[4] J. Edmonds. Matroid Intersection in Discrete Optimization I. Annals of Discrete Mathematics, 4:39-49, 1979.
[5] Andras Frank. Increasing the rooted-connectivity of a digraph by one. Mathematical Programming (B), 84(3):565-576, 1999.
[6] M. Furer and B. Raghavachari. Approximating the minimum-degree steiner tree to within one of optimal. Journal of Algorithms, 17(3):409-423, 1994.
[7] Harold N. Gabow. On the L_{∞}-Norm of Extreme Points for Crossing Supermodular Directed Network LPs. In IPCO, 2005.
[8] Michel X. Goemans. Minimum bounded degree spanning trees. In FOCS, 2006.
[9] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica, pages 39-61, 2001.
[10] Tamás Király, Lap Chi Lau, and Mohit Singh. Degree bounded matriods and submodular flows. In IPCO, 2008.
[11] Philip N. Klein, Radha Krishnan, Balaji Raghavachari, and R. Ravi. Approximation algorithms for finding low-degree subgraphs. Networks, 44(3):203-215, 2004.
[12] J. Konemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree bounded minimum spanning trees. SIAM Journal on Computing, 31(3):1783-1793, 2002.
[13] Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R. Salavatipour, and Mohit Singh. Survivable network design with degree or order constraints (Full version). In $S T O C, 2007$.
[14] Lap Chi Lau and Mohit Singh. Additive approximation for bounded degree survivable network design. In STOC, 2008.
[15] E.L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9:31-56, 1975.
[16] Vardges Melkonian and Éva Tardos. Approximation algorithms for a directed network design problem. In IPCO, 1999.
[17] Viswanath Nagarajan, R. Ravi, and Mohit Singh. A simple proof of Jain's 2-approximation algorithm for Steiner Network. Manuscript, 2007.
[18] R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and H.B. Hunt III. Many birds with one stone: Multi objective approximation algorithms. In STOC, 1993.
[19] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of optimal. In STOC, 2007.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 STOC'08, May 17-20, 2008, Victoria, British Columbia, Canada.
 Copyright 2008 ACM 978-1-60558-047-0/08/05 ...\$5.00.

[^1]: ${ }^{1} \mathrm{~A}$ vertex in W is henceforth called a W-vertex.

[^2]: ${ }^{2}$ Throughout, we use node to refer to a vertex in the laminar tree, and vertex refers to vertices in G.

