
An Efficient Central Path Algorithm for Virtual Navigation

Parag Chaudhuri, Rohit Khandekar, Deepak Sethi and Prem Kalra

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

Hauz Khas, New Delhi 110 016, India
E-mail: {parag, rohitk, deepak, pkalra}@cse.iitd.ernet.in

Abstract

We give an efficient, scalable, and simple algorithm
for computation of a central path for navigation in closed
virtual environments. The algorithm requires less pre-
processing and produces paths of high visual fidelity. The
algorithm enables computing paths at multiple resolutions.
The algorithm is based on a distance from boundary field
computed on a hierarchical subdivision of the free space in-
side the closed 3D object. We also present a progressive
version of our algorithm based on a local search strategy
thus giving navigable paths in a localized region of interest.

1. Introduction
Autonomous navigation inside closed virtual environ-

ments is one of the most important aspects of maintaining
interactivity inside virtual worlds. The problem manifests
itself in various diverse application areas like exploration
of medical and other scientific data, medical surgical simu-
lations, robotic path planning, flight path planning simula-
tions for airplanes and path computation in other immersive
virtual environments like computer games. The fundamen-
tal problem for such navigation is the computation of a colli-
sion free path along which the user can navigate. Typically,
such paths must be simple and fast to compute.

In this paper, we present a novel algorithm to gener-
ate central paths inside closed 3D objects. The algorithm
takes as input a closed 3D object in the form of a surface
mesh. The object undergoes some preprocessing which al-
lows us to initialize the data structures required by the path
algorithm. The preprocessing essentially identifies the free
space inside the object as the collision free navigable space.
It also takes into account any holes embedded inside the
object. Then it builds up a multi-resolution hierarchical de-
scription of this navigable space. The user can give arbi-
trary source-destination pairs inside this region and the al-
gorithm computes the desired path. Various user defined

parameters allow flexibility in the paths generated by the al-
gorithm. Our algorithm has complexity proportional to the
number of voxels on the boundary of the object.

We also present a progressive variant of our algorithm,
which allows the user to quickly compute paths in a lo-
calized region of interest spanned by the source and des-
tination specified by the user. Here the algorithm does not
preprocess the complete 3D object. We show that this al-
gorithm based on a local search strategy outperforms the
previously described global path computation algorithm for
path queries in which the source and destination points are
close to each other as compared to the size of the object.

The rest of the paper is organized as follows. Section 2
provides the background and examines related techniques.
Section 3 describes the central path computation algorithm
in detail. Section 4 gives the complexity analysis of the
algorithm. Section 5 presents the results. In Section 6
we describe the progressive variant of our algorithm. Next
we present the results for the progressive algorithm in Sec-
tion 6.3. Section 7 concludes with a discussion of our ap-
proach and suggests some directions for future work.

2. Background
The problem of computation of navigable paths inside

closed 3D objects has been addressed in various application
specific as well as general settings. This section summarizes
previous work and contrasts it with our approach.

Traditionally, offline rendering of movie frames of pre-
computed paths was done for navigation in complex envi-
ronments [6, 8]. Since this approach does not allow user-
interaction, it has limited utility.

Topological thinning is a technique which is tradition-
ally considered to provide high quality results. It is compu-
tationally very expensive. Pavlidis [10] and Paik et al. [9]
are two examples of this technique. Ge et al. [5] use a fast
topological thinning algorithm to generate a 3D skeleton of
a binary colon volume. Then the skeleton is pruned from
loops and spurious branches using graph search techniques.

The result is then modified to yield a centered path between
two user specified end points. Bouix et al. [2] use the me-
dial surface extraction algorithm of Siddiqi et al. [11] with
flux thresholding to compute a medial curve which is then
pruned based on branch length thresholding. The medial
surface algorithm of [11] is robust against noise and has a
computational complexity of O(k logk), where k is the num-
ber of voxels in the object. Telea and Vilanova [12] give
a level-set algorithm for centerline extraction. They start
from a 2D skeletonization method to locate voxels centered
with respect to three orthogonal slicing directions. Next,
they extract the centerline voxels from the above skele-
tons, followed by a thinning, reconnection, and a ranking
step. Their method also has a computational complexity of
O(k logk).

Hong et al. [7] proposed a physically based “submarine”
camera control model immersed within a potential field to
prevent the camera from penetrating the object boundary
during navigation. However, this method suffered from
the local minimum problem and the camera could navigate
only inside a one dimensional tubular region without any
branches. Deschamps and Cohen [3] find paths of least ac-
tion in 3D intensity images. A front is propagated in the im-
age with a speed determined by a scalar potential field that
depends upon location in the medium. The potential func-
tion is designed to take into account a Euclidean distance
function from the boundary of a tubular structure, so that
the minimal paths are centered. The flow is implemented
using fast marching schemes.

Many algorithms that restrict the skeleton to a simple
path use the Dijkstra’s algorithm [4] as an intermediate step.
A distance from source field is created by labeling all graph
vertices with the shortest distance from a single source to
those vertices. The centerline algorithms that use Dijk-
stra’s method, differ in how they assign the weights cor-
responding to orthogonal, 2D-diagonal, and 3D-diagonal
vertex neighbour relations. Bitter et al. [1] build a graph
from a coarse approximation of a 3D skeleton. Each edge
of the graph is assigned a weight which is a combination
of Euclidean distance from a user defined source node and
distance from the boundary of the object. The centerline is
then extracted using Dijkstra’s shortest path algorithm on
this graph. Wan et al. [13] also give distance field based
method to compute central paths. This method uses Eu-
clidean distance to compute a distance field used to generate
the path. This makes the algorithm do significant amounts
of computation and thus increases it running time complex-
ity. Also the computation increases in proportion to the in-
ternal volume of the object.

Our algorithm is also based on the distance field con-
cept but uses a different distance measure computed over
a hierarchical subdivision of the internal free space in the
object. While this reduces the computation considerably, it

retains all the advantages of the path generated in [13]. The
distance measure can be changed without affecting the ef-
ficiency of the algorithm. The closer the distance measure
is to the actual Euclidean distance the more accurate it be-
comes. Our algorithm elegantly reduces to this case at the
finest level of resolution possible.

3. Central Path Computation Algorithm
3.1. Design Considerations

We design the algorithm so that it has the following prop-
erties:

1. The path computed stays away from the boundary as
much as possible.

2. The path is simple and does not self intersect.
3. The pre-processing is fast and efficient.
4. It allows the user to define parameters to affect resolu-

tion of the desired path.

The technique used in [13] satisfies properties 1 and 2,
but not 3 and 4. Our algorithm has all these properties. The
algorithm mainly consists of these steps:

Algorithm 1 Central Path Computation Algorithm
Require: Closed 3D Object

1: Subdivide the object
2: Compute the distance from boundary (or DFB) field
3: Compute the central path in response to user queries

We illustrate the various steps of our algorithm in detail
by a running 2D example. First we give a terminology and
a notation which we use to describe our algorithm.

3.2. Notation
We consider the given 3D object as being composed of

cubical voxels. Actual dimensions of the voxel can be de-
fined by the user. We treat a voxel as an indivisible unit. The
object may have “holes” in the interior, for example, a shell
has a spherical hole. The algorithm constructs a hierarchical
subdivision of the interior of the object into cubical blocks.
The size, of a block b (size(b)) is defined as the number of
voxels on its side. Thus, a voxel has size 1. A block in the
subdivision may have size of the form 2k for some integer
k ≥ 0. When we talk of blocks or voxels inside the objects,
we include the ones on the boundary as well. The boundary
includes the outer boundary as well as the boundary of the
holes.

3.3. Subdivision
The object is first enclosed in a bounding box, which

forms our highest level block. Then the subdivision pro-
ceeds exactly like an octree construction. We subdivide the

(a) After 1 level of subdi-
vision

(b) After 2 levels of sub-
division

(c) After 4 level of subdi-
vision

(d) Final subdivision (e) DFB Field

Figure 1. Hierarchical subdivision and DFB Field

block into eight identical blocks (or four identical blocks in
2D as in Figure 1(a)) if it intersects with the boundary at any
point. Figures 1(b), 1(c), 1(d) show the hierarchical subdi-
vision for a 2D object. The blocks that lie either completely
inside (for e.g., the darker blocks in Figure 1) or outside are
not subdivided further. At the end of the subdivision, the
blocks that lie on the boundary are of size 1. The smallest
level of subdivision i.e., at which the subdivision stops is a
user defined parameter.

3.4. DFB Field Computation
The next step is the construction of the DFB field. For

this consider a graph G = (V ∪ {B},E ∪ EB) where V is
the set of the blocks in the final subdivision and B is a spe-
cial node representing the whole boundary. We introduce
an edge (b1,b2) ∈ E if the blocks b1 and b2 intersect in a
face, an edge, or a point. We introduce edges (b,B) ∈ EB if
the block b is adjacent to the boundary of the object.

We give a length of d(b1,b2) = size(b1)+ size(b2) to the
edge (b1,b2) ∈ E and a length d(b,B) = size(b) to the edge
(b,B) ∈ EB . Now, the distance from boundary d f b(b) of a
block b is defined as the length of the shortest path from B
to b in G under this length function as shown in Figure 1(e)
(the darker blocks are closer to the boundary). This is com-
puted using Dijkstra’s single source shortest path algorithm
[4].

3.5. Central Path Computation
Once the DFB field is established, the user gives queries

of the type path(s, t) where s and t are the source and the
destination. This path is computed as follows. Now con-
sider a subgraph GV = (V,E) of G induced by V . We
give a weight of w(b1,b2) = 1/d f b(b1)+1/d f b(b2) to the
edge (b1,b2) ∈ E. We first identify the blocks bs and bt
which contain s and t respectively. We, then, use Dijk-
stra’s algorithm [4] to compute the shortest path P(bs,bt) =
{b0 = bs,b1, . . . ,bl = bt} between bs and bt according to
the weight function w. Then the answer to the query is the

path {s,v0,v1, . . . ,vl , t} where vi is the center of the block.
The path joining the block centers will always lie within the
blocks because for any two adjacent blocks the line joining
their centers is always contained inside the blocks. bi for
i = 0, . . . , l. An example of the the computed path is shown
in Figures 2(a) (shows the block path computed in response
to a user query) and 2(b) (shows the path obtained by join-
ing the block centers) .

3.6. Some Implementation Issues
At every step of the subdivision, with each block we

maintain a list of the (boundary) faces of the object with
which it intersects. Now, when we subdivide this block in
the next step the new child blocks created need to be tested
for intersection only with the face list stored with the parent
block. This saves a lot of time.

Given a block that does not intersect the boundary, we
also need to decide whether a block lies inside or outside
the object. For speeding up the inclusion test we make use
of the same face list maintained during the intersection test.
To check whether a block lies inside the body or not, we
shoot a ray from the center of the block in an axis parallel
direction and find out all the blocks which intersect this ray.
The axis is aligned with the edges of the subdivision blocks
so finding the blocks which intersect an axis parallel ray is
very easy. Then we consider the faces in the list of these
blocks and check for intersection with the ray. We count the
number of ray-face intersections and do a standard parity
check for an inside-outside test.

The path obtained as a result of the algorithm is a piece-
wise linear (see Figure 2(b)). A better path is obtained by
post-processing the path using smoothening heuristics. One
approach to path-smoothening is to interpolate the linear
path segments with splines. Consider a block that inter-
sects the piece-wise linear path, and consider the convex
hull of the two points of intersection and the center of the
block. We interpolate this part of the path by a spline pass-
ing through the two points of intersection and contained in
the convex hull (see Figure 2(c)). Another approach is to

(a) (b) (c) (d) (e)

Figure 2. Path Computation and Smoothening

construct a new path by replacing the part of the original
path inside a block by a straight line segment joining the
points of intersection (see Figure 2(d)). The new path has
less number of sudden turns and is visually more smooth.
This may be followed again by the spline interpolation tech-
nique to get a very smooth path (see Figure 2(e)). How-
ever, any path smoothening operation will cause deviations
from the original path, so the implementation gives the user
a choice as to which path smoothening heuristic (if any)
should be used to smoothen the path.

(a) (b)

Figure 3. Dependence of computed path on
DFB resolution

Note that the user can control the largest included block
size. If the largest block size is made smaller the resolu-
tion of the subdivision and DFB field increase. The path is
also affected by the resolution of the DFB field. Figure 3(a)
has the largest possible included block size. Figure 3(b) has
largest included block sizes as 0.25 times of the largest in-
cluded block size. It can be seen the variation in the DFB
field becomes smoother but the user has to pay in terms of
increased computation cost. The finer the DFB field the
closer the path is to a path which would have been com-
puted under a Euclidean distance measure as in [13].

4. Complexity Analysis
In this section we analyze the running time of our algo-

rithm. The running time depends primarily on the number
of blocks in the final subdivision.

4.1. Estimating the number of blocks in the final
subdivision

The algorithm starts with a bounding box, say of size 2k.
It goes on subdividing the blocks that intersect the bound-
ary till the size of the smallest block becomes equal to 1.
Therefore, the blocks in the final subdivision can have sizes
from {1,2, . . . ,2k}. Thus, k denotes the number of levels
of subdivision. We prove the following bound on the total
number of blocks in the final subdivision.

Theorem 4.1 If there are h holes in the object, the total
number of blocks in the final subdivision is O(n+hk) where
n denotes the number of voxels on the boundary of the ob-
ject.

We first prove that if there are no holes in the object, the
number of blocks is O(n). Consider a block b of size 2i.
Clearly, b contains 23i voxels in it. Since its “parent” block
(of size 2i+1) got subdivided, it must intersect the bound-
ary. Since the parent block has the diameter of O(2i), all
the voxels in b must be within a distance of O(2i) from the
boundary.

Lemma 4.2 If there are no holes in the object, the total
number of voxels inside the object that are within a dis-
tance of d from the boundary is O(nd) where n denotes the
number of voxels on the boundary.

Proof Sketch. Let V denote the volume (in the interior of
the object) contained within a distance of d from the bound-
ary. It can be proved that V = O(Ad), where A is the total
area of the boundary of the object. Since all the voxels are
of uniform size, the area A of the boundary is proportional
to the number of voxels on the boundary. Thus, the desired
number of voxels is O(nd).

Thus the number of blocks of size 2i is at most O(n ·
2i/23i) = O(n/22i). Therefore, the total number of blocks
is O(n/22k +n/22(k−1) + · · ·+n) = O(n), provided there are
no holes in the object.

We now extend the above argument for the case of ob-
jects with h holes inside.

Lemma 4.3 If there are h holes in the object, the total num-
ber of voxels inside the object that are within a distance of
d from the boundary is O(nd + hd3) where n denotes the
number of voxels on the boundary (including the boundary
of the holes).

Proof Sketch. It can be proved that each hole contributes
an extra volume of O(d3). Since there are h holes, the total
volume is O(Ad +hd3). This in turn implies that the desired
number of voxels is O(nd +hd3).

Now we are ready to prove Theorem 4.1.
Proof. The number of blocks of size 2i is at most O((n ·2i +
h ·23i)/23i) = O(n/22i +h). Therefore, the total number of
blocks is O((n/22k +h)+(n/22(k−1) +h)+ · · ·+(n+h)) =
O(n+hk), where k is the number of levels of subdivision.

4.2. Running time
Let m = |E| denote the total number of edges in GV .

The following argument proves that m = O(n + hk). Sup-
pose that the blocks b1 and b2 are adjacent in GV and that
size(b1) ≤ size(b2). Suppose also that b1 and b2 intersect
in a face. Due to the octree subdivision method, it is clear
that this intersection coincides with a face of b1. Similar
argument holds if b1 and b2 intersect in an edge or a point.
Thus, each edge in the graph GV can be “charged” to a face,
an edge, or a vertex of a block. Since there are O(n + hk)
blocks, the total number of faces, edges, and vertices is
O(n+hk).

Both to compute the DFB values and the center paths,
we run Dijkstra’s shortest-path algorithm [4] on this graph.
Thus the running time of the DFB computation and the
center-path computation is O((n + hk) log(n + hk)). Note
also that the total number of blocks (that may or may not be
present in the final subdivision) formed during subdivision
is O(n+hk). This is so because if a block gets subdivided,
it gets subdivided into 8 blocks. Thus we conclude with the
following theorem.

Theorem 4.4 The running time of the DFB computation
and the center-path computation is O((n+hk) log(n+hk))
and that of the subdivision is O((n + hk)Tsub) where n de-
notes the number of voxels on the boundary of the object,
h denotes the number of holes in the object, k denotes the
number of levels of subdivision and Tsub denotes the time
taken to do one subdivision.

5. Results for Central Path Computation
This section demonstrates our algorithm on example 3D

objects of sufficient complexity. All performance result ta-
bles and graphs are based on experiments done on a Linux
based, Pentium IV 1.4 Ghz machine with 1GB RAM.

Ogre Mesh Results The first example we choose is one
of a surface mesh of an “Ogre.” The Ogre mesh has 9282
vertices and 18540 triangles. An example path computed
inside the Ogre mesh can be seen in Figure 5(a) and a snap-
shot taken during a flythrough on the path is shown in Fig-
ure 5(b). In Figure 5(a) the arrow is at the position where the
flythrough snapshot was taken, and it points in the current
lookat direction. The mesh is scaled by various factors and
the algorithm is run repeatedly. We tabulate the number of
blocks formed (NB), the preprocessing time (time required
for complete subdivision (TSUB) and DFB field computa-
tion (TDFB) and the average query response time (TavPQ) for
these various scalings (Sc) (see Table 1).

Scale TSUB NB NE TDFB TavPQ
(sec) (msec) (msec)

0.50 8 3340 32190 16 16
1.00 15 15987 159252 84 92
1.50 27 38224 379795 206 243
2.00 48 71440 714684 398 472
2.50 73 114662 1147442 661 788
3.00 106 167764 1676582 949 1172

Table 1. Results for the Ogre mesh

We plot graphs to study the variation of the number of
blocks (NB) versus the scale of the mesh (see Figure 4(a)).
It can be seen that the number of blocks increases by a fac-
tor of almost four each time the mesh scale is doubled. This
is as expected from the complexity analysis (see Section 4).
We also plot the variation of subdivision time (TSUB), DFB
field computation time (TDFB) and the average path query
time (TavPQ) versus the number of blocks (NB) (see Fig-
ure 4(b)). Here, the result is also as predicted by the com-
plexity analysis (see Section 4). From the graph in Fig-
ure 4(b) we can deduce that Tsub is a constant (see Theo-
rem 4.4) and that the running time for subdivision i.e. TSUB
is just O(n+hk).

Heart Mesh Results In this example we have a mesh
model of the Heart along with its four chambers and valves.
The algorithm can successfully find collision free paths in
the region between the Heart’s outer surface and the cham-
bers. The chambers essentially get treated like cavities (or
holes) in the algorithm. A path computed inside the Heart
mesh can be seen in Figure 5(c), and a flythrough snapshot
can be seen in Figure 5(d). In the figure, the arrow is at

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.5 1 1.5 2 2.5 3 3.5

S
qu

ar
e

R
oo

t o
f N

um
be

r o
f B

lo
ck

s

Scale

Variation of Number of Blocks with Scale

sqrt(NB)

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 40000 80000 120000 160000 200000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Ti
m

e
(T

S
U

B
) (

se
c)

Ti
m

e
(T

D
FB

 a
nd

 T
av

P
Q

) (
se

c)

Number of Blocks

Variation of Time with Number of Blocks

TSUB
TDFB

TavPQ

(b)

Figure 4. Graphs for the Ogre mesh

the position where the flythrough snapshot was taken, and
it points in the current lookat direction.

The 3-Holes Mesh Here we include snapshots of path
computed in a mesh with a complex topology. It can be
seen in Figures 5(e), 5(f) that the path computed is well in-
side the object. Especially in Figure 5(e) the path goes to
the left of the bottom hole because the region to the right
is very constricted and thus will have a higher value of the
DFB field.

6. Progressive Path Computation Algorithm
The central path algorithm described in Section 3 first

computes the subdivision of the entire 3D object, then com-
putes the DFB field and finally finds a central path between
the source and the destination. In many cases, the subdivi-
sion and the DFB field computation of the entire object may
turn out to be unnecessary. For example, suppose that in the
Ogre mesh (see Section 5), we are interested in finding a
center path between a source and a destination which lie
within a single limb. In such a case, the subdivision of the
region outside that limb is superfluous since it does not af-
fect the central path computation. For such “localized” sit-
uations we present a progressive variant of our central path
computation algorithm (see algorithm 2). This approach is
beneficial specially when the source and the destination are
close to each other as compared to size of the object.

6.1. The Algorithm
We now describe our progressive algorithm in more de-

tail using a running 2D example. We start with a given 3D
object and construct a bounding box enclosing the object.

Algorithm 2 Progressive Central Path Computation Algo-
rithm
Require: Closed 3D Object
Require: Source-Destination Pair

1: Compute starting Region of Interest (ROI) containing
the source and the destination

2: Subdivide the ROI
3: Compute the DFB field inside the ROI
4: Compute a central path from source to destination
5: repeat
6: Expand ROI
7: Subdivide the new blocks included in ROI due to ex-

pansion
8: Compute a new DFB field inside the ROI
9: Compute a central path from source to destination

10: until Percentage change in path length falls below a
threshold

As a preprocessing step we first divide the bounding box
into a coarse grid. All the grid blocks which lie outside
our object are eliminated at this stage itself. We examine
how the total number of blocks in this coarse grid affects
our algorithm, later in Section 6.2. The user specifies the
source and destination points. We define ROI as the small-
est bounding box that contains both the source and the des-
tination. The unit block of the bounding box is same as unit
of the coarse grid i.e., it has vertices on the grid. We as-
sume that the part of the original object in the ROI as the
current object and we subdivide the ROI as in the original
algorithm. Note that the starting point of this subdivision is
from the initial coarse grid. After the subdivision, we com-
pute the DFB field inside the ROI (see Figure 6(a)). Then

Figure 5. Flythrough inside the Ogre, Heart and 3-Holes mesh

we identify the blocks in which the source and the destina-
tion lie and find a central path between these blocks.

(a) (b)

(c) (d)

Figure 6. Progressive path computation

A path may or may not exist between the source or the
destination inside the ROI. If no path exists between the
source and the destination, we expand the ROI and repeat
our computation. The ROI is expanded by either increasing
our bounding box by one grid unit in each dimension or by
doubling its size. We examine the consequences of these ex-
pansion strategies later. In every iteration, we need to sub-
divide only the new grid blocks that were introduced while
expanding. However, the DFB field for all the blocks in the
ROI is computed from scratch and then we try to find a path
again. We continue expanding the ROI and recomputing till
a path is found between the source and the destination that
lies completely inside it (see Figures 6(b) and 6(c)). Once
a path is found, we do not stop our computations as subse-

quent expansions of the ROI may find a better path.
We continue this expansion strategy till we find a satis-

factory path. We use the following stopping criterion to stop
our iterations. We estimate the improvement in the quality
of the central path in one iteration as follows. We compare
the lengths of the path in the previous iteration and in the
current iteration with respect to the current DFB field. The
current path will always have a lesser length in the current
DFB field than the previous path. If the two paths differ
by less than a preset threshold Pstop, then we stop (see Fig-
ure 6(d) - we stop at this step).

6.2. Performance Analysis
We examine the various parameters chosen during the

progressive central-path computation. The first parame-
ter was the grid coarseness i.e., how many grid blocks are
present in the initial grid. If the unit grid block size is large,
i.e. total number of grid blocks is small, every time we ex-
pand the ROI, we increase it by a larger amount and so we
are likely to hit a satisfactory path in less number of itera-
tions. However, this also means that for each iteration the
new blocks to be subdivided would be larger and hence their
subdivision would take more time. The converse argument
also holds true for smaller unit grid block sizes.

The second parameter is the stopping criteria threshold,
Pstop. If Pstop is large we do less number of iterations and
vice-versa. There is however, a basic limitation of employ-
ing a local search strategy. It may so happen that when we
stop iterating, the path we obtain is still far from the glob-
ally optimum path we may have obtained if we had used
the central path computation algorithm given in Section 3.
This is because of the fact that we are basing our path com-
putations on localized object information contained in the
ROI.

Now we examine the running time complexity of the
progressive algorithm. Let the total number of blocks in
the initial coarse grid be N. N is independent of the size
of the object. We can essentially keep N the same, even
when the object is scaled by adjusting the unit grid block
size accordingly. The maximum number of times we may

have to iterate in this algorithm is till the ROI covers the
complete original object i.e., the ROI becomes the bound-
ing box of the original object. Since in each iteration, the
size of the ROI increases by at least one grid block in every
dimension, the maximum number of iterations is bounded
by the cube root of total number of grid blocks for a 3D
object. Hence, the worst case runtime complexity is atmost
O(3

√
N((n + hk) log(n + hk))). Also, in the worst case the

path computed is globally optimum and is exactly same as
can be generated by using the central path computation al-
gorithm given in Section 3.

6.3. Results
Here we give results for the progressive path computa-

tion algorithm. All the results are for the Ogre mesh used
previously in Section 5. All experiments were done on a
Linux based, Pentium IV 1.4 Ghz machine with 1GB RAM.

We first compare the performance for the progressive
and non-progressive versions of our algorithm for the same
source and destination pair. For the progressive case we
start with a 16 × 16 × 16 coarse grid with Pstop as 5%.
At all scales the number of blocks and edges formed in
the progressive case are much less than number of blocks
and edges formed in the non-progressive case. Similar be-
haviour is seen for the time required to compute the path.
In the non-progressive case, the total time T is the sum of
TSUB, TDFB and TavPQ. These results clearly demonstrate
that the progressive variant of the central path algorithm
outperforms the non-progressive one for source-destination
pairs in locally coherent connected regions.

Further we observe that in the worst case the progres-
sive algorithm gives results which are identical to the results
given by the non-progressive algorithm.

7. Conclusion
We have given a simple and efficient algorithm for calcu-

lation of central paths in closed 3D objects. The algorithm
has a proven low computational complexity. It is more effi-
cient than any of the methods so far reported for such path
computations to the best of our knowledge. The complex-
ity of our algorithm is proportional to the number of vox-
els on the boundary, unlike previous methods with com-
plexity proportional to number of voxels inside the object.
Therefore, the algorithm scales better for larger meshes than
previously reported methods, as shown by the results. The
algorithm is flexible enough to accommodate various user
defined parameters. Due to the inherent nature of the algo-
rithm it generates a multi-resolution representation of object
and the computed path.

We introduce a progressive algorithm that allows the user
to explore smaller locally coherent connected regions very
fast.

A possible direction for future work is to extend the algo-
rithm to compute paths from which certain landmarked re-
gions need to be viewed with constraints of a finite viewing
frustum. We are working on another extension of applying
this algorithm for volumetric datasets.

Acknowledgement

We wish to thank Akash M Kushal for providing initial
insights into the complexity analysis of the algorithm.

References

[1] I. Bitter, A. E. Kaufman, and M. Sato. Penalized-distance
volumetric skeleton algorithm. IEEE Transactions on Visu-
alization and Computer Graphics, 7(3):195–206, 2001.

[2] S. Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven fly
throughs. In 2003 Conference on Computer Vision and Pat-
tern Recognition (CVPR 2003), pages 449–454, June 2003.

[3] T. Deschamps and L. D. Cohen. Fast extraction of minimal
paths in 3D images and applications to virtual endoscopy.
Medical Image Analysis, 5(4):281–299, Dec. 2001.

[4] E. D. Dijkstra. A note on two problem in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[5] Y. Ge, D. R. Stels, J. Wang, and D. Vining. Computing
centerline of a colon: A robust and efficient method based
on 3D skeletons. Journal of Computer Assisted Tomography,
23(5):786–794, 1999.

[6] L. Hong, A. Kaufman, Y. Wei, A. Viswambhran, and
M. Wax. 3D virtual colonoscopy. In Proceedings Sympo-
sium on Biomedical Visualization, pages 26–32, 1995.

[7] L. Hong, S. Muraki, A. E. Kaufman, D. Bartz, and T. He.
Virtual voyage: Interactive navigation in the human colon.
In Proceedings of SIGGRAPH 97, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 27–34, Aug.
1997.

[8] W. Lorensen, F. Jolesz, and R. Kikinis. The exploration of
cross-sectional data with a virtual endoscope. In R. Satava
and K. Morgan, editors, Interactive Technology and the New
Medical Paradigm for Health Care, pages 221–230, 1995.

[9] D. S. Paik, C. F. Beaulieu, R. B. Jeffery, G. D. Rubin, and
S. Napel. Automated flight path planning for virtual en-
doscopy. Medical Physics, 25(5):629–637, 1998.

[10] T. Pavlidis. A thinning algorithm for discrete binary images.
In Computer Graphics and Image Processing, volume 13,
pages 142–157, 1980.

[11] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker.
Hamilton-jacobi skeletons. International Journal of Com-
puter Vision, 48(3):215–231, Aug. 2002.

[12] A. Telea and A. Vilanova. A robust level-set algorithm for
centerline extraction. In Proceedings of the symposium on
Data visualisation 2003, pages 185–194. Eurographics As-
sociation, 2003.

[13] M. Wan, F. Dachille, and A. Kaufman. Distance-field based
skeletons for virtual navigation. In IEEE Visualization 2001,
pages 239–245, Oct. 2001.

