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Abstract

It is known that the dynamics of best response in an
environment of non-cooperative users may converge
to a good solution when users play sequentially, but
may cycle far away from the global optimum solution
when users play concurrently. We introduce the
notion of bounded best response where users react
with best response subject to rules that are forced
locally by the system. We investigate the problem of
load balancing tasks on machines in a bipartite graph
model and show that the dynamics of concurrent
bounded best response converges to a near-optimum
solution quickly, i.e., with poly-logarithmic number
of rounds. This is in contrast to the concurrent
best response dynamics which cycles far away from
the optimum and to any sequential dynamics which
requires at least a linear number of rounds to get to
a reasonable solution.

1 Introduction

In most communication networks, it is infeasible to
maintain one centralized authority to route traffic ef-
ficiently. As a result, users may decide individually
how to route their traffic. Each user behaves strategi-
cally. Specifically, it wishes to minimize its transmis-
sion cost while being aware of the network congestion
caused by other users. Selfish behavior is often ana-
lyzed by quality of the (Nash) equilibrium it induces.

However, even if Nash equilibrium is unique and
constitutes the optimum solution, it is not clear
whether selfishly acting users would converge to it
or any other “good” solution. Actually, they may
not converge at all. Thus, recently there has been
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a fair amount of work trying to understand the
convergence of the dynamics of selfish users, rather
than only analyzing the performance of a system in
Nash equilibrium [8, 6, 2, 3, 9, 11]. One popular
way to model the convergence issue is to assume
that users are playing best response. In particular,
there are several cases where it was proved that
sequential best response converges to a good solution
[8, 6, 2]. We note that such dynamics requires
at least linear time (possibly polynomial or even
more). However, in many cases and especially in large
systems, sequential response is not an option. More
appropriate model would be to assume concurrent

response by all users. Unfortunately, the dynamics
of concurrent best response results, in many cases, in
cycles on states that are far away from good solutions.

To overcome this difficulty, we introduce the
notion of bounded best response. In the bounded
best response dynamics, the users play best response
but are subjected to some rules that can be easily
enforced locally by the system. An example of such a
rule is the multiplicative speed limit: a user is allowed
to increase (or decrease) its assignment to a certain
option only by a certain percentage of the existing
assignment. Such a speed limit is similar to the
flow control rules on the Internet, where flow of a
certain user is not allowed to drastically increase on a
specific router. Obviously, such controls/restrictions
are necessary since without them concurrent selfish
decision making will lead to a collapse, as all flows
may be continuously and simultaneously switching to
new links, thus entering a vicious cycle. In contrast
the bounded best response may actually converge to
optimum.

As a case study, we focus on load balancing, or
equivalently, assignment in bipartite graph model.
We show that concurrent bounded best response
reaches (and remains at) a near optimal solution very
quickly, i.e., in poly-logarithmic number of rounds.
The assignment problem in bipartite graph model
is described as follows. The system consists of m
machines (also called links) and n users where user



i has amount of tasks (also called traffic) wi, and
a subset Si of allowable machines (induced by the
graph). Each task has to be assigned to its allowable
machines. We consider the fractional (or splittable)
case where a task can be split fractionally among the
allowable machines.

In our convergence dynamics, each user i is aware
only of the loads on the machines in the set Si. Each
user behaves selfishly and wishes to minimize its cost
by assigning its traffic to the least loaded machines.
The global objective, however, is to minimize the load
of the most loaded machines.

1.1 Our results We consider the concurrent case
where all users react concurrently in rounds. We first
observe the following

• If all users play best response (or even some
approximation to that) concurrently, then the
system can stay far away from the optimum
solution.

Hence we have to impose some rules to ensure that
the system would converge. We use two rules,
called Bounded step rule, namely the fraction of the
assignment of a task to a machine cannot change
dramatically in a single round, and Inertia rule,
namely that a user cannot move if it cannot improve
its cost by a constant factor. In the Bounded Best

Response dynamics, the users play the best response
(or approximate best response) subject to the above
rules. Note that all rules are stateless [1] and can be
easily enforced by each machine locally.

• We show a fast convergence to a near optimal
solution in the concurrent bounded response
dynamics. It takes only poly-logarithmic number
of rounds.

It is worth pointing out that while our mecha-
nism yields fast convergence to a near-optimal solu-
tion, there is no evidence that it converges to (even
approximate) Nash equilibrium, i.e., it appears that
optimum is easier to achieve than Nash equilibrium.
It appears that (approximate) Nash equilibrium may
be hard to reach within a reasonable time, and thus
it may not be the right concept in analyzing dynam-
ics of a truly local system of selfish users. Note that
in our case, the analysis of the equilibrium is triv-
ial: the price of anarchy [10] is 1. However, since it

does not appear that equilibrium is reached in poly-
logarithmic time, this fact is not useful.

What makes our result non-trivial is proving that
we reach near-optimality within poly-logarithmic
time. The Bounded step rule makes it difficult to
prove that some appropriately defined potential func-
tion (e.g., sum of the squares of the loads of machines)
reduces fast enough while the system is “out of equi-
librium”. The reason is that a user cannot just move
all its load from a highly loaded machine to a lightly
loaded machine in a single round; rather, the user
must build its traffic slowly to observe the rule. It
may so happen that while this traffic is being built on
a certain machine, this machine becomes overloaded
as a result of actions of other users. Thus, one must
start “chasing” another machine that is un-congested.
In principle, the number of such changes can be lin-
ear or more, which is excessive for poly-logarithmic
convergence time. Hence we are required to use a
more refined analysis. Our analysis does not use a
potential function. We instead show that

• either at a given time, the number of high loaded
machines as a function of the load is a fast
decreasing function, which in turn implies near-
optimality (Lemma 4.3),

• or over the next poly-logarithmic rounds, the vol-
ume of tasks above some load threshold decreases
significantly (Lemma 4.4) (it may not decrease
significantly in a single round).

The latter is proved by showing that even when the
loads of the machines fluctuate over time, the volume
of consistently high tasks gets reduced.

1.2 Related work

Concurrent games. Past work on local greedy
routing and analysis of routing dynamics, pretty
much like in the current paper, does exist, but
only provides partial results that work for special
cases. Some of the closely related work includes re-
cent ground-breaking results by Even-Dar et al. [4]
and Fisher et al. [7, 5] who state results compa-
rable to ours in the case that commodities operate
in a complete network (clique). It appears that [5]
also handles a general network topology with a com-
mon source and sink, which is essentially a single-
commodity flow problem (this corresponds to sym-
metric users). We note that our load balancing prob-



lem corresponds to non-symmetric users as each user
has a different set of strategies.

Similar to our paper, Awerbuch and Khandekar
[1] considered minimization of max-load in general
graphs. However, their dynamics is not best response
in that agents are induced to work with a different

metric, that is externally imposed upon them, which
requires an additional enforcement mechanism. In
addition, [1] makes an assumption that the global
load in the network is known. In contrast, in the
current paper, only local information is used, and no
external cost metric is being introduced.

Sequential games. Sequential dynamics of best
response where no concurrency effects exist, has been
analyzed in prior work, by Fisher and Vöcking [6] by
Chien and Sinclair [2]. The ε-moves similar to our
notion of inertia rule have been used in [2].

It is worth noting that our proof techniques are
completely different from those in [1, 2, 7, 5].

Paper structure: The paper is organized as
follows. Section 2 defines the model and the prob-
lem and explains inadequacy of unrestricted best re-
sponse. The bounded best response dynamics is de-
fined in Section 3. The convergence of the best re-
sponse dynamics is proved in Section 4.

2 The model and the problem

2.1 The model The bipartite model (also called
restricted assignment model) is defined as follows:
We are given a bipartite graph on n users (tasks)
and m machines. A user i (i = 1, . . . , n) has a task of
weight wi, that can be assigned to any machine j if
there is an edge (i, j) in the graph. This is equivalent
to having a subset Si of the machines for any task
i where the task can be assigned to. We consider
the splittable case, i.e., each task can be split among
some or all machines it may be assigned to. The load
of a machine is the sum of the weights of the parts
assigned to it. Given an instance of the problem,
we define the global optimum (denoted by opt) to
be the fractional assignment of tasks to machines
that minimizes the maximum load over all machines.
Clearly opt can be computed by a simple centralized
flow algorithm. We abuse the notation and use opt

also to denote the maximum load in opt.

We assume that each user is interested in mini-
mizing its own cost with no regard to the global op-
timum. The user i is aware only of the loads of the

machines in Si. Given an assignment (also called sys-
tem) A, let pA

ij ≥ η be the fraction of task i that is
assigned to machine j ∈ Si where η is a small con-
stant to be defined later. For technical reasons, we
always maintain a small fraction of every task on each
machine it is connected to. We set η sufficiently small
so that the effects due to this are negligible.

Clearly for any task i, the fractions add up to one:
∑m

j=1 pA
ij = 1 for all i. For each machine j, let LA

j be

the total load on the machine: LA
j =

∑n
i=1 wi·p

A
ij . We

denote the maximum load by LA
max

= max1≤j≤m LA
j .

Our model works for various user-cost functions.
Instead of defining a specific cost function, we define
a characteristic of the cost functions: moving a small
enough piece of a task from a high loaded machine to
a low loaded machine reduces (or does not increase)
the cost of the task.

One example of such a cost function is as follows:
the cost of user i is the maximum over LA

j for

all j ∈ Si such that pA
ij > η. Another natural

cost function is as follows. Let f be a monotone
increasing non-negative function. The cost of user
i is

∑

j∈Si
pA

ij · f(LA
j ).

2.2 Inadequacy of unrestricted best response

Consider a process that runs in rounds. In round t,
we are given an assignment A of tasks to machines
where each user i can observe the load on all the
machines in Si. To simplify the notation, throughout
the paper we omit the superscript A and may add
instead the superscript t for the values in round t.
Consider a task i. If there is some machine j ∈ Si

such that Lj > mink∈Si
Lk and still pt

ij > 0 then
user i can improve its cost by moving some fraction
of its task from high loaded to low loaded machines
in Si (e.g., from j to the minimum loaded machine in
Si). We first show that the concurrent best response
for all users may result in a very poor performance
compared to the optimum.

Theorem 2.1. If all users perform concurrent best

response then the system may cycle where the max-

imum load in some states is Θ(m) worse than the

optimum.

Proof. Assume that we have m − 1 tasks on m
machines. For each 1 ≤ i ≤ m − 1, let Si = {i, m}.
Assume that we start with an assignment such that
pii = 1 and pim = 0 for all i. Here the maximum load



is 1. This assignment is actually pretty close to the
optimal assignment (the optimum load is 1 − 1/m).
However, since each user i sees an empty machine m,
its best response would be to move half of its task
to machine m in order to balance the load (formally,
pii = pim = 1/2). Since all users act concurrently,
this would result in an assignment with a load of
(m − 1)/2 on machine m. At this time the best
response for user i would be to move back to machine
i. This results in a cycle (of two states). Clearly, half
of the time, the system is in a state with maximum
load Θ(m) times the optimum load.

The above example continues to hold even if we
enforce that a task sends at least η fraction on each
machine.

3 Rules of the game: bounded best response

Theorem 2.1 shows that concurrent (unrestricted)
best response results in a bad performance. If we
want to converge to the optimal assignment, we need
to add or modify some rules. In this section, we will
present a mechanism with such rules that induces
convergence to an approximate optimal assignment in
poly-logarithmic number of rounds. This mechanism
will consist of two rules, Inertia rule (ε-moves) and
Bounded step rule that restrict behavior of the users,
and that can be locally enforced.

Inertia rule: This rule allows users to move
from a high load machine to a low load machine only
if the loads on the two machines differ significantly,
e.g., by a multiplicative (1 + ε)3 factor, where ε is a
small constant.

• A fraction of task i may move from machine j to
r (where j, r ∈ Si) only if Lj ≥ (1 + ε)3Lr.

The inertia rule has been introduced by Chien
and Sinclair [2] under the name “ε-moves”. We note
that the bad example in Theorem 2.1 holds even if we
enforce the Inertia rule; thus more rules are needed
for achieving convergence.

The key to convergence is adding a new Bounded
step rule that restricts the speed of movement of the
users.

Bounded step rule: This is essentially the
“multiplicative” speed limit. According to this rule,
a task i can change the fraction of its assignment on
a machine j ∈ Si at most by an ε fraction in a single
round. More formally,

load

machines in Si

prefix suffix

at least

factor
(1 + ε)3

task i

Figure 1: Bounded best response of task i.

• η ≤ pij ≤ 1 for all i and j ∈ Si where η = ε
m2 .

• pt
ij/(1 + ε) ≤ pt+1

ij ≤ (1 + ε)pt
ij .

Since the multiplicative speed limit becomes in-
effective if a fraction pt

ij is zero (or very close to zero),
we ensure that each task i sends at least η = ε

m2 frac-
tion to each machine j ∈ Si. This affects the load on
a machine by at most η

∑n
i=1 wi = ε

m2

∑n
i=1 wi which

is negligible as compared to opt ≥ 1
m

∑n
i=1 wi.

It is easy to see that the above rules are enforce-

able by the system (the machines) and are not based
on the willingness of the users to follow the rules hon-
estly. Our key assumption is that the users are max-

imally greedy subject to the two rules above; such
dynamics is called bounded best response.

• Each user i sorts the machines j ∈ Si in the
decreasing order of the total load Lj and moves
maximal possible fractions from high loaded
machines in a prefix to low loaded machines in a
suffix without violating the Inertia rule and the
Bounded step rule.

The solution of the optimization problem to be
solved by the user in order to minimize its cost is
immaterial to us, the user is assumed to be “sophisti-
cated” enough to solve this (relatively simple) prob-
lem. An illustration of bounded best response of task
i is given in Figure 1.

4 Fast convergence to near optimum

We imagine that the tasks are divided into sufficiently
small pieces. We further assume that these pieces



opt(1 + ε)k

load

machines

vk

Mk

j

Lj

wk

Figure 2: Illustration of Lj, Mk, wk, and vk.

are “named”, i.e., each piece p of a task can be
distinguished from the other pieces. We use the
following definitions for any k ≥ 0. Refer to Figure 2.

• Mk denotes the set of machines whose load is
more than opt(1 + ε)k.

• mk = |Mk|. Clearly mk is monotone non-
increasing sequence.

• Wk denotes the set of pieces of tasks assigned to
machines in Mk.

• wk denotes the total volume (or weight) of pieces
in Wk.

• vk denotes the total weight of (pieces of) tasks
above height opt(1 + ε)k, i.e., vk = wk −
mkopt(1 + ε)k.

We also use M t
k, mt

k, W t
k, wt

k, and vt
k to denote the

values of the above quantities in the beginning of
round t.

We start with the following observation which is
immediate from the Bounded step rule by summing
over all tasks.

Lemma 4.1. For all machines j and time t we have

Lt
j/(1 + ε) ≤ Lt+1

j ≤ (1 + ε)Lt
j.

We imagine that the pieces of the tasks on a
machine are arranged from bottom to top in some
order (the order may change from round to round).
Each piece of volume x would have a height from
some h to h+x. When it moves to another machine, it
would have a new height from h′ to h′+x. We use the

following order of the pieces on the machines. The top
pieces are the pieces that may move in principle. Out
of each piece pij we would put pijε/(1+ε) fraction at
the top. Hence the total volume of the “top” pieces
is Ljε/(1 + ε) and hence their minimum height is
Lj/(1 + ε) on the machine j.

All pieces that move to some machine r actually
move to the top of that machine. Hence if a piece
moves to a machine r, the new height of the piece is
at most Lr(1+ε). This follows since the total volume
of the new pieces is at most εLr.

Lemma 4.2. The dynamics is acyclic.

Proof. Since the pieces corresponding to some task
i move from a machine j to a machine r only if
Lj/Lr ≥ (1 + ε)3, we conclude that the heights of
those pieces decrease from at least Lj/(1 + ε) to at
most Lr(1 + ε), i.e., by at least (1 + ε) factor. This
means that the sum of the heights over all pieces
(or equivalently, the sum of squares of the loads of
the machines) decreases over time. Therefore the
dynamics is acyclic.

Remark 1. Since the pieces are moving from high

load machines to low load machines, we also note

that each vk is a monotone non-increasing function of

time. Moreover, each move results in strictly reducing

at least one vk for some k. In addition Lmax is

non-increasing over the process. Hence, once Lmax

is close to the optimum it would remain there.

We now show that the maximum load Lmax

(which decreases over time) reaches close to the
optimum in poly-logarithmic time.

Lemma 4.3. If for all k ≥ 0, we have mk ≥
mk+5(1 + ε)k then Lmax ≤ (1 + δ)opt for ε =

O( δ2

log m).

Proof. We use the inequality iteratively (for k divis-
ible by 5) and get

m ≥ m0 ≥ (1 + ε)(0+5+10+...+k)mk+5

= (1 + ε)k(k+5)/10mk+5.

Now if mk+5 ≥ 1, it implies that k2 = O( log m
ε ). By

the relation between ε and δ, we get that (1+ε)k+5 ≤
(1 + δ).



We divide the rounds into phases. Each phase
consists of τ = O(1

ε log m
ε ) consecutive rounds. If at

any point, vk ≤ ε(1 + ε)kopt holds for some k, then
for all k′ ≥ k + 1 we have vk′ = 0. This follows since
for vk+1 > 0 to hold, it must be true that more than
((1 + ε)k+1 − (1 + ε)k)opt = ε(1 + ε)kopt weight is
above height (1 + ε)kopt. Since vk′ values are non-
increasing, they always remain 0 for k′ ≥ k + 1.

If in the beginning of a phase for all k ≥ 0 we
have

mk ≥ mk+5(1 + ε)k,

then Lemma 4.3 implies that the system is near
optimum. Therefore, we assume that there exists
k ≥ 0 such that mk+5 > mk/(1 + ε)k. We show
that in the next phase, either vk+1 or vk+4 decreases
by factor of at least ε/3.

Lemma 4.4. If mk+5 > mk/(1 + ε)k holds in the be-

ginning of a phase, then either vk+1 or vk+4 decreases

by a factor of at least ε/3 in this phase.

Before proving Lemma 4.4, (which is our main
lemma) we prove its consequence.

Theorem 4.1. The bounded best response dynamics

converges to (1 + δ) approximation in O( 1
δ6 log6 m

δ )
rounds.

Proof. Note that the largest r for which vr > 0
may hold in any round of the algorithm satisfies
r = O(1

ε log m). This follows from the fact that
vr > 0 implies that mr > 0 and the load on a machine
in the set Mr is (1 + ε)ropt ≤ m · opt. Lemma 4.4
together with Lemma 4.3 implies that, as long as
the current assignment is not near optimum, at least
one vr decreases by a factor of ε/3, i.e., becomes
(1−ε/3) factor smaller. Since vr is at most m ·opt in
the beginning and at least ε(1 + ε)ropt before vr+1

becomes 0, the total number of phases vr can decrease
before vr+1 becomes 0 is O(1

ε log m
ε(1+ε)r ). Summing

this over r = 0, . . . , O(1
ε log m), we get that the total

number of phases before reaching near optimality is
at most O( 1

ε2 log2 m
ε ). Since each phase has τ =

O(1
ε log m

ε ) rounds, the total number of rounds in

the algorithm is O( 1
ε3 log3 m

ε ). The algorithm in the
end achieves (1 + δ) approximation to the optimum

load where ε = O( δ2

log m ). Thus the total number
of rounds in terms of the approximation factor δ is
O( 1

δ6 log6 m
δ ).

4.1 Proof of Lemma 4.4 Fix a phase and let
M0

r , m0
r, and v0

r denote the values of Mr, mr, and
vr respectively in the beginning of this phase. Now
assume on the contrary to Lemma 4.4 that neither
vk+1 decreases by εv0

k+1/3 nor vk+4 decreases by
εv0

k+4/3 in this phase. Let k′ = k + 4.

Rich machines. We call a machine “rich” if it is not
in Mk in some round in the phase and it enters Mk+1

in some later round during the phase (later it may
again leave Mk+1). Note that a machine may become
rich multiple times. For a machine to become rich
once, to fill the gap between the levels (1+ ε)k+1

opt

and (1 + ε)kopt, it must gain at least

(1 + ε)k+1
opt− (1 + ε)k

opt = ε(1 + ε)k
opt

volume. Since this volume must descend from the
volume in vk+1, the quantity vk+1 decreases by
at least this amount. Hence, the number of rich
machines (counting with the multiplicities) is at most

εv0
k+1

3
·

1

ε(1 + ε)kopt
=

v0
k+1

3(1 + ε)kopt
.

Let M∗
k+1 be the union of the sets M t

k+1 for all
rounds t in the phase. This corresponds to the set of
machines that had, in some round during the phase,
a load of at least (1+ε)k+1opt. Let m∗

k+1 = |M∗
k+1|.

Hence

m∗
k+1 ≤ m0

k +
v0

k+1

3(1 + ε)kopt
,(4.1)

since for a machine to be in M∗
k+1, it should either

already be in M0
k or be a rich machine.

Poor machines. We call a machine “poor” if it is
in Mk′+1 in some round during the phase and then
it leaves Mk′ in some later round in the phase. A
machine can be counted poor more than once. For a
machine to be poor once, vk′ must be decreased by
at least

(1 + ε)k′+1
opt− (1 + ε)k′

opt = ε(1 + ε)k′

opt.

This is since the machine must lose this volume to
decrease its load from at least (1 + ε)k′+1opt to at
most (1 + ε)k′

opt. Moreover this volume must leave
vk′ as well. Hence, the number of poor machines in
the phase is at most

εv0
k′

3
·

1

ε(1 + ε)k′

opt
=

v0
k′

3(1 + ε)k′

opt
.



Consistently high volume. Denote by Zk′ the
intersection of the sets W t

k′ over all rounds t in the
phase. This is the set of pieces that were always
assigned to machines in M t

k′ , i.e., the machines with

current load at least (1 + ε)k′

opt, at all rounds t in
the phase. Let zk′ be the total volume of pieces in
Zk′ . The following lemma shows a lower bound on
this volume.

Lemma 4.5. We have zk′ ≥ 2
3v0

k′ + m0
k(1 + ε)4opt.

Proof. Let zt
k′ denote the the volume of the pieces

in the intersection of W t′

k′ where t′ ranges on rounds
from the beginning of the phase till round t. During
a phase zt

k′ can only decrease. Initially it is at least

zk′ ≥ v0
k′ + m0

k′(1 + ε)k′

opt.

Now consider a decrease in zt
k′ due to some piece p

leaving the set W t
k′ for the first time. We consider

the following two cases:

1. The piece p was part of vt
k′ , i.e., was above height

(1 + ε)k′

opt on some machine j. In this case, p

contributes a decrease in vt
k′ as well.

2. The piece p was not part of vt
k′ , i.e., was below

height (1 + ε)k′

opt on some machine j. In this
case, the loss of p from zt

k′ is due to the machine j
leaving the set M t

k′ . We now consider two cases:

(a) j ∈ M t′

k′ for all rounds t′ from the beginning
of the phase till round t. Such a machine
causes zt

k′ to decrease by an amount equal

to (1+ε)k′

opt over and above the decrease
in vt

k′ .

(b) j 6∈ M t′

k′ for some t′ from the beginning of
the phase till round t. Let t′ be the latest
such round. Note that p moved to machine
j after round t′. When p moved to j, it
was placed at the top, i.e., above height
(1 + ε)k′

opt. Later p was moved below
height (1 + ε)k′

opt when it was swapped
with some piece p′ not in zt

k′ and when p′

left vt′′

k′ for some t′ < t′′ ≤ t. Thus the loss
of p from zt

k′ can be charged to the decrease
in vk′ .

Since the total decrease in vk′ is at most 1
3εv0

k′ , the
total decrease in zk′ due to cases 1 and 2b is bounded

by 1
3εv0

k′ . We now upper bound the decrease in zk′

due to case 2a as follows.

For a machine in M0
k′ to leave M t

k′ for the first
time, either it must belong to M0

k′ \ M0
k′+1 or be a

poor machine. The total number of such machines is
at most

(m0
k′ − m0

k′+1) +
v0

k′

3(1 + ε)k′

opt
.

Each of these machines may contribute to a loss of
(1 + ε)k′

opt in zk′ . Hence, we have

zk′ ≥ v0
k′ + m0

k′(1 + ε)k′

opt

−(m0
k′ − m0

k′+1)(1 + ε)k′

opt−
v0

k′

3

=
2

3
v0

k′ + m0
k′+1(1 + ε)k′

opt

≥
2

3
v0

k′ + m0
k(1 + ε)4opt

where the last inequality follows from the assumption
that m0

k′+1 = m0
k+5 > m0

k/(1 + ε)k.

Consistently high volume movable to low

loaded machines. There are m∗
k+1 machines with

load at least (1 + ε)k+1opt in some round in the
phase, where m∗

k+1 is upper bounded as in (4.1).
In the optimum solution these machines can hold
at most a volume of m∗

k+1opt. Hence a volume of
at least zk′ − m∗

k+1opt is in Zk′ and which opt as-
signed to machines that were never in Mk+1 during
the phase.

We lower bound this volume as follows.

zk′ − m∗
k+1opt

≥
2

3
v0

k′ + m0
k(1 + ε)4opt − m0

kopt−
v0

k+1

3(1 + ε)k

≥ m0
k((1 + ε)4 − 1)opt +

2

3
v0

k′ −
v0

k+1

3(1 + ε)k

> 4ε · m0
kopt +

2

3
v0

k′ −
v0

k+1

3(1 + ε)k
.

Next we use the fact that

v0
k+1 − v0

k′

≤ m0
k+1((1 + ε)k′

− (1 + ε)k+1)opt

= m0
k+1(1 + ε)k((1 + ε)k′

−k − (1 + ε))opt

= m0
k+1(1 + ε)k((1 + ε)4 − (1 + ε))opt

≤ m0
k+1(1 + ε)k · 6ε · opt

≤ m0
k(1 + ε)k · 6ε · opt.



The first inequality follows since each of m0
k+1 ma-

chines can hold at most ((1 + ε)k′

− (1 + ε)k+1)opt

volume between the levels (1 + ε)k′

opt and (1 +
ε)k+1opt. The inequality on the fifth line is due to
the fact that ε is small enough and hence (1 + ε)4 ≤
1 + 7ε. The inequality on the last line follows from
the fact that m0

k+1 ≤ m0
k. Thus we conclude

v0
k+1

3(1 + ε)k
≤

v0
k′

3(1 + ε)k
+ 2ε · m0

kopt

≤
1

3
v0

k′ + 2ε · m0
kopt.

Hence

zk′ − m∗
k+1opt

> 4ε · m0
kopt +

2

3
v0

k′ −
1

3
v0

k′ − 2ε · m0
kopt

> 2ε · opt.

Thus we just proved that the total volume of pieces
in Zk′ that opt assigns to machines never in Mk+1

during the phase is more than 2ε · opt. This
contradicts the lemma below.

Lemma 4.6. Consider a set of pieces of tasks that

are in Zk′ such that in the optimum solution, they

are assigned to some subset of machines M which are

never in Mk+1 during the phase. Then the volume of

such pieces is at most 2ε · opt.

Proof. Fix a task i such that opt assigns some pieces
of task i to machines in M which are never in Mk+1

during the phase. Fix a machine j∗ ∈ Si ∩M . In the
beginning of the phase, the fraction pij∗ is at least
η = ε/m2. In any single round, by the Bounded step
rule, pij∗ may increase by a factor at most (1 + ε) by
pushing more pieces of task i onto j∗ or may decrease
by a factor at most (1 + ε) by pulling some pieces
of task i from j∗. We call a round saturated if pij∗

increases in this round by a factor of (1 + ε). We call
a round unsaturated otherwise.

We now argue that the number of unsaturated
rounds in a phase is at least τ/3 where τ =
Θ(1

ε log m
ε ) is the total number of rounds in a phase.

Assume on the contrary that the number of saturated
rounds is more than 2τ/3. Thus pij∗ would increase
by at least a factor of (1 + ε)2τ/3 in the saturated
rounds and decrease by a factor of at most (1 + ε)τ/3

in the unsaturated rounds, implying that the overall
increase in pij∗ is by a factor of

(1 + ε)2τ/3−τ/3 = (1 + ε)τ/3 > m2/ε.

However this is impossible, since we always have
η = ε/m2 ≤ pij∗ ≤ 1.

We now observe that in any unsaturated round,
pij must decrease by a factor of (1+ε) for all machines
j ∈ Mk′ such that pij ≥ η(1 + ε) = ε(1 + ε)/m2.
(Furthermore, these pieces must be pushed to a
machine that is not in Mk+1.) This holds since task
i is maximally greedy and in an unsaturated round,
there is an opportunity to move pieces to machine
j∗ 6∈ Mk+1. The condition pij ≥ η(1 + ε) is needed
since we require pij ≥ η in all rounds. Note also that
Lj/Lj∗ ≥ (1 + ε)3 for any j ∈ Mk′ .

For the purpose of analysis, we may assume that
while deciding which pieces move from the machines
in Mk′ to the machines not in Mk+1, we give a
preference to the pieces in Zk′ . Let zk′(i) be the
current volume of pieces in Zk′ that belong to task
i. As argued above, if pij ≥ ε(1 + ε)/m2 for some
j ∈ Mk′ , than pij must drop by a factor of (1 + ε) in
an unsaturated round. Thus after any unsaturated
round, zk′(i) becomes at most

1

1 + ε

(

zk′(i) −
ε(1 + ε)

m2
· m · wi

)

+
ε(1 + ε)

m2
·m ·wi.

This holds since at most ε(1 + ε)/m2 · m ·wi volume
in zk′(i) lies on the machines j ∈ Mk′ with pij <
ε(1+ ε)/m2 and the remaining volume in zk′(i) must
decrease by (1 + ε) factor. After simplifying, the
above expression equals

zk′(i)

1 + ε
+

ε2 · wi

m
.

Since the number of unsaturated rounds is at least
τ/3 where τ = Θ(1

ε log m
ε ), at the end of the phase

zk′(i) becomes at most 2ε·wi

m . Thus we conclude that
at the end of the phase, we have

zk′ =

n
∑

i=1

zk′(i) ≤
2ε

m

n
∑

i=1

wi ≤
2ε

m
·m ·opt = 2ε ·opt.

This completes the proof of Lemma 4.6.

Due to the contradiction, we conclude that at
least vk+1 or vk+4 must decrease by a factor of at
least ε/3. Thus the proof of Lemma 4.4 is complete.
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