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Policy Gradients

Training Algorithm
| Initialize the agent
2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward

~

log-likelihood of action

loss = —log P(a;|s;) R;

reward

Gradient descent update:

w' =w — Vloss
w o =w +[V log P(a|st) Rt}
Policy gradient!
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Reward functions for complex real world tasks are
hard to engineer

SR,

e Reward functions communicate our intent or goal to the agent.
e Simply demonstrating the task is easier than engineering a complex reward function


http://www.youtube.com/watch?v=ml2QOtDU-dw
http://www.youtube.com/watch?v=HA4fWhzAfnY
http://www.youtube.com/watch?v=V1eYniJ0Rnk

Learn from Human Demonstration
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C. Finn et al. D. Park and R. Paul et al.

e |earning from demonstration improves the data efficiency of standard RL algorithms.
e Can learn from smaller amounts of data.


http://www.youtube.com/watch?v=1eYqV_vGlJY
http://www.youtube.com/watch?v=HgaqH4PWcTI

Sparse Rewards are Challenging in RL

e Rewards that are dense in time
can closely guide the agent.

e Implicitly specify them using
demonstrations.

e Demonstrations as a form of
reward shaping.

PG works better with reward shaping



Imitation Learning Successes

Simulated highway driving

e Abbeel and Ng, ICML 2004
@ Syed and Schapire, NIPS 2007
e Majumdar et al., RSS 2017

Aerial imagery-based navigation

e Ratliff, Bagnell, and Zinkevich, ICML 2006

Parking lot navigation

e Abbeel, Dolgov, Ng, and Thrun, IROS 2008




Imitation Learning Successes

Human path planning

@ Mombaur, Truong, and Laumond, AURO 2009 é?@@

Human goal inference

o Baker, Saxe, and Tenenbaum, Cognition 2009 |

Quadruped locomotion

o Ratliff, Bradley, Bagnell, and Chestnutt, NIPS
2007

e Kolter, Abbeel, and Ng, NIPS 2008




Learning From Demonstrations

e Expert provides a set of demonstration trajectories: sequences of states and

actions
e Imitation learning is useful when is easier for the expert to demonstrate the
desired behavior rather than:

o come up with a reward that would generate such behavior,
o coding up the desired policy directly



Imitation Learning or Learning from Demonstration

@ Input:

State space, action space

Transition model P(s’ | s, a)

No reward function R

Set of one or more teacher's demonstrations (sp, ao, s1, So, - - -)
(actions drawn from teacher’s policy 7*)

@ Behavioral Cloning:

e Can we directly learn the teacher’s policy using supervised learning?
@ Inverse RL:

e Can we recover R?
@ Apprenticeship learning via Inverse RL:

e Can we use R to generate a good policy?



Behaviour Cloning

e Simply mimic the teacher’s actions.

e Reduction to supervised learning
o  Given the state action pairs from the argmine E(s,a*)~P*L(a*,T[6(S))
demonstrator, learn to predict the same
action as the expert

e Minimise the 1-step deviation

Learning objective:



Behaviour Cloning

e Formulate problem as a standard machine learning problem:

o Fix a policy class (e.g. neural network, decision tree, etc.)
o Estimate a policy from training examples (so, a0), (51, a1), (52, 32), - - -

@ Two notable success stories:

o Pomerleau, NIPS 1989: ALVINN
e Summut et al., ICML 1992: Learning to fly in flight simulator



Behaviour Cloning: ALVINN
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http://www.youtube.com/watch?v=2KMAAmkz9go

Behaviour Cloning: Problems

e Samples are from the teacher’s distribution.
e \What the agent experiences are states from rollouts of its own policy.
e (Catastrophic failures



Behaviour Cloning: Why catastrophic failures?

Expert trajectory

Learned Policy
—
- @
No data on /
how to recover (‘-,_I

Data distribution mismatch!
In supervised learning, (x,y) ~ D during train and test. In MDPs:

@ Train: sy ~ D«
o Test: sy ~ Dy,



Behaviour Cloning: Why catastrophic failures?

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Supervised learning approach assumes that the Independent in time errors:

training and the test distributions are the same.
Expected number of total errors grows as T

Now apply this supervised learning setup to the
MDP or RL context.

Error at time t with probability €
E[Total errors] < eT



Behaviour Cloning: Why catastrophic failures?

Now, consider the error in the RL context,
where the actions determine the distribution of
states the agent will be encountering.

The errors compound (navigation example).

An error can lead the agent to parts of the state
space where it hasn’t been trained on. Hence, it
will make more errors.

At any time step will make T more errors.

Hence, the error overall grows as TA2.

Error at time t with probability €
E[Total errors] < (T + (T —1)+ (T —2)...+1) x eT?

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011

Sequence of states experienced in an MDP depends
on the actions taken while executing a policy.



Problem

e Actually, we need data in rollouts experienced by the agent’s policy.
e Otherwise can'’t recover from errors made the by agent’s policy.
e What if the agent could query for data?



Interactive expert: that can give labels
for any state the agent experiences.

ldea:
o Get more labels of the expert action in the

new states along the policy computed by
BC

Just keep adding the data.

o Essentially train from all past mistakes.
o Perform policy blending.

Obtains a stationary deterministic
policy with good performance under its
induced state distribution.

DAGGER (Data set Aggregation)

Initialize D « (.

Initialize 7; to any policy in II.

fori=1to N do
Let m; = B;7* + (1 . Bz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by m;
and actions given by expert.
Aggregate datasets: D «— D |JD;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

Essentially, a reduction to sequential learning problems.



Autonomous Flight using DAGGER

DAgger here reacts dynamically to an untrained obstacle



http://www.youtube.com/watch?v=hNsP6-K3Hn4

Behaviour Cloning: Limitations

e Essentially trying to “mimic” the expert/teacher.

e No notion of the expert’s goal or intention.
o Agent does not know what the teacher is trying to teach and hence cannot generalize.
o If the agent can infer what the teacher is doing, it can potentially do better than the
demonstrator.

e Need for “optimal” demonstrations from the expert

Inverse RL aims to recover the reward structure that the teacher is using.
Inherently, tries to recover the goal that the teacher is using.



Understanding intent is an innate ability



http://www.youtube.com/watch?v=Z-eU5xZW7cU

Intent Inference can help the agent behave naturally
Time 12



http://www.youtube.com/watch?v=hjOteEd7qwE

Inverse Optimal Control / Inverse Reinforcement Learning:
infer reward function from demonstrations

(I0C/IRL) (Kalman ‘64, Ng & Russell '00)
given: goal:
- state & action space - recover reward function
- Roll-outs from m* - then use reward to get policy

- dynamics model (sometimes)



IRL is an under-defined problem

e Many reward functions can explain a demonstration.

Challenges
underdefined problem
difficult to evaluate a learned reward
demonstrations may not be precisely optimal

A CA



Maximum Entropy Inverse RL
(Ziebart et al. '08)
handle ambiguity using probabilistic model of behavior

Notation:

T = {Slaala veey Sty At °“7ST} Rw(T) - er(sha’t) D . {7‘1} ~ 7'('*

trajectory learned reward expert demonstrations
MaxEnt formulation: .
Probability of a state-action trajectory p(T) = eXp RTJ)

given the reward function. \

Do maximum likelihood estimate for the 1INax E log prw (

reward parameters. Maximize the ,(/)
likelihood of the expert trajectories given €D )
the reward model parameterized by psi. (energy-based model for behawor)

/ exp R¢ d



Maximum Entropy IRL Optimization
maxﬁ Zlogpw

T€D
How do you optimize for the 1 1 R
parameters? o 2 : 0g Z eXp( P (T))

T€D

=Y Ry(r)—MlogZ
T€D

= Z Ry (1) — M log Z exp(Ry (7))

€D

Perform gradient descent

_ N dRy(T) 1 dRy(7)
VoLW) = — > ‘MzTexp(Rw(r))ZGXP(R‘”(T” 0

T€D T




Maximum Entropy IRL Optimization

dRy(7)
dy

o dRy(r) .
V(@) =) g >, exp(Ry (7)) 2

T7€D T

exp(Ry (7))

The gradient can be reformulated in terms of the

state visitation probabilities.
: > “p(r | ¥)

P(s | \psi) is the probability of visiting a state under dw

a reward function parameterized by \psi T

There is a dynamic programming algorithm to dr’l/) (S)
obtain the state visitation. p ( S | w )



Intuition:

IRL is trying to match the .

fesures ofthe Maximum Entropy Inverse RL
demonstration. That is

match the state visitation (Ziebart et al. '08)

frequencies. handle ambiguity using probabilistic model of behavior

The agent should be
visiting states in the same
frequency as what the
expert is doing.

0. Initialize 1), gather demonstrations D

1. Solve for optimal policy 7(als) w.r.t. reward 7y
2. Solve for state visitation frequencies p(s|w)
3

. Compute gradient VL = |D| Z ZP s|) drw (s)

Td ED
4. Update 1) with one gradient step using V¢£

Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinforcement Learning. Introduction to probabilistic method for inverse
reinforcement learning



MaxEnt - IRL

e Model the distribution over trajectories for a parameterized reward function.

e Find the most likely estimate of the reward function that explains the
demonstration.

e Key ldea is Feature matching. Find the reward function under which a policy
rollout will lead to state visitations that will be similar to the expert’s feature
distribution.



Skill learning from demonstration
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Finn et al. ICML ’16. Guided Cost Learning. Sampling based method for MaxEnt IRL that handles unknown dynamics
and deep reward functions


http://www.youtube.com/watch?v=1eYqV_vGlJY

