
Rohan Paul

COL864: Special Topics in AI
Semester II, 2021-22

Markov Decision Processes

1

Outline

• Last Class
• Symbolic Representations for Task Planning

• This Class
• Sequential decision-making under uncertainty

• Markov Decision Processes

• Reference Material
• Primary reference are the lecture notes. For basic background refer to AIMA

Classical Planning Ch. 17 (Sec 17.1 - 17.3). Other reference is Sutton and
Barto, Reinforcement Learning Ch 3.

2

Acknowledgements
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,
Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

3

Decision-making over time (deterministic vs.
stochastic case)

4

-.1 -.1 -.1 +1

-.1 -.1 -1

-.1 -.1 -.1 -.1

P=.8

P=..067

P=..067

P=..067

Plans vs. Policies
Deterministic Grid World Stochastic Grid World

If the environment was deterministic, then we would just need an optimal plan (a sequence of
actions) from start to the goal. If there is non-determinism, we are not sure where we will land up,
hence need a policy that prescribes actions from each state.

Plans Vs. Policies

6

• Deterministic single-agent search problems
• we wanted an optimal plan, or sequence of actions,

from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• The agent arrives at a state and looks up the action

according to the policy.

• Will any policy work?
• No. We want an optimal policy is one that maximizes

the expected utility if followed

At any time, the agent will land
up in a state.
• Which action to take in that

state?
• Take the action prescribed

by the policy.

Example of a policy
(arrows). The colors indicate
the value of a state given
the policy (see Value
functions in a later slide).

Formulating and MDP Model

7

-.1 -.1 -.1 +1

-.1 -.1 -1

-.1 -.1 -.1 -.1

P=.8

P=..067

P=..067

P=..067

MDPs

8

• Another view of an MDP.
• Assume that the state is known.
• Solving an MDP means

• Find a policy that maximizes the future
expected reward.

• That is, find a prescription of actions from
each state such that the future expected
reward is maximized.

MDP Example: Mars Rover

9

States and rewards
(encode the agent’s goal)

Transition function.

Actions: Left or Right.
Policy: prescription of
actions to states.

Value Function

11

Value function under a policy
• Called a function because it is defined for each state.
• What does it intuitively mean?
• Given the policy what is the goodness of this state. What is the reward the agent can expect from here

over a time horizon.

0

Value Function

12

Vector Equation Formulation (an intuition)
• Value function is a discrete function. For each state it is a value. Writing it as a vector we can use the

relationship above to compute it.

Sequential Decision-making: Assigning
rewards to sequences)

13

Assigning Rewards to Sequences

14

Discounting appears to be a good
model for both animal and human
preferences over time.

• With discounted rewards, the utility of an infinite sequence is finite.

Notation: U() and V() are both used to denote value functions in literature.

Value Function

15

3

Policy Evaluation

16

Given the policy what is the
value of each state when we
are using this policy?

Policy Evaluation: Example

17

-.1 -.1 -.1 +1

-.1 -.1 -1

-.1 -.1 -.1 -.1

P=.8

P=..067

P=..067

P=..067

Policy Evaluation: Example

18This was the evaluation of a random policy. Next, how can we improve the policy?

Policy Improvement

19

Illustration in a grid world example.

Policy Iteration

20

Key Idea:
- Evaluate and improve the policy.
- Interleave evaluation and

improvement

Policy Iteration

21

Policy Iteration Example

22

• Interleaving policy
evaluation and policy
improvement.

• Notice the policy changing
over time.

• We are guaranteed to
reach the optimal policy.

Important Quantities

The value (utility) of a state s:
V*(s) = expected utility starting in s and acting
optimally

The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out having
taken action a from state s and (thereafter)
acting optimally

The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a transitions,a,s’

s is a state

(s, a) is a q-state

Noise = 0.2
Discount = 0.9
Living reward = 0

Grid World Values
Value (utility) of states V(s) for all states Value (utility) of a q-states Q(s,a) for all states

and all actions at each state.

Bellman Equations

25

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = Q⇤(s, a)max
a

Optimal value function for a state s maximizes
the Q-values of the state s and applicable
actions a.

Q value function: how can we express it? Take
the action a on state s and then act optimally.

Recursive way to write the value function
(we have seen this definition before).

• Definition of “optimal” utility via a simple one-step lookahead relationship amongst
optimal values.

• The utility of a state is the immediate reward for that state plus the expected discounted
utility of the next state assuming that the agent is acting optimally.

Value Iteration

• Key Idea
• Calculate the optimal value function for each state. Then use the optimal

value function to extract the optimal policy.

• Bellman Equations
• The utility of a state is the immediate reward for that state plus the expected discounted

utility of the next state assuming that the agent is acting optimally.

26

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

What is the intuition?
• Value of a state is not arbitrary, it is influenced by the neighbors.
• The Bellman equation encode this relationship.
• Methods to compute the policy exploit this relationship.

Value Iteration

27

• Bellman equations characterize the optimal values:

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

• Value iteration computes them with a fixed-point iteration also called the Bellman update/backup:

• In essence, value iteration provides the optimal policy for a finite horizon problem
of length one, then two-step, then three step, ……… and so on.

• Equivalently, one step of policy evaluation and one step of policy improvement.

Value Iteration

28Sutton and Barto.

Stopping Criteria

29

Assuming and infinite horizon
MDP with a discount factor less
then a relationship between
successive difference between
value functions and w.r.t to the
optimal can be shown.

The relationship leads to a stopping
criteria for value iteration.

AIMA Ch. 17. Sec. 17.2

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

How to extract the policy?

• Assume that we have the optimal values V*(s)
• After applying the value iteration algorithm

• Policy Extraction
• Extract the policy implied by the computed value

function by (using 1-step look ahead).

Once we have the values computed,
how to get the policy (arrows)?

Asynchronous Value Iteration (Prioritized
Sweeping)

45

• Can perform updates to a smaller number of states. Still the algorithm converges as
long as a state is not starved.

• In essence backup with priority states whose successors change the most. Avoid
backing up a state if the successors are not changing.

• After a backup update the priority queue.

Example: 4*4 Grid World MDP

The optimal policy converges before
the values converge.

The optimal policy can be obtained
even when the utility function estimate
is inaccurate.

The extracted policy visualized at
each stage.

The maximum error of the utility
estimates and the policy loss as a function
of the number of iterations of value
iteration.

Policy Iteration vs. Value Iteration

47

• Value Iteration and Policy Iteration both compute the optimal values.

• Policy iteration may in many cases by more computationally expensive.

• For a finite policy space (i.e., discrete state, discrete actions), policy iteration is
guaranteed to converge in a finite number of iterations.
• Value iteration does not have the same guarantees.

