
Rohan Paul

COL864: Special Topics in AI 
Semester II, 2021-22

Markov Decision Processes
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Outline

• Last Class
• Symbolic Representations for Task Planning

• This Class
• Sequential decision-making under uncertainty

• Markov Decision Processes

• Reference Material
• Primary reference are the lecture notes. For basic background refer to AIMA 

Classical Planning Ch. 17 (Sec 17.1 - 17.3). Other reference is Sutton and 
Barto, Reinforcement Learning Ch 3. 
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Decision-making over time (deterministic vs. 
stochastic case)
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Plans vs. Policies
Deterministic Grid World Stochastic Grid World

If the environment was deterministic, then we would just need an optimal plan (a sequence of 
actions) from start to the goal. If there is non-determinism, we are not sure where we will land up, 
hence need a policy that prescribes actions from each state. 



Plans Vs. Policies
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• Deterministic single-agent search problems
• we wanted an optimal plan, or sequence of actions, 

from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• The agent arrives at a state and looks up the action 

according to the policy. 

• Will any policy work?
• No. We want an optimal policy is one that maximizes 

the expected utility if followed

At any time, the agent will land 
up in a state. 
• Which action to take in that 

state?
• Take the action prescribed 

by the policy. 

Example of a policy 
(arrows). The colors indicate 
the value of a state given 
the policy (see Value 
functions in a later slide). 



Formulating and MDP Model
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MDPs
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• Another view of an MDP.
• Assume that the state is known. 
• Solving an MDP means

• Find a policy that maximizes the future 
expected reward. 

• That is, find a prescription of actions from 
each state such that the future expected 
reward is maximized. 



MDP Example: Mars Rover
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States and rewards 
(encode the agent’s goal)

Transition function. 

Actions: Left or Right.
Policy: prescription of 
actions to states. 



Value Function
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Value function under a policy
• Called a function because it is defined for each state. 
• What does it intuitively mean? 
• Given the policy what is the goodness of this state. What is the reward the agent can expect from here 

over a time horizon. 

0



Value Function
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Vector Equation Formulation (an intuition)
• Value function is a discrete function. For each state it is a value. Writing it as a vector we can use the 

relationship above to compute it. 



Sequential Decision-making: Assigning 
rewards to sequences)
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Assigning Rewards to Sequences
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Discounting appears to be a good 
model for both animal and human 
preferences over time. 

• With discounted rewards, the utility of an infinite sequence is finite.

Notation: U() and V() are both used to denote value functions in literature. 



Value Function
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Policy Evaluation
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Given the policy what is the 
value of each state when we 
are using this policy?



Policy Evaluation: Example
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Policy Evaluation: Example

18This was the evaluation of a random policy. Next, how can we improve the policy?



Policy Improvement
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Illustration in a grid world example.



Policy Iteration
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Key Idea:
- Evaluate and improve the policy.
- Interleave evaluation and 

improvement



Policy Iteration
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Policy Iteration Example
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• Interleaving policy 
evaluation and policy 
improvement. 

• Notice the policy changing 
over time. 

• We are guaranteed to 
reach the optimal policy. 



Important Quantities

The value (utility) of a state s:
V*(s) = expected utility starting in s and acting 
optimally

The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out having 
taken action a from state s and (thereafter) 
acting optimally

The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a transitions,a,s’

s is a state

(s, a) is a q-state



Noise = 0.2
Discount = 0.9
Living reward = 0

Grid World Values
Value (utility) of states V(s) for all states Value (utility) of a q-states Q(s,a) for all states 

and all actions at each state. 



Bellman Equations
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V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[ ]Â
s0

T(s, a, s0)

V⇤(s) = Q⇤(s, a)max
a

Optimal value function for a state s maximizes 
the Q-values of the state s and applicable 
actions a. 

Q value function: how can we express it? Take 
the action a on state s and then act optimally.  

Recursive way to write the value function 
(we have seen this definition before). 

• Definition of “optimal” utility via a simple one-step lookahead relationship amongst 
optimal values. 

• The utility of a state is the immediate reward for that state plus the expected discounted 
utility of the next state assuming that the agent is acting optimally. 



Value Iteration

• Key Idea
• Calculate the optimal value function for each state. Then use the optimal 

value function to extract the optimal policy. 

• Bellman Equations 
• The utility of a state is the immediate reward for that state plus the expected discounted 

utility of the next state assuming that the agent is acting optimally. 
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V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

What is the intuition? 
• Value of a state is not arbitrary, it is influenced by the neighbors. 
• The Bellman equation encode this relationship. 
• Methods to compute the policy exploit this relationship. 



Value Iteration
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• Bellman equations characterize the optimal values:

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

• Value iteration computes them with a fixed-point iteration also called the Bellman update/backup: 

• In essence, value iteration provides the optimal policy for a finite horizon problem 
of length one, then two-step, then three step, ……… and so on. 

• Equivalently, one step of policy evaluation and one step of policy improvement. 



Value Iteration

28Sutton and Barto.



Stopping Criteria
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Assuming and infinite horizon 
MDP with a discount factor less 
then a relationship between 
successive difference between 
value functions and w.r.t to the 
optimal can be shown.  

The relationship leads to a stopping 
criteria for value iteration.  

AIMA Ch. 17. Sec. 17.2 



k=0
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Value Iteration



k=1
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration
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Value Iteration



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration



How to extract the policy?

• Assume that we have the optimal values V*(s)
• After applying the value iteration algorithm

• Policy Extraction
• Extract the policy implied by the computed value 

function by (using 1-step look ahead). 

Once we have the values computed, 
how to get the policy (arrows)?



Asynchronous Value Iteration (Prioritized 
Sweeping)
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• Can perform updates to a smaller number of states. Still the algorithm converges as 
long as a state is not starved. 

• In essence backup with priority states whose successors change the most. Avoid 
backing up a state if the successors are not changing. 

• After a backup update the priority queue.



Example: 4*4 Grid World MDP

The optimal policy converges before 
the values converge.

The optimal policy can be obtained 
even when the utility function estimate 
is inaccurate.  

The extracted policy visualized at 
each stage. 

The maximum error of the utility 
estimates and the policy loss as a function 
of the number of iterations of value 
iteration. 



Policy Iteration vs. Value Iteration
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• Value Iteration and Policy Iteration both compute the optimal values. 

• Policy iteration may in many cases by more computationally expensive.

• For a finite policy space (i.e., discrete state, discrete actions), policy iteration is 
guaranteed to converge in a finite number of iterations. 
• Value iteration does not have the same guarantees. 


