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e Last Class
* Symbolic Representations for Task Planning

* This Class

* Sequential decision-making under uncertainty
* Markov Decision Processes

 Reference Material

* Primary reference are the lecture notes. For basic background refer to AIMA
Classical Planning Ch. 17 (Sec 17.1 - 17.3). Other reference is Sutton and
Barto, Reinforcement Learning Ch 3.
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Decision-making over time (deterministic vs.
stochastic case)

m Previously considered the deterministic case.

Actions (up, down, left, right) are deterministic, and each action incurs
cost 1.

Deterministic means transition function is 7: S x A +— S

Once the plan was computed, we can simply execute it.

m Now. consider the case where action outcomes are stochastic:

Transition function T: S x A x S [0, 1], 37, T(-, - s;) = 1.

Transition function for (3,2) and (3,1) is terminal: once reached, the
agent cannot leave those states

Reward is —.1 everywhere except the terminal states, which have
reward +1 and —1.

In this example, with probability .8 action has the “intended” outcome,

and with some uniform probability (0.067) the agent ends up in one of
the other feasible 4-connected states.

If the transition is into an obstacle or outside the grid, the agent’s state
does not change.

-1 -1 -1 +1
-1 -.1 -1
-1 -1 -.1 -.1
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Plans vs. Policies

Deterministic Grid World Stochastic Grid World

If the environment was deterministic, then we would just need an optimal plan (a sequence of
actions) from start to the goal. If there is non-determinism, we are not sure where we will land up,
hence need a policy that prescribes actions from each state.



Plans Vs. Policies

At any time, the agent will land

* Deterministic single-agent search problems e A
* we wanted an optimal plan, or sequence of actions, ) __ _,' _, m t:g y Vl/ahtlec: action to take in that
from start to a goal Ar . = . ;ake’;he ction prescribed
* For MDPs, we want an optimal policy t*:S - A T l=1=1= by the policy.
* A policy & gives an action for each state s

* The agent arrives at a state and looks up the action
according to the policy.

* Will any policy work?

* No. We want an optimal policy is one that maximizes
the expected utility if followed

Example of a policy
(arrows). The colors indicate
the value of a state given

the policy (see Value
functions in a later slide).




Formulating and MDP Model

m Recall that the input to any solver is a model M.

m The MDP is defined as a tuple (S, A, T, R,~,s") -1 -1 +1
m Finite set of states, S = {s",...,s"
Jnite <o y _— 0 m
m Finite set of actions, A = {a",...,a"} 1 1 1

m State transition function 7°(s’, (z.-/,.s-"') such that 7: S x A x S+ [0, 1]

m Reward for each state-action-state transition R(s’, a’, s*) such that

R:SxAxS—R
m Discount factor v € [0, 1]

m Initial state sg.

m Why is it called “Markov”? P=38
m Because the state dynamics depends only on the current state and action.
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m Called a decision process

m Because we choose the actions o oc



MDPs

e Another view of an MDP.
Agent

e Assume that the state is known.

reward action
a,

* Solving an MDP means
* Find a policy that maximizes the future

expected reward. " Environment
* Thatis, find a prescription of actions from -—

each state such that the future expected
reward is maximized.

H

T o= arg max lf[Z v R (S;, Ay, Sii1)

t=0)

ﬁ]



MDP Example: Mars Rover

States and rewards
(encode the agent’s goal)

Transition function.

Actions: Left or Right.
Policy: prescription of
actions to states.
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Okay Field 5- Fantastic
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Value Function

m Policy prescribes actions to a particular state (a look up table): I1: S+ A
m Value function of an MDP for horizon-length T starting at state sg:

T
Vi (so) = E, Z*“f’R(Sh”( ) 9t+1)]
t=0
T
_ZP (s1]s0, 7 (N)))(R(%ns m(s0), $1)+ 'E.s-l.-,-[Z“:lR(StsW(M%Wﬂ)l)
t=1

= Z]) (s1]s0, m(s0) (11’.(.5‘(), mw(so),s1) 4+ - \-"’T?‘—_l(.s‘l)) .

Value function under a policy
e (Called a function because it is defined for each state.
* What does it intuitively mean?

e Given the policy what is the goodness of this state. What is the reward the agent can expect from here
over a time horizon.
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Value Function

m Vector Equation Formulation
m We want the full policy over the entire state space, hence V' is a vector,
m or a given policy 7w : 5+ A,

m Define R™ to be an S x 1 matrix of the expected rewards for the action n(s) for each state, and 77 to be
an S x S matrix of the transition probability for the action n(s) for each state.

V" = R" +4T7V", (7)

m Given the “time horizon” 7, then we can iterate Eqn 7 for 7 steps to obtain the total amount of
expected reward over that horizon.
m Vpr can be computed recursively by solving for successive value functions Vi, Vi, ... V... V.

m [Cach recursion is known as a “back-up” and is a form of dynamic programming,.

Vector Equation Formulation (an intuition)

* Value function is a discrete function. For each state it is a value. Writing it as a vector we can use the
relationship above to compute it. 12



Sequential Decision-making: Assigning
rewards to sequences)

m An MDP models a sequential decision making task till a time horizon 7
m What if we don’t know 7, and so may need to run for an arbitrarily-long
horizon (or literally expect to run forever).
m Known as the “infinite horizon” setting.
m The discount factor biases the value towards getting more reward sooner.
m Getting a rupee today is better than getting it tomorrow which is better than
the day after.
m Value function is guaranteed to exist in the infinite horizon case if v < 1
and the reward function R is bounded.

13



Assignhing Rewards to Sequences

= Additive utility: U([To,’rl, 7151 18 ]) =70 -+ r1 -+ T 4+ ...

. - i 2,
= Discounted utility: U([rg,71,72,...]) =rg+yr1 +~v°ro--- Discounting appears to be a good
model for both animal and human
preferences over time.

* With discounted rewards, the utility of an infinite sequence is finite.

U([rg,.. . Too]) = i fyt’rt < Rmax/(1 — )
t=0

Notation: U() and V() are both used to denote value functions in literature.
14



Value Function

m The finite horizon value function given by Eq 3 becomes an increasingly
good approximation as t — oo, and V'™ represents a fixed point of this

recursion.
a'e

V7(s) = By | > _ 7 R(s,m(s0), 5041) (8)
t=0

- Zp(s'|s, 71'(5‘))(}2(@’ 7]-(8)7 ‘gl)—*_ﬁ"" ESO:OU

Z v R(s¢,m(81), 5141 )] )
t=0

— Zp(s'|s, 7(s)) (R(S, m(s),s) + - V"T(S')) . (10)

m We can also solve this fixed point as a vector equation as before:

V™ = R +~T"VT™
= VT — ATV = T"R"
= (I —AT™) V™ =T"R"
= V™ = (I —T™)"'T"R"

15



Policy Evaluation

m An approach is iterative policy evaluation.

m Calculate the utilities (values) if the agent follows a given fixed policy until
convergence.

m The computed value function may not be the optimal. It is the “best” we
can get with a given policy.

Algorithm 1 Computing the value of an MDP policy.

PoLICY-EVALUATION(S, m, R, T, v, €) Given the policy what is the
1 t =20

‘. . value of each state when we
or each state s € § - . '

Vols] = 0 are using this policy?
repeat

change = 0

= t+4+1
for each state s € §
/i[s] = (Zs, T(s,m[s],s")[R(s,7[s],s") + v Vi_1(s )])

9 change = max(change, Vi[s| — Vi—-1[s])
10 until change < ¢
11 return V;

S Uk N

o 3
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Policy Evaluation: Example

m Recall the grid world. Let us guess a

policy at random, and evaluate it.
m The MDP model:

m S =
{(0,0),(0,1),(0,2), (1,1)....(3,2)}
m 7'(s,a,s") = .8 if s’ is the nominal

destination given s and a

m T'(s,a,s)=.2/nif s’ is a neighbour
of the nominal destination given s
and a and is a legal state (for n legal
states)

m R(s) =+1if s = (3,2)
m R(s)=—-1if s =(3,1)
m [(s) = —.1 otherwise
my=0.9

-1 -1 -1 +1
-1 |
-.1 -.1 -.1 -.1
P=8
¢ > p-.067
P=..067
P=..067
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Policy Evaluation: Example

Let us consider the state (2, 2)

V1(2,2) = R((2,2)) +7)_ p(s'|s,a)V(s")

= —1+4+.9(8x0+.1x0+.1x0)
= —.1

V2(2,2) = R((2,2)) +v Y _ p(s']s,a)V 1 (s)

=—-14+9(8x1+.1x—-.1+4+.1x-1)
= .H21

(d) Ve

This was the evaluation of a random policy. Next, how can we improve the policy?

18



Policy Improvement

lllustration in a grid world example.

——T™
Eg!
L

T—1 1IN

N
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Policy Iteration

m Consider improving the policy

m Given the fixed utility values for states (obtained via policy evaluation)

s Examine if there is a better policy using one step look ahead.

Algorithm 2 An algorithm for computing an MDP policy by
repeated evaluation and improvement.

PO
1

D W N

~1

9
10
11
12
13
14

LICY-ITERATION(S, A, R, T, ~, ¢)

for cach state s € §
v = rand(0, [A])
w(s] = a;
t =0
Vi = POLICY-EVALUATION(S, m, R, T, 7v,¢)
repeat
change = 0
t =141

for cach state s € 8§

mi[s] = argmax, (3. T'(s,a,s") [R(s,a,s') + vV}

Vi = PoLICY-EVALUATION(S, 7, R, T, v, ¢)
for cach state s € §
change = change + Vi[s] — Vi_[s]
until change < ¢

Key Idea:

- Evaluate and improve the policy.

- Interleave evaluation and
improvement

1(s")])

20




Policy Iteration

Remember to evaluate the policy, we fixed 7 and constructed R™ an 1™,
I w(s)=argmaxad ., T(s,a,s)[R(s,a,s")+~V(s)
2 Construct new 77, R™
3 V= U-~T")"'R"

POLICY-ITERATION(S, A, R, T, 7, ¢€)
1 for each state s € §

2 i = rand(0, |.A|)

3 w(s] = a;

4 t =10

5 Vi = POLICY-EVALUATION(S, 7, R, T, ~,¢)

6 repeat

7 change = 0

o) t =1t+1

9 for cach state s € §

10 mi[s] = argmax, (32, T'(s,a,s') [R(s,a,s') + v Vi_1(s")])
11 Vi = POLICY-EVALUATION(S, 7, R, T, ~,¢)
12 for cach state s € §

13 change = change + Vi[s] — V;_|[s]

14 until change < ¢



Policy Iteration Example

E I E I E I E
Ty — Upy —> M) —> Uy, —> Ty —> + =+ —> My — Uy,

(f)

* Interleaving policy
evaluation and policy
improvement.

* Notice the policy changing
over time.

* We are guaranteed to
reach the optimal policy.

(g)

- ‘ -

(i) (3) (k) (1)




Important Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting
optimally

The value (utility) of a g-state (s,a):

Q"(s,a) = expected utility starting out having
taken action a from state s and (thereafter)
acting optimally

The optimal policy:
n'(s) = optimal action from state s

S is a state

(s, a) is a g-state

(s,a,s’) is a transition



Grid World Values

Value (utility) of states V(s) for all states

VALUES AFTER

100 ITERATIONS

Value (utility) of a g-states Q(s,a) for all states
and all actions at each state.

R

b B

PP

O-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Bellman Equations

e Definition of “optimal” utility via a simple one-step lookahead relationship amongst
optimal values.

Optimal value function for a state s maximizes

b S
the Q-values of the state s and applicable V* (S) — maxX Q (S/ El)
actions a. a
Q value function: how can we express it? Take * _ T(s a.s’ / Y V(S
the action a on state s and then act optimally. Q (S’ a) ; ( T ) [ R<S’ 4,5 )_|_ v (S ) ]

Recursive way to write the value function

(we have seen this definition before). V* (S) — MmaX E T(S, a, S/) [R(S, a, S/) + ’Yv* (S/)]
a
S/

e The utility of a state is the immediate reward for that state plus the expected discounted
utility of the next state assuming that the agent is acting optimally.

25



Value lteration

* Key Idea

* Calculate the optimal value function for each state. Then use the optimal
value function to extract the optimal policy.

* Bellman Equations

* The utility of a state is the immediate reward for that state plus the expected discounted
utility of the next state assuming that the agent is acting optimally.

V*(s) = mfoT(s, a,s)[R(s,a,s") +yV*(s)

What is the intuition?

* Value of a state is not arbitrary, it is influenced by the neighbors.
* The Bellman equation encode this relationship.
* Methods to compute the policy exploit this relationship.

26



Value lteration

* Bellman equations characterize the optimal values:
V*(s) =max) T(s,a,s)[R(s,a,s)+yV*(s)]
a
S/

» Value iteration computes them with a fixed-point iteration also called the Bellman update/backup:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + WV;{(S/)}

* In essence, value iteration provides the optimal policy for a finite horizon problem
of length one, then two-step, then three step, ......... and so on.

e Equivalently, one step of policy evaluation and one step of policy improvement.
27



Value lteration

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
[nitialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0

Loop:

| A«0

| Loop for each s € 8:

| v+ V(s)

| V(s) - max, 3., . p(s',r|s,a)[r + vV (s)]
| A + max(A, |v — V(s)|)

until A < 6

Output a deterministic policy, © =~ 7., such that
m(s) = argmax, Zh,',. p(s',r|s, a) [‘l' + A V(.s-')]

Sutton and Barto.

28



Stopping Criteria

Assuming and infinite horizon
MDP with a discount factor less
then a relationship between
successive difference between
value functions and w.r.t to the

optimal can be shown.

The relationship leads to a stopping
criteria for value iteration.

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a),
rewards F(s), discount
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
4, the maximum change in the utility of any state in an iteration

repeat
U—U"6-0
for each state s in S do

U'[s|—R(s) + 7 max S P(s'|s,a) U[s
[s] —R(s) + 7 max Z (s'|s,a) U[s']
if |U'[s] — Uls]| > dthend— |U'[s| — Uls]|

until 6 < €(1 —7v)/y
return [/

AIMA Ch. 17. Sec. 17.2 .
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Value lteration

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

Gridworld Display

'.
A

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

Cridworld Display

.
.H

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

GCridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

Value lteration

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Value lteration

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Value lteration

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Value lteration

GCridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Value lteration

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Value lteration
k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




How to extract the policy?

« Assume that we have the optimal values V*(s) Once we have the values computed,

how to get the policy (arrows)?
» After applying the value iteration algorithm & policy { )

* Policy Extraction

* Extract the policy implied by the computed value _
function by (using 1-step look ahead). -..
0.94 « 0.89 1.00
¥ o) — / / X *( ! 0.92 |« 0.91 |« 0.90 0.80
NSRS | |
a ’ -
S




Asynchronous Value lteration (Prioritized
Sweeping)

m Value iteration so far assumes all states in V; are updated using
values from prior value function V;_

m Requires keeping two functions

m Alternate approach is to keep a single value function estimate V'
and update states in order

~

Vi(s) = R(s) +'}max2p

m Sweeping through the states in order: Gauss-Seidel value iteration

e Can perform updates to a smaller number of states. Still the algorithm converges as
long as a state is not starved.

* |n essence backup with priority states whose successors change the most. Avoid
backing up a state if the successors are not changing.

» After a backup update the priority queue.
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Example: 4*4 Grid World MDP

actions

12 |13 14

R =+

on all transitions

The optimal policy converges before

the values converge.

The optimal policy can be obtained
even when the utility function estimate

is inaccurate.

The extracted policy visualized at
each stage.

Vi for the Greedy Policy
Random Policy wrt vy
0.0 00| 00|00 -=
k=0 0.0 0.0]0.0] 0.0 random
- 0.0]0.0] 00|00 policy
0.0] 00| 00|00

0.0]-1.0]-1.0}-1.0
-1.0]-1.0]-1.0}-1.0

k=1

=1.0]-1.0]-1.0}-1.0

-1.0]-1.0]-1.0} 0.0

L

0.0]-1.7]-2.0}-2.0 —
k=2 -1.2]-2.0]-2.0]-2.0 i
-2.0-2.0[-2.0]-1.7 Pl
-2.0-2.0-1.7] 0.0 i

0.0]-2.4]|-29]-3.0

L
T
LT

-2.9|-3.0]-2.9|-2.4

-
4
!
B

-3.0]-29]-2.4] 00

0.0]-6.1|-8.4]-9.0 -- -

k=10 -6.1]-7.7|-8.4]-8.4 ; 'JL-1 L __ggg::nyal
-8.4|-8.4]-7.7]-6.1 r
-9.0]-8.4]-6.11 0.0 L - -’* /
0.0]-14.]-20.]-22. -

k= -14|-18]-20-20. ey

- -20.|-20-18]-14. s

-22.1-20.|-14.1 0.0 = -‘i

Max error ——

Max error/Policy loss
= o o
= > »

=
[

(=

0 2 4 6 8 10 12 14
Number of iterations

The maximum error of the utility
estimates and the policy loss as a function
of the number of iterations of value
iteration.



Policy Iteration vs. Value Iteration

* Value Iteration and Policy Iteration both compute the optimal values.

e Policy iteration may in many cases by more computationally expensive.

* For a finite policy space (i.e., discrete state, discrete actions), policy iteration is
guaranteed to converge in a finite number of iterations.

* Value iteration does not have the same guarantees.
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