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Today’s lecture

• Last Class
• State Estimation - I

• Recursive State Estimation
• Bayes Filter

• This Class 
• State Estimation - II

• Kalman Filter
• Extended Kalman Filter

• References
• Probabilistic Robotics Ch 3 (Sec. 3.1-3.3)
• AIMA Ch 15 (Sec. 15.4)
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State Estimation: Continuous Variables
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• Bayes Filter till now
• Discrete state variables
• E.g., door open or closed. 
• Discrete conditional probability tables. 

• Continuous variables
• Example: we receive continuous measurements of 

the position or height and seek an estimate. 
Control the vehicle via velocities.   

• Kalman Filter 
• Special case of a Bayes’ filter for handling 

continuous variables. 
• Assumes that the motion model 

(dynamics/control) and the sensor model is linear 
Gaussian.  

• E.g., estimating the belief over the location of the 
agent given the sequence of observations and 
controls. 

Estimating the true state from noisy 
observations is crucial for planning. 



Multivariate Gaussians
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• Distribution over a vector of variables
• E.g., the agent’s state in our case. 

• Mean vector
• Expected value of each variable. 

• Covariance matrix
• Covariance between each pair of 

elements of a given random vector. 
• Diagonals contain variance of each 

variable in the state. 
• Symmetric and positive semi-definite. 



Multivariate Gaussians: Examples
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• Varying the mean or 
origin of the distribution. 



Multivariate Gaussians: Examples
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• Changing the variance in 
the state variables. 



Multivariate Gaussians: Examples
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• Changing the variance in 
the off-diagonal elements. 
• Model variance between 

state variables. 



Multivariate Gaussians: Examples
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Joint Gaussian PDFs: Partitioning of variables
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• Partition the random vector 
as variables as (X, Y).
• Notice the block structure. 

• Why? 
• Later, we would need to 

marginalize or condition on 
some of the variables.  



Joint Gaussian PDFs: Marginalization
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• Marginalization
• Integrating out the effect of a (sub)-

set of variables.
• Resulting is a normal distribution 

over a smaller set of variables. 
• The resulting distribution is 

Gaussian. 



Joint Gaussian PDFs: Conditioning
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• Conditioning
• Certain variables are observed 

(instantiated with observed values).  
• We seek the distribution over the 

remaining set of variables. 
• Conditioning a Gaussian results in 

another Gaussian distribution. 



Conditionals and Marginals of a Gaussian 
Distribution
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Figure from Carl Rasmussen, Machine Learning Summer School 2009



Other Properties
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• Linear transformation
• Product



Kalman Filter
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• Provided
• A belief over the initial state
• Sensor model is linear Gaussian
• Motion model is linear Gaussian

• What is our goal
• Estimate a belief over the latent 

state at time t. 

Sometimes, explicit mention of d is dropped in the sensor model



Kalman Filter: Components
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• At Matrix
• Size (n×n) that describes how the state evolves from t-

1 to t without controls or noise. 

• Bt Matrix 
• Size (n×l) that describes how the control u changes the 

state from t-1 to t. 

• Epsilon 
• Random variable (size n) representing the process 

noise that is assumed to be independent and 
normally distributed with covariance Qt (size nxn). 

• Ct Matrix 
• Size (k×n) that describes how to map the state xt to an 

observation zt.

• dt Vector 
• Size (k) constant offset added. Often explicit mention 

of d is dropped from the sensor model. 

• Delta
• Random variable (size k) representing the 

measurement noise that is  assumed to be 
independent and normally distributed with covariance 
Rt (size kxk). 



Dynamics (Action) Update
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Product of two Gaussian distributions. We know that this is a 
Gaussian distribution. 

Update the belief 
using action

Marginalize out xt

Apply conditional 
independence



Dynamics (Action) Update
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Product of two Gaussian distributions - a 
Gaussian distribution. 

Update the belief 
using action



Dynamics (Action) Update
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A new Gaussian with the 
mean vector and the 
covariance matrix updated. 

Notation: (I | j) implies an estimate of the quantity at time i using “observations” received till time j. 



Measurement Update

20

Update the belief over 
the state by conditioning 
on the observation



Kalman Filter
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Initial belief is a 
Gaussian

Prediction
• What would be the next 

state belief under the 
process model?

• Updates the mean and 
inflates the covariance. 

Correction

• Update the predicted 
belief with the 
observation. 

• Updates the mean and 
deflates the covariance. 

Belief always remains 
Gaussian

Core Idea: Recursively update the 
mean and the covariance using the 
action model and the sensor model. 



Kalman Filter: Alternate Notation

22Probabilistic Robotics Ch  3.



Kalman Filter

23Probabilistic Robotics Ch  3.



Kalman Filter

24Probabilistic Robotics Ch  3.



Kalman Filter

25Probabilistic Robotics Ch  3.



Kalman Filter: Constant Velocity Case
•
• Constant velocity motion:

• Only position is observed:
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Kalman Filter: Constant Velocity Case

If there were actions (e.g., changes to velocity) then the B 
matrix would be added in the motion model.  



Example: 1D Gaussian Case
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The corrected mean lies 
between the predicted and the 
mean of the measurement 
model. Weighted sum. 



Example: 1D Gaussian Case
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Magenta is the state after the prediction step is applied. 
The belief becomes less – localized. 

Belief after last measurement update.



Example: 1D Gaussian Case
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New measurement 
and correction. 



Kalman Filter: Other Takeaways

• Optimal estimator
• Kalman filter is the optimal estimator for linear Gaussian case (i.e., we can’t do better under the 

assumptions). 

• Efficient
• Polynomial in the measurement dimensionality k and the state dimensionality n: O(k2.376  + n2) 

• Structure
• Asynchronisity: if no observations then propagate the motion model. 
• The measurement need not fully determine the latent state. Inherently, updating with partial 

observations. 
• Requires an initial prior mean and covariance. Predictor and corrector architecture.

• Assumes and maintains a Gaussian Belief 
• Unimodal and Gaussian. 
• Problem: in real life belief is often non-Gaussian and multi-modal. 
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Non-linearity: Extended Kalman Filter 
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• Kalman Filter (KF)
• Assumed linear motion and 

observation models. 
• Non-linearity

• In several cases the sensor and 
the motion may be non-linear. 

• Extended Kalman Filter
• The EKF provides a way to 

handle non-linear motion and 
observation models. 

• “Extends” the use of the KF to 
non-linear problems. 



Non-linear Models
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• Non-linear setting
• The next state is a non-linear 

function of the current state and 
actions. 
• Example: if the control input is a 

velocity then the velocity components 
have cosine/sine terms. 

• The observation is a a non-linear 
function of the state. 
• Example: observation is a distance to a 

landmark instead of (x,y) positions. 
Distance is a non-linear operation.  

• Linear setting
• As discussed for KF.

How do we update the belief over the state when there are non-linear dynamics and 
measurement functions are present. 



Applying a linear function on Gaussian Belief
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Applying a non-linear function on a Gaussian 
Belief
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• A Gaussian random 
variable passed 
through a non-linear 
transformation. 



EKF Linearization
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• Problem
• With a non-linear transformation, 

the resulting belief is non-Gaussian. 
• Solution

• Can the non-linear function be 
linearized or (locally) approximated 
as a linear function?

• Once linearized, the transformed 
belief can be approximated as a 
Gaussian. 

• EKF Linearization
• Instead of passing the Gaussian 

through a non-linear function, pass 
it through a locally linear 
approximation to the function.  



EKF Linearization: First-Order Taylor Series 
Expansion

37Note: linearization is around the current 
mean estimate of the belief over the state. 



Jacobian Matrix
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• Given a vector valued function 
f(x) from dimension n to m. 
• The Jacobian matrix Fx is of size 

(n x m). 
• The orientation of the tangent 

plane to the vector-valued 
function at a given point
• Generalizes the gradient of a 

scalar valued function 

Courtesy: Wolfram Burgard



EKF Linearization
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• Dependence of the approximation quality on the uncertainty. 

• Cases: when p(X) initial belief has low and high variance relative to the region in which the 
linearization is accurate.  



EKF Algorithm
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EKF Algorithm

Thrun et al. (Probabilistic Robotics) Ch 3 (Sec 3.3). Note the minor 
differences in notation from the previous slide. 41

Once the motion and the observation models have been linearized, 
perform the similar updates as the Kalman Filter. 

Linearization of the  motion and the observation models. 



Application
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Application
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Application
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EKF: Other Takeaways

• Non-optimal. 
• EKF is approximate and can diverge if the non-linearities are large. 
• Note that Kalman Filter was the optimal filter. 

• Effectiveness
• Handles Non-Gaussian sensor and motion models.
• Note: still does not handle multi-modality (other methods such as histogram 

filters and particle filters that address multi-modality). 

• Efficient
• Polynomial in the measurement dimensionality k and the state dimensionality 

n: O(k2.376  + n2)
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Hidden Markov Models

• No explicit notion of controls or 
actions
• The state of the world changes with time. 
• Predict it with successive observations. 

• Discrete states and observations 
• Assumptions
• Future depends on past via the present
• Current observation independent of all 

else given current state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Robot Localization
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t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Robot can take actions N, S, E, W
Detects walls from its sensors



Example: Robot Localization
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t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization
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t=2

10Prob



Example: Robot Localization
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t=3

10Prob



Example: Robot Localization
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10Prob

t=4



Example: Robot Localization
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t=5

10Prob



Range of Inference Tasks



Inference: Estimate State Given Evidence
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•We are given evidence at each time and want to know

• Approach: start with P(X1) and derive Bt in terms of Bt-1
• Equivalently, derive Bt+1 in terms of Bt

• Two Steps:
• Passage of time 
• Evidence incorporation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)



Passage of Time (Dynamics Update)
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Assume we have current belief P(X | evidence to date)

Then, after one time step:

Basic idea: the beliefs get “pushed” through the transitions

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

P (Xt+1|e1:t)



Measurement Update
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Assume we have current belief P(X | previous evidence):

Then, after evidence comes in:

View it as a “correction” of the belief using the observation

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

E1

X1



Dynamics Update and Measurement Update



Dynamics Update and Measurement Update



Dynamics Update and Measurement Update



Dynamics Update and Measurement Update



Particles in continuous space instead of grids
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• Problem: 
• |X| may be too big to even store B(X)

• Our representation of P(X) is now a list of N particles (samples)
• Generally, N << |X|

• P(x) approximated by number of particles with value x
• Several x can have P(x) = 0. Note that (3,3) has half the number of 

particles.  

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Updating Particles
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Each particle is moved by sampling its next 
position from the transition model

Attach a weight to each sample. Weigh the 
samples based on the likelihood of the evidence.

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Resampling Particles
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• Resample particles
• Sample N times, from the weighted sample distribution 

(i.e. draw with replacement)

• Key idea: 
• maintain hypotheses (particles) in the region of 

probable states, discard others. Note that the sampling 
is with replacement. 

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Belief over continuous space & multi-modality
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Particle Filtering
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Example: Measurement Update to Particles
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Example: Resampling and Process Update
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