COL864: Special Topics in Al

Semester 11, 2021-22

Sate Estimation - 11

Rohan Paul

Today’s lecture

e Last Class

e State Estimation - |
* Recursive State Estimation
* Bayes Filter

e This Class

e State Estimation - |l
e Kalman Filter
 Extended Kalman Filter

 References

* Probabilistic Robotics Ch 3 (Sec. 3.1-3.3)
e AIMA Ch 15 (Sec. 15.4)

Acknowledgements

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,
Siddharth Srinivasa, Dan Klein, Pieter Abbeel and others.

State Estimation: Continuous Variables

VIKRAM DESCENT TRAJECTORY

* Bayes Filter till now
* Discrete state variables
* E.g., door open or closed.
* Discrete conditional probability tables.

e Continuous variables

* Example: we receive continuous measurements of
the position or height and seek an estimate.
Control the vehicle via velocities.

e Kalman Filter

* Special case of a Bayes’ filter for handling
continuous variables.

* Assumes that the motion model o
(dynamics/control) and the sensor model is linear
Gaussian.

* E.g., estimating the belief over the location of the o _
agent given the sequence of observations and Estimating the true state from noisy

controls. observations is crucial for planning.

FINE BRAKING PHASE

Altitude (km)

25 20 15 10 5
Down Range (km)

Multivariate Gaussians

e Distribution over a vector of variables 1 1 Tt
* E.g., the agent’s state in our case. p(a; p,) = (27)n/2|x|1/2 . (—5(-”* —p) T (z - /t))

* Mean vector
* Expected value of each variable.

e Covariance matrix

* Covariance between each pair of Ev[X;] = /xip(x; u, X)dr = p;
elements of a given random vector. :
* Diagonals contain variance of each Ex[X] = /a:p(a:; W, 2)dr = p

variable in the state.
* Symmetric and positive semi-definite.

Ex[(Xi —p)(X; —p)] = /(171' — pi) (@ — pj)p(a; p, T)de = X;;

ExI(X (X =) = [I(X = w)(X =) p(a; p, E)dz = =

Multivariate Gaussians: Examples

* Varying the mean or
origin of the distribution.

n=[1;0] u=[-.5;0] p=[-1;-1.5]
>=[10;0 1] >=[10;0 1] >=[10;0 1]

Multivariate Gaussians: Examples

* Changing the variance in
the state variables.

= u=[0;0] i = [0; 0] u=[0; 0]
= X=[10;01] ¥=[.60;0.6] £=[20;02]

Multivariate Gaussians: Examples

* Changing the variance in
the off-diagonal elements.

e Model variance between
state variables.

e h-=10; 0] n=[0;0]
X=[10;0 1] > =[1 0.5;0.5 1] ¥=[10.8;0.8 1]

Multivariate Gaussians: Examples

u=[0;0] u=[0; 0] u=[0; 0]
¥ =[1-0.5;-0.5 1] ¥ =[1-0.8;-0.8 1] >=[3 0.8;0.8 1]

Joint Gaussian PDFs: Partitioning of variables

* Partition the random vector N (1) :N([/Lx] | [‘Zxx ‘Z‘n'])
as variables as (X, Y). py | [Eyx Xyy

 Notice the block structure.

| o« 1 - 1 (| 5% ! S xx Exy] ([« 15
* Why? 4 [!l] b &) = @2r)n/2)[T72 P <_§ (!!/] - !l')']) L:Y.\' XH'] (l!/] - [I')']))

e Later, we would need to
marginalize or condition on

some of the variables. nx = Exyionvus) X
py = Exy)wns Y]
Yxx = Exy)ones (X —px)(X —px) ']
YSyy = Exyvionvun (Y —uy)(Y —py)']
Yxy = Exy)onvus) (X —px)(Y - py)']=Eyx
Syx = Baxoy)yns) (Y = py)(X —px) '] = Sxy

Joint Gaussian PDFs

* Marginalization

* Integrating out the effect of a (sub)-
set of variables.

* Resulting is a normal distribution
over a smaller set of variables.

e The resulting distribution is
Gaussian.

Marginalization

If

(X,Y)~N(1,%) = \({

Then

X ~ N(pux,Exx)

Y ~ N(py,Zyy)

254
Hy

11

Joint Gaussian PDFs: Conditioning

* Conditioning if
e Certain variables are observed
(instantiated with observed values). (X.Y) ~ N (1.5) = A ([/1_\ [Bx é\s D
* \We seek the distribution over the Ky ~Y X YY

remaining set of variables.

e Conditioning a Gaussian results in
another Gaussian distribution. x|y

Then

r 2 —1) A —1 ¢
=y ~ Npux +E2xyXyy(yo—py), Lxx —EXxyEyyLyx)
" 4 f —1 ! -
Y |.\ =Ty v A (,Uy + Z)'_\'Z‘\-‘\-(J’() - ,U_\'). Zyy' - Z)'_\'Z‘\—{\—Z_\'y)

12

Conditionals and Marginals of a Gaussian
Distribution

—joint Gaussian

N —joint Gaussian
—conditional

—marginal

/\

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

13
Figure from Carl Rasmussen, Machine Learning Summer School 2009

Other Properties

e Linear transformation

* Product

X ~N(u,0?)
Y=aX+b

Xl - N(lul'o-l:) } —

X: - N(,Ll:.0'3:)

X ~N(u,x)

Y=AX+B

X, ~N(u X))

Xy~ N(u,.%,)

} = Y~N(au+bac’)

o, o,

o, +0, o, +0,

FXXI)XIXX:)“N[S s H T S > My

} — Y ~N(Au+B,AsA")

2 Y,

}=> p(Xl)Xp(X:)’”N[Z : Hy +

'S D WS

14

Kalman Filter

* Provided () () @)

* A belief over the initial state
* Sensor model is linear Gaussian Xo ~ N(po, Zo) e Q e Q

* Motion model is linear Gaussian

* What is our goal Q Q @

 Estimate a belief over the latent
state at time t.

XH—I = 44{4¥{+B{U[+51 ¥, NN(()(J{)
Z{ — C1X1+dt+(5[(StNN(OR[)

15
Sometimes, explicit mention of d is dropped in the sensor model

Kalman Filter: Components

A Matrix

Size (nxn) that describes how the state evolves from @ Q

1 to t without controls or noise.

B, Matrix

Size (nx/) that describes how the control uchanges tl Xo ~ N(po,20) e Q
state from t-1 to t.

Epsilon

Random variable (size n) representing the process
noise that is assumed to be independent and
normally distributed with covariance Q; (size nxn).

C. Matrix

Size (kxn) that describes how to map the state x:to a
observation z.

d, Vector

Delta Z{

Size (k) constant offset added. Often explicit mentiot f— , I~
of d is dropped from the sensor model. Xf +1 ‘4f ‘Xf + BI Ut + € t

Random variable (size k) representing the
measurement noise that is assumed to be
independent and normally distributed with covariance
R; (size kxk).

£t NN(()(){)

CtXt+d(+(5t (51 NN(OR[)

16

Dynamics (Action) Update

Marginalize out x;

Apply conditional
independence

Assume we have current belief for X ., :

P(-I'f|30:r- “0:1)

Update the belief
. using action
Then, after one time step passes:

P(Z¢41/20:t, w0:t) = / P(Z41, Tt|20:¢, w0t) dat

1)(-1'r+ 1s Lt |20:¢y UO:t)

. .I.'!

p('«TH-l |1‘t- 20:ts UQ:t)P(l'r |3():r- U():r)

-])(.I"_+_| |.l'(. “')l)(.r[‘-:“:[s Ut)

!

Product of two Gaussian distributions. We know that this is a
Gaussian distribution.

Dynamics (Action) Update

= Assume we have current belief for Xy . :

p(@t|z0:¢, uo:t)

Update the belief
= Then, after one time step passes: using action
p(z¢41]20:0, u0:t) = / (@41, Tt|20:¢, wo:¢) dat
1

o

P(Tes1, Ze|20:0,u0:0) = P(Tegr|xe, we)p(@e)| 2000, vo:t)
= : ('_%(""_I‘:H' ')T‘\"‘H(lv (Ze=tej0:¢)
(27)"/2|Syy0.| /2
| - ;(J.’ v1—(A¢ze+ By "'))'T (J;l(.r, t1=(Arzi4+Byuy))

S =€
(2m)"21Qu['72

\

Product of two Gaussian distributions -8
Gaussian distribution.

Dynamics (Action) Update

= Assume we have @ @
F
Xt|():t ~ N (/’“f|(,):t.a Zt|0:t)

Xi+1 = AXi+ Biuy + €,

e¢ ~ N(0,Q;), and independent of xg.¢, 20.¢, Ug-t, €0:¢—1

= Then we have

(¢X!|()". 4Xt+1|().!) ~ ,/\Jf (| llfl()f ‘ . [E{I()[z"+l|()f‘)

| Ht41)0:t Li+1,8)0:t t4+1/0:¢
- A,f - Fet|0:t Ztl();f Z”(H:l;r
.‘4'/"“):' + Byug | AIZM():! -4rzr|():t-4;r + Qq

= Marginalizing the joint, we immediately get

- A new Gaussian with the
Xt+1|():t ~ N (At,utw:t + Biuy, Atztw:tAt + Qt) <+— mean vector and the

covariance matrix updated.

19
Notation: (I | j) implies an estimate of the quantity at time i using “observations” received till time j.

Update the belief over

M eaS U re m e nt U pd ate the state by conditioning

on the observation

= Assume we have: @

Xt.+1|():t ~ N (,u't+l|():t32t+1|():t)

Zigr ~ Cip1Xig1 +Hdpgpr + 0441
d¢41 ~ N(0,R;), and independent of xg.;41, 20:¢, U0:¢5 €0:1+
= Then:
- - 'T
(Xes100:05 Zegr10:4) ~ N (He+1]0:¢ 2t41]0:t LH'”“:‘(TNH)
L0 Se110: Crsrpesr10:¢ +d| " [Cra1Ze4100:0 Cra1204110:4Crsq + R

= And, by conditioning on Z:+1 = 241 (see lecture slides on Gaussians) we readily get:

Xr+1|30:t+1- Uq:t — Xt+1|()::+1
r T i -17.,
~ N (llt+1|0:t + Zt+l|(l:fo+l(Ct+l2!+1|():lCt+1 + Res1)” (2041 — (Ct+ll‘t+l|():t +d)),
Ll T -1
z:r+1|():t - ZI-H|():t.Cz+1(Ct+lzt+l|():tct+1 + Ri41) Cl+lzt+1|0:!)

20

Kalman Filter

Initial belief is a

. ——
Gaussian [N}
Belief always remains

. —
Gaussian [}

Prediction

* What would be the next
state belief under the
process model?

* Updates the mean and
inflates the covariance.

Correction

* Update the predicted
belief with the
observation.

* Updates the mean and
deflates the covariance.

Core Idea: Recursively update the
mean and the covariance using the
action model and the sensor model.

At time 0: Xo ~ N (10/0: X0)0)

Fort=1,2, ...

= Dynamics update:

Ht+1)0:t = At,“t|0:l + Byuy
Yir10:t = AIEM():IAtT + Qy
= Measurement update:
He4110:041 pe4110:t + Ee4110:4Cre1 (Cea1Z04110:4Cr1 + Res1) ™ (241 = (Cor o100
2 04+1(0:041 Pe+110:t = Le4110:tCrp1 (Ce41504110:¢Crvr + Res1) " Cra1Z04110:¢

« Often written as:
Kit1 = Zi4100:4Cos1(Ce41Z4110:4Cr1 + Regr) ™ (Kalman gain)
e110:041 = Meg110:¢ T Kig1(2e41 = (Crgr e 10:¢ F d)) “innovation”

Yiv110:41 = (I = K1Cri1) X 04100:

+d))

Kalman Filter: Alternate Notation

Previous belief action) @

/ / observation

Algorithm Kalman_filter(z; 1, 21, us, 2¢):
iy = A pre—1 + By uy
At Yi_1 AL + Ry
Kt ¥ CL(Cy Zt Cl+ Q)1
[t = [t + Kt(zt — Gy fit)
Yp=U— Ky Cy) X4
return fi¢, 2y

N

Belief is gaussian

Probabilistic Robotics Ch 3. 22

Kalman Filter

@
@)

@g)

Algorlthm Kalman_ﬁlter(ut s Xip_q,Ug, %) ©
= At pe—1 + By uy
Zt At 2it—1 AT+Rt
Kt C (Ct Zt C T Qt)
[t = [t + Kt(zt — Gy fit)
Y= (I — Ky Cy) X4
return fis, 2¢

Action

Probabilistic Robotics Ch 3. 23

Kalman Filter

@)

Algorithm Kalman_filter(z; 1,21, us, 2¢):
iy = Ay pe—1 + B wy
Zt At Zt 1 A + Rt

Kt C (Ct Zt C .y Qt) — Kalman gain:.
pe = [t —I_ Kt(zt —_Ct :ut) c?t?é;erfvzzg:\v?aﬁ?ors into
Et:(l_Kt Ct) Zt belief

return fi¢, 2

Probabilistic Robotics Ch 3. 24

Kalman Filter

@)

Algorithm Kalman_filter(z; 1, > 1, us, 2¢):
iy = A -1 + B wy
Zt At Zt 1 A + Rt

Kt C (Ct Zt C + Qt) Compute mean from
difference between
Ut = ,Ut + Kt(zt T Ct ,ut) expected and observed
. 3 observations multiplied
Et — (I o Kt Ct) Zt by Kalman Gain
return [, Zt

“innovation”

Probabilistic Robotics Ch 3. 25

Kalman Filter: Constant Velocity Case

* X=[xyv,,v,]
* Constant velocity motion:

fX,v)=[x+At-v,y+At-v ,v,v [+V
v~ N(0,0) 0=

* Only position is observed:

z=h(X,w)=[x,y]+w

oS O O O

oS O O O

o R, o o

R o o o

Kalman Filter: Constant Velocity Case

fXov)=[x+At-v,y+At-v, v, v,]+v

X, 1 0 At 0

el (001 0 A

vl {00 1 0

v.) 00 0 1
A

X
Vi
vx,k—l

vy,k—l

+N(09Qk) [

If there were actions (e.g., changes to velocity) then the B

matrix would be added in the motion model.

z=h(X,w)=[x,y]+w

X

obs

y obs

I

Xy

Vi
Vx,k

Vy,k

+N(O,R,)

Example: 1D Gaussian Case

oD

prediction

oz

any

correction

o2y

Q%

0os)

o

measurement

o2

LR S

00s b

=u+K(z-1
bel(x,) = Hy ’/-lt"' (Z _flt) with
o, =(1-K,)o;

u=p+K(z-Cu,)

. ith
5.=(1-KC)Ze

M(Xt)={

The corrected mean lies
between the predicted and the
mean of the measurement
model. Weighted sum.

K,=XC] (CXC] +R,)"

28

Example: 1D Gaussian Case

0=

esr prediction

Belief after last measurement update. Magenta is the state after the prediction step is applied.
The belief becomes less — localized.

i, =apu, +buy,

Gtz = atlo't3 + G;d,t

b_d(x,)={

M(Xt)={—t=AM 1+rBtUt
£‘=Arzt 1A +Ot

29

Example: 1D Gaussian Case

0=

=r prediction

measurement . correction |
New measurement

and correction.

Kalman Filter: Other Takeaways

Optimal estimator

* Kalman filter is the optimal estimator for linear Gaussian case (i.e., we can’t do better under the
assumptions).

Efficient
* Polynomial in the measurement dimensionality k and the state dimensionality n: O(k?37 + n?)

Structure
* Asynchronisity: if no observations then propagate the motion model.

 The measurement need not fully determine the latent state. Inherently, updating with partial
observations.

e Requires an initial prior mean and covariance. Predictor and corrector architecture.

Assumes and maintains a Gaussian Belief
 Unimodal and Gaussian.
* Problem: in real life belief is often non-Gaussian and multi-modal.

Non-linearity: Extended Kalman Filter

* Kalman Filter (KF) () (u,) @)

e Assumed linear motion and Q Q Q
* Non-linearity

observation models. Xo ~ N(po, X0)
* |n several cases the sensor and
the motion may be non-linear. Q Q Q
e Extended Kalman Filter

* The EKF provides a way to
handle non-linear motion and X1 = AXo+ Buug+e0 g0 ~N(0,Q)

observation models. Zy = Oy Xi+di+6; 6 ~N(0,Ry)
e “Extends” the use of the KF to
non-linear problems.

32

Non-linear Models

* Non-linear setting

e The next state is a non-linear Xiv1 = [fi(Xeyu) +e¢ g0 ~N(0,Q;)
function of the current state and
actions. o . . .
Z{ = II;(.X[)‘F()[(){ ’\'./\ (() Rf)

* Example: if the control input is a
velocity then the velocity components
have cosine/sine terms.

e The observation is a a non-linear
function of the state.

* Example: observation is a distance to a
landmark instead of (x,y) positions. X
Distance is a non-linear operation. i+l

* Linear setting
e As discussed for KF.

— .“1;;\'/ —+ Bf Uy + £ Et ~~ -"\"((L(J!)

Z{ = ('{ ‘\'f -+ (1[-+ (5, (5, ~ ./\’((). 1])[)

How do we update the belief over the state when there are non-linear dynamics and
measurement functions are present. 33

Applying a linear function on Gaussian Belief

6 y 6 6 y
T Y [¥ ey
. = Meanp 5 Py 5 n
4 4
4 x
- . 5 o
3 3 ~ 3
2 2
2
X p(y) X
+ 1 — 1 +
1 e ; 0 05 1 15 0 0.5 1
| p(x) e
p(x) ¢ P = N(X 1, o7 + E/Ee)an z‘f(p('x;%o})

P

6

4 &= Mean of px) 4

s 2
2 X X

0

Applying a non-linear function on a Gaussian

Belief

e A Gaussian random
variable passed
through a non-linear
transformation.

6 6
y p(y)
- Gaussian of p(y)
4 1 X Mean of p(y)
2
0 >
_2 -
JLooooely) |
0 0204 06 0.8
6 !
“Gaussian of p(y)” has p(x)
4l

mean and variance of y
under p(y)

X
foN

0

2t

2t

Y

= Function g(x)
+ Meanu
a(w)

0

EKF Linearization

 Problem
 With a non-linear transformation,

the resulting belief is non- -Gaussian.

e Solution

e Can the non- Ilnear function be
linearized or Iocall)!) approximated
as a linear function-

* Once linearized, the transformed
belief can be apprommated as a
Gaussian.

* EKF Linearization

* Instead of passing the Gaussian
through a non-linear function, pass
it through a locally linear
approximation to the function.

4

ply)
- Gaussian of p{y)
— EFK Gaussian

4

0 020406 0.8

y=0(x)

— Function g(x)
— Taylor approx
= Meanp

O sw

P(X)
= Meanpu

36

EKF Linearization: First-Order Taylor Series
Expansion

= Dynamics model: for X, “close to” u, we have:

0 JUgp
filze,ug) = felpe, ue) + Ji (0/: Y (T — pe)
Ty

= ff(/l;.ll,f)+l'"f(.l'[—/l[)

= Measurement model: for X, “close to” yu, we have:

Ohy(pee)
a.l'(
= hy(pe) + Hi(zg — p14)

hi(x:) =~ he(pe) +

(.’l’f — /Jy)

Note: linearization is around the current
mean estimate of the belief over the state.

37

Jacobian Matrix

* Given a vector valued function

f(x) from dimension n to m. -
X
* The Jacobian matrix F, is of size

(n x m).

* The orientation of the tangent
plane to the vector-valued
function at a given point

* Generalizes the gradient of a
scalar valued function

.y

Courtesy: Wolfram Burgard

38

EKF Linearization

* Dependence of the approximation quality on the uncertainty.

* Cases: when p(X) initial belief has low and high variance relative to the region in which the
linearization is accurate.

6 6
6 6 p(y) = Function g(x)
ply) — Function g(x) - Gaussian of p(y) - Taylor approx
— Gaussian of p(y) —— Taylor approx 4 N — EFK Gaussian 4 + Meany
4 || — EFK Gaussian 4 & Meanp Q sw
g(w)

o N
y=0(%)
(= N
o N
p
y=a(x)
o N

-2 2 2 -2
-4 -4 4 4
0 05 1 15 0 0.5 1 0 0.5 1 0 0.5
T P9
20 4 Mean p 4 & Meany

EKF Algorithm

= AttimeO: Xo ~ -Np(lluw’ Yoj0)

m Fort=1,2, ...

= Dynamics update: fr(ze,we) = age+ F(ze — pjo:t)
EaO,teFt) = linCafiZC(fteNuo:teZt|0;t,'ut)]
Hi+1j0:t = Qo
Yiv1)06 = tht|0:thT + Q4
= Measurement update: his1(Ze41) = cops1 + Hepr1 (Teg1 — es1j0:t)
[(CO.t+l’ Hip,) = linearize(ht+1,ut+1|0:t, 2t+1|0:t)]
T T ~
Kt+1 - 2t+1|0:th+1(Ht+12t+1|0:th+1 + Rt+l) !
Pes1]0:t+1 = Het1)0:t + Kegp1(2e41 — cot41)

Zt+1|0:t+1 - (I—Kt+lHt+l)Zt+1|0:t

EKF Algorithm

Linearization of the motion and the observation models. Once the motion and the observation models have been linearized,
perform the similar updates as the Kalman Filter.

* Prediction: 1. Extended_Kalman_filter(y, , =% , u, z):
9G(U, py
Ot 1) = O i)+ D (¢ — 1)
e 2. Prediction:
g(u,.x,l)zg(u,.y“)+G,()ql—,u“) 3. ﬁt=gut,/.l“) /.7‘=At,u“+Btut
4. Lt :GtztithT +Q, Lt :Atzt—lAT+Ot
* Correction: C N
ohii,) Jacobian matrices 3. orr_ectlon._ N .
h(x) = (i) + = = (% — Hy) 6. K,=XH/(HIH]+R)' —— K, =xC(CXC+R)"
hx) =)+ HTX -) ;' fe =t B2 U He=Be+ Kz -CJt)
© L=(I-KH,)L: Y =(1-KC,)L:
9. Returnp, L,

b Oh(i,) Gtzaguruu)
()Xl ()X“

Thrun et al. (Probabilistic Robotics) Ch 3 (Sec 3.3). Note the minor
differences in notation from the previous slide. 41

Application

Example: Beacon-based Robot Localization

42

Application

Example Motion Model
¢ State |S xt — (xt,yt, 9(:)

« Command is rotation, translation, rotation

Uy = (6r0t1r 5transr 5r0t2)

Actual motion is (8,o¢,, 8¢rans Orot,), @ NOISY version of the

command

 Motion model g is:

Xty1 = X¢ T Strans C05(9t + Srotl)
Ye+1 = Ve + Otrans sin(9t + Srotl)
Ory1 = 0 + 8r0t1 + Srotz

Application

Example sensor model

* The map is known
 Beacons are at known positions
- Sensor reports noisy bearing 8 and exact landmark ID L

 Only one beacon is observed at one time

Zy = (é) — (atanz(}/rob — Yo Xrob — xL))

L

AN

L

Not linear!

EKF: Other Takeaways

* Non-optimal.
* EKF is approximate and can diverge if the non-linearities are large.
* Note that Kalman Filter was the optimal filter.

e Effectiveness
* Handles Non-Gaussian sensor and motion models.

* Note: still does not handle multi-modality (other methods such as histogram
filters and particle filters that address multi-modality).

e Efficient

* Polynomial in the measurement dimensionality k and the state dimensionality
n: O(k?376 + n?)

Hidden Markov Models
* No explicit notion of controls or @ @ @ @ -———>

actions
* The state of the world changes with time. @ @ @
 Predict it with successive observations.
e Discrete states and observations
* Assumptions P(X; | X0t 1) = P(X; | X;1)

* Future depends on past via the present

e Current observation independent of all
else given current state

P(Et ’XO:{-EO:t l) — P(Et ‘Xt)

Example: Robot Localization

Robot can take actions N, S, E, W
T Detects walls from its sensors

N
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob. .

Example: Robot Localization

E
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake

48

Example: Robot Localization

Prob 0 1

t=2

49

Example: Robot Localization

Prob 0 1

t=3

50

Example: Robot Localization

Prob 0 1

t=4

51

Example: Robot Localization

Prob 0 1

t=5

52

Range of Inference Tasks

Filtering: P(X, e, ;)
to compute the current belief state given all evidence
better name: state estimation

Prediction: P(X, ;e ;) for & > ()
to compute a future belief state, given current evidence
(it's like filtering without all evidence)

Smoothing: P(X, e, ;) for 0 < Lk < ¢
to compute a better estimate of past states

Most likely explanation: arg maxy,, P(x;¢|e;)
to compute the state sequence that is most likely, given the evidence

Inference: Estimate State Given Evidence

* We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

* Approach: start with P(X,) and derive B, in terms of B, ,
* Equivalently, derive B,,, in terms of B,

* Two Steps:

e Passage of time ?—’?—’?—’
* Evidence incorporation

Passage of Time (Dynamics Update)

Assume we have current belief P(X | evidence to date)

B(X:) = P(Xtle1:t)

Then, after one time step:

P(Xt+1’€1:t) — ZP(Xt—I—laxt‘elit)

Tt

= ZP(Xt_|_1’CUt7elzt)P(xt‘elit)

Tt

= Z P(Xii1|xe) Plxelers)

Lt

Basic idea: the beliefs get “pushed” through the transitions

OO

55

Measurement Update

Assume we have current belief P(X | previous evidence):

B'(Xt41) = P(Xey1ler)

Then, after evidence comes in:

P(Xt+1‘€1:t—|—1) — P(Xt—l—la6t—|—1|€1:t)/P(€t—|—1‘€1:t)

XXi41 P(Xi11,erv1]er:t)

= P(ei41
= P(et41

€1zt,Xt+1)P(Xt+1|€1:t)
Xt—l—l)P(Xt—H‘@l:t)

View it as a “correction” of the belief using the observation
B(Xiy1) o<x, g Plets1]|Xev1) B (Xiq1)

T
®

56

Dynamics Update and Measurement Update

{mai] B 1§ g [

Process update Observation update

Dynamics Update and Measurement Update

Before process update

B'(Xi11) =) P(Xe1| X, e1:0) BX0) = comvansion.

Dynamics Update and Measurement Update

After process update

| AN N NN NN NN NN NN NN NN NN NN NN NN U NN NN NN NN NN NN NN NN NN NN NN DN NN NN NN NN NN N N NN NN DN N

Each time you execute a process update, belief gets more disbursed
— I.e. Shannon entropy increases
— this makes sense: as you predict state further into the future,
your uncertainty grows.

Dynamics Update and Measurement Update

Before observation
update

After observation
update

nP(es1| Xes1) B (Xes)

Particles in continuous space instead of grids

* Problem:
* |X| may be too big to even store B(X)

* Our representation of P(X) is now a list of N particles (samples)
* Generally, N << [X]|

Particles:

: : : (3,3)

* P(x) approximated by number of particles with value x 23
3,3

* Several x can have P(x) = 0. Note that (3,3) has half the number of (3,2)
particles. o

(1,2)
(3,3)
(3,3)
(2,3)

61

Updating Particles

Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

Attach a weight to each sample. Weigh the

samples based on the likelihood of the evidence.

w(zx) = P(e|x)
B(X) < P(e|X)B'(X)

Particles:

Particles:

(3,2) w=.9

S s s s s g =
nonononononon

/

62

Resampling Particles

* Resample particles

e Sample N times, from the weighted sample distribution
(i.e. draw with replacement)

* Key idea:

* maintain hypotheses (particles) in the region of
probable states, discard others. Note that the sampling
is with replacement.

Particles:

(3,2) w=.9

(New) Particles:

(3,2)

63

Belief over continuous space & multi-modality

A

£x

Standard Bayes filtering requires discretizing state space into grid cells ~ Keyldea: representa probability distribution as a finite set of points

Can do Bayes filtering w/o discretizing? =deniaty of points encoces prodansity meas.

— yes: particle filtering or Kalman filtering — particle filtering is an adaptation of Bayes filtering to this particle representation

64

Particle Filtering

1 n 1 n
Tyyonnydy Wy, ..., w, =1
B(Xy) P(X¢|Eh)
............ ‘ o

Tio ~ P(Xop|ol er)

............... * |
wyy1 = Pler|Ty)w;

Resample
Xl,+1 - {}

—1 0yl

65

Example: Measurement Update to Particles

Prior distribution

A LRSS NCE NI 0 LN ML L AL N o L™

P(ols)
A A A s
'y
p(s) Measurement update
8

66

Example: Resampling and Process Update

) :
p(s) Resampling
S
[LREL L UL USRS L L USUSSRIA(L L L LIRS L L 1) LA [LU L -
p(s) _ Process update
S
| LT T UL U NN | N USUN UL 0 T i 1! L L LI P

67

v

LIS
. - .- e

~

RRCT o

69

