COL864: Special Topics in Al

Semester 11, 2021-22

Sate Estimation - I

Rohan Paul




Today’s lecture

* Last Class
* Planning Motions

e This Class

* State Estimation
* Recursive State Estimation
* Bayes Filter
* References
* Probabilistic Robotics Ch1 & 2
* AIMA Ch 15 (till sec 15.3)
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Robot Environment Interaction

Environment or world
* Objects, robot, people, interactions
* Environment possesses a true internal state

Observations

* The agent cannot directly access the true
environment state.

* Takes observations via its sensors which are error
prone.

Belief

* Agent maintains a belief or an estimate with respect
to the state of the environment derived from
observations.

* The belief is used for decision making

Actions

. Aﬁen_t can influence the environment through its
physical interactions (actuations, motions, language
Interaction etc. )

* The effect of actions may be stochastic.

* Taking actions affects the world state and the robot’s
internal belief with regard to this state.

World model, belief

Y

Control system

Perceptual/action data

Actions




State Estimation

* Framework for estimating the state from sensor data.

* Estimating quantities that are not directly observable.
* But can be inferred if certain quantities are available to the agent.

* State estimation algorithms
 Compute belief distributions over possible states of the world.



State

 What is typically part of the state, x?

* Robot pose: position and orientation or
kinematic state

Velocities: of the robot and other objects like
people.

Location and features of surrounding objects
in the environment.

* Semantic states: is the door open or closed?

o Actions t

Perceptual/action data |

=% (& Env irq;‘in@t"; state

Control system

World model, belief

* What is put in the state is influenced by
which task we seek to perform
* Navigation
* More complex example (e.g., delivery of
hospital supplies)



State

* Environment is characterized by the
state.

* “A collection of all aspects of the agent
and its environment that can impact the
future”

* A sufficient statistic of the past
observations and interactions
required for future tasks.

e State plays and important role for
decision making.

Figure courtesy Byron Boots

data about past data about future

State: statistic of history sufficient to predict the future

Markovian assumption:

Future is independent of past given present



Two aspects: Sensing and Taking Actions

* Taking Sensor Measurements
 Camera, range, tactile, language query etc.
* Denote measurement data as z,
* Noisy observations of the true state.
 Measurements typically add information, decrease uncertainty.

* Taking Actions (or Controls)

Physical interaction: robot motion, manipulation of objects, NO_OP etc.
Carry information about the change of state.

Source of control data: odometers or wheel encoders.

Denote control data as u,

Actions are never carried out with absolute certainty.

In contrast to measurements, actions generally increase uncertainty.



Uncertainty

Explicitly represent uncertainty
using probability theory.

environmental
dynamics

approximate

computation
random inaccurate

action effects models
sensor

limitations



Probability Recap

Independence

m XandY are independent iff
P(x,y) = P(x) P(y)

m P(x [ y)is the probability of x given y
P(x [ y) = P(x,y) / P(y)
P(xy) =P(x[y)Ply)

s If XandY are independent then
P(x | y) = P(x)

Marginalization

Discrete case

D P(x)=1
P(x)=)_P(x,y)

P(x)=) P(x| y)P(y)

Continuous case

jmmmzl
p(x)= Ip(x, y)dy

p(x)= j p(x|y)p(y) dy
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Conditioning

= Law of total probability:

Marginalize out z.

Conditioning on the extra
variables.

P(x) = j P(x,z)dz
P(x) = j P(x|2)P(2)dz

P(x|y)= [ P(x|y,2) P(z| y) dz

11



Conditional Independence

 Xand Y are conditionally

independent given Z. P(x,y‘ 2)=P(x|2)P(y|z)

* Given Z, X does not add
information about Y and vice versa.

P(x|z)=P(x]z,y)

P(y|z)=P(y|z,x)



Bayes Rule

P(x,y)=P(x| y)P(y)=P(y|x)P(x)

—
P(x‘ ) = P(y|x) P(x) likelihood -prior
- P(y) ~ evidence

P P
P(x|y)= S ;)y) &) _ n P(y|x)P(x)
I 1
n=r) =

S P(y| x)P(x)
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Bayes Rule with Background Knowledge

When extra information is available. Incorporate that knowledge as observations of extra variables.

P(y|x,z) P(x|z)

P =0




Example of State Estimation

* The robot wants to estimate the state of the door as closed or open
* Has a noisy sensor that produces measurement, z

e Estimate: P(open|z)?
 Likelihood that the true state of the door is open given that z was measured.

S

P(zlopen)=0.6 P(z|l—open)=0.3
P(open)= P(—open)=0.5

The observation z is correlated with the true
state as open or not-open.

E.g., measuring a particular distance or
classifying an image.
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Causal vs. Diagnhostic Reasoning

P(open|z) is diagnostic reasoning
* Given that | observe z what is the likelihood that the door state is actually open?

P(z|open) is causal reasoning (can estimate by counting frequencies)
* Given that the door state is open what is the likelihood of getting measurement z?

Often causal knowledge is easier to obtain
* Given the underlying state collect the data.

Bayes rule enables the use of causal knowledge:

P(z|open)P(open)
P(z)

P(open|z) =
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Incorporating a single measurement

* Higher likelihood of observation z P(zlopen)=0.6 P(z|—open)=0.3

when the door is open compared to
when the door is closed. P(open)= P(—open)=0.5

* The incorporation of the
measurement z raises the
probability that the door is open.

P(z|open)P(open)
P(z|open) p(open) + P(z | —open) p(—open)
0.6-0.5 2

P(open|z)= =—=0.67
(Open|2) = e 0570305 3

P(open|z) =
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Incorporating multiple measurements

* Suppose the robot has another sensor that produces a second

observation z,

* How can we combine the measurement of the second sensor

* What is P(open|z; z,)?
* In general, how to estimate

P(x| z,..z,,)

L




Recursive Bayesian Updating

P(Zn|x,Zl,...,Zn—1) P(X|Zl,...,Zn—l)

P(x ZlyeeegZn) =
( | ) P(Zn|Zl,...,Zn—1)

Markov assumption: z, is conditionally independent of z,,...,z,_; given x.

P(Zn|.X) P(X|Zl,...,Zn—1)
P(Zn|Zl,...,Zn—1)
=N P(z:|x) P(x|z1,...,20-1)

=1, |1 P(z1x) P(x)

i=l..n

P(x | Zl,...,Zn) =

In our causal modeling view, the world state is causing all the observations.
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Incorporating second sensor measurement

* Higher likelihood of observation z when P(z, lopen) = 05 P(z, | —open)=10.6

the door is not open compared to when
the door is open. P(openlz)=2/3  P(—openlz)=1/3

 The inclusion of the second measurement
Z, lowers the probability for the door to be

open.

P(z, |open) P(open| z,)
P(z, |open) P(open|z,)+ P(z, | —open) P(—open | z,)

P(open|z,,z,) =

12
23 5
"T2.31 8 ¥

23 53 20



Sensor Model

e Sensor model

* What is the likelihood of obtaining this sensor p(zt |xt)
measurement given the true state?

* A conditional distribution over observations
given the true state. Generative Model.

* Observations or measurements can be
considered as the noisy projection of the state



Action Model

e Action or Motion model

* How the actions or controls change the state
of the world?

* Incorporate the outcome of an action u into
the current “belief”, we use the conditional
distribution.

* Specifies how does the state change by

application of the action (from the state, x,; to
the state, x, by executing the action, u,).

p(ili‘t ‘xt—la Ut)



Belief over the world state

* Belief
* Expresses the agent’s internal B@l(ﬂ?t) — p(xt ‘leta ul:t)
knowledge about the state of an
aspect of the world.

 Note: we do not know the true
state.

* The belief estimated from the
sensor measurement data and the
actions taken till now.
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Example: Incorporating action effects

Example: Closing the door Probabilistic effects
/ P(x|u,x”) for u = “close door”:
0.9
0.1 open c/lm
0

If the door is open, the action “close door” succeeds in 90% of all cases.
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Example: The Resulting Belief

Marginalizing out the outcome of actions
P(closed | u) = 2 P(closed | u,x")P(x")

= P(closed |u.open)P(open)
+ P(closed | u.closed)P(closed)

Continuous case:

P(x[u) = [P(x|u, x")P(x")dx’ J9,5,1,3. 15
| 10 8 1 8 16
Discrete case: P(open|u) = 2 P(open|u,x")P(x")

= P(open | u,open)P(open)

P(x|u) = EP(x |u, x")P(x")

+ P(open | u.closed)P(closed)
1 5 0 3 1

"10 818 16
=1-P(closed | u)



Incorporating Measurements

= Bayesrule

P(zlx)P(x) likelihood - prior

P(x|z)=

P(2) evidence



Bayes Filter

* Given:
* Stream of observations z and action data u: dt = {ul,Z2 ...,ut_l,Zt}
e Sensor model
: p(z¢|2¢)
* Action model
* Prior probability of the system state P(x). p(@e|s—1, us)
 What we want to estimate?
 The state at time t
* A belief or the posterior over the state: Bel(x,)=P(x, |u,,z, ...,u, ,,z,)

Intuitively: Given all observations collected by the agent till time t and all the actions taken by the

agent till time t, what is our estimate over its state? .



In essence

We estimate the state of the agent via measurements and knowledge of what actions were taken. Bayes
Filter provides a recursive way to estimate the likelihood given the conditional independence assumptions.

State K@ »[  State

..................... / 'kfy

..................... Obs Obs
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Formally, a Generative Model

Assumptions

* Static world
* Independent noise

* Perfect model, no approximation errors

e Markov assumption (once you know the
state the past actions and observations

do not affect the future). p(Zt | X0t 5 2111 auu) — p(Zt | xt)

P(x, | X, 52 ouy,) = p(X, | X,_,u,)



Generative Model

Given: Actions till t, belief
over the state till t-1 and State at t
observations till t-1

(X, | Xy 2y ty,) = P(X, | X, ,u,)



Generative Model

Given: Actions till t, belief
over the state till t and
observations till t-1

Observation at t

p(z, | X521 5U,) = p(2,]X,)



Z = observation

Bayes Filters Y < state
Bel(x,)|=P(x, |u,z, ...,u,,z,)
Bayes =n P(z, | x,,u,z,...u) P(x, |u,z,...u)
Markov =1 P(Zz‘ |XI)P(.Xt |M1,Zl,...,l/lt)
Total prob.

Markov =7 P(Zt |xt) jP(xt |ut,xt_1) P(xt—l |u1?ZI’ ...,Mt) dxt_l

=N P(Zt | xt) _[P(xt | utaxt—l) Bel(xt—l) dxt—l

=1 P(z, I x,) JP(xt lu,,z,,....u,,x,_ )P(x,_ lu,z,,....,u,)dx,,
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Bayes Filters Algorithm

Algorithm Bayes_filter ( Bel(x), d):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z | x)Bel (x)
1n=n+ Bel'(x)
For all x do
Bel'(x) =n"'Bel'(x)
Else if d is an action data item u then
For all x do
Bel'(x) = JP(x lu,x") Bel(x") dx'
12. Return Bel’(x)

© 0 NS U w o=

—_ =
_ O

Bel(xt) = 77 P(Zt | xt) P(xt | utaxt—l) Bel(xt—l) dxt—l




Bayes Filter: Takeaways

* Bayes filters are a probabilistic tool for estimating the state of with
observations acquired over time.

* Target is to obtain the belief over the current state given past actions and
observations.

e Estimate this distribution in a recursive manner.
e Update using actions
* Update using measurements.

* Bayes rule allows us to compute probabilities that are difficult to
determine otherwise.

* Under the Markov assumption, recursive Bayesian updating can be
used to efficiently combine evidence.



