
Rohan Paul

COL864: Special Topics in AI
Semester II, 2021-22

State Space Planning: A*

1

Outline

• Last Class
• State Estimation

• This Class
• Search Algorithms

• Uninformed A*
• Informed A* and extensions

• Reference Material
• Primary reference are the lecture notes. For basic background refer to AIMA

Ch. 3.

2

Acknowledgements
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,
Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

3

Planning with Graphs

• Planning graphs
• Nodes: possible states (designated

start and goal states)
• Edges: connection between states if an

action connects the two states.
• Goal is to find the optimal path

(sequences of actions.)
• Motion planning

• A graph is constructed (from
skeletonization or cell decomposition
etc.)

• Example: PRM or grids or some other
decomposition of the space.

• Other planning problems
• Task planning where pre-condition

relationships exist between tasks.
4

Applications

5

Tile puzzle

Assembly planning

Complex motion planning

Searching Graphs for a Least-cost Path

• Important quantity
• g*(s) – the cost of the least cost path from the

start state to s.
• Many search algorithms (including A*) work by

computing g*(s) values for graph vertices
(states).

• The g*(s) values are the “cost so far” from the
start state to the state s.

• Problem: how to determine g*(sgoal)?

6
g*(s) values for nodes in a graph

Searching Graphs for a Least-cost Path

• The g*(s) values satisfy a
recursive relationship.

7

Searching Graphs for a Least-cost Path

• From g* values how to get the
path?
• First compute the g*-values are

computed a least-cost path
from sstart to sgoal

• Then perform backtracking.

8

Searching Graphs for a Least-cost Path

• Example: an agent in a grid-based graph
• Computing g*(s) values and then backtracking to get the path.

9

Actions and costs g*(s) values for states in the grid Path obtained via backtracking

Uninformed A* Search

10

Perform an operation
on the graph to get
the g*(s) values.

Uninformed A* Search – cntd.

11

What is expansion?

Uninformed A* Search – cntd.

12

Check if the state is not in
closed.
Decrease g*(s) if a lower-cost
path is found for a state s.

Example

13

Example

14

Example

15

Example

16

Example

17

Example

18

Example

19

Example

20

Optional optimization:
If OPEN contains multiple states with the
smallest g-values and sgoal is one of them,
then select sgoal for expansion (as the path
through the other node will be longer).

Example

21

Properties
- For every expanded state g(s) = g*(s)
- For every other state g(s) ≥ g*(s)
- Once the g*() values are computed, determine the least-

cost path by backtracking.

Estimating Cost-to-goal via Heuristics

• Till now we computed “cost so far”
• The uninformed A* search expands nodes based on the cost of the node from the

start node, c(s0, s)
• Till now, we are agnostic about the goal.

• While planning we often have an intuition about “approximate cost to
goal”.
• If we knew the exact cost then no search would be needed.
• But, even if we do not know c(s, sg) exactly, we often have some intuition about this

distance. This intuition is called a heuristic, h(s).
• Heuristic

• h(s) = estimated cost of the cheapest path from the state s to a goal state.
• Heuristics can be arbitrary, non-negative, problem-specific functions.
• Constraint, h(s) = 0 if s is a goal.

22

A* Search

• Core Idea
• Rank states by how promising they are to find the goal
• Create a ranking by combining the “cost so far” and the “estimated cost to go”.
• Compute a function f(s) for a state that combines the two costs.

• Prioritize the exploration of nodes based on the combined ranking.
• Always expand node with lowest f(s) first, where

• g(s) = actual cost from the initial state to s.
• h(s) = estimated cost from n to the next goal.
• f(s) = g(s) + h(s), the estimated cost of the cheapest solution through s. It is the cost so far and an estimate of the cost to go.

Example

Example

Example

Example

Example

Example

Example

Example

Example

A*: Uninformed vs. Informed Search

• A*: expands states in the order of f = g+h values
• Uninformed A* or (or Uniform Cost Search) : expands states in the order of g values
• Intuitively: f(s) – estimate of the cost of a least cost path from start to goal via state s

33

Start

Start

Uninformed Search
Contours

Informed Search
Contours

A* search with Euclidean distance heuristic.

Uninformed

Informed

Implementation Details

• OPEN List
• Priority queue (common to use a binary

heap)
• Priority based on the f function.
• Intuition

• The queue maintains solution hypothesis.
• Prioritization based on which states are likely to

reach to the goal.

• CLOSED List
• Typically, each state has a Boolean flag

indicating that it is closed.

• Back pointers
• After the search terminates, the least cost

path is given by backtracking back pointers
from sgoal to sstart When the min-cost path is updated, also update

the back pointer.

Example

• A heuristic for a grid-based graph

35

Support for Multiple Goal Candidates

• Examples
• A robot is to reach a parking

location.
• Choice of locations some are closer,

and some are further away.
• The agent wants to escape from a

room and there are multiple exits.
• Can only escape via a door.

• How to plan in the presence of
multiple goals?
• How to find a least cost path that is

lowest across all possible goals?

36

Multi-Goal A*: Introducing “Imaginary” Goal

37

Transform the graph with an “imaginary goal”.
Following which run A*. The augmentation
helps pick one goal from the many goals.

Equivalent problem with a single goalMultiple-goal problem

Multi-Goal A*: What if some goals are better?

38

The non-uniform goal preferences can be
encoded as edge costs.

Heuristics: Admissibility and Consistency

• Admissibility
• Let h∗(n) be the shortest path from n to any goal state.
• Heuristic h is called admissible if h(n) ≤ h∗(n) ∀n.
• Admissible heuristics are optimistic, they often think that the cost to the goal is less than

actual
• If h is admissible, then h(g) = 0, ∀g ∈ G
• A trivial case of an admissible heuristic is h(n) = 0, ∀n.

• Consistency (monotonicity)
• An admissible heuristic h is called consistent if for every state s and for every successor s’, h(s)

≤ c(s, s’) + h(s’)
• This is a version of triangle inequality, so heuristics that respect this inequality are metrics.
• Consistency is a stricter requirement than admissible. If consistent then the heuristic is

admissible.

Heuristics: Dominance

• Dominance
• Comparing two heuristics.
• Heuristic function h2 (strictly) dominates h1 if

• both are admissible and
• for every node n, h2(n) is (strictly) greater than h1(n).

• What is the implication?
• A* search with a dominating heuristic function h2 will never expand more nodes that A* with h1.
• Expansion of fewer nodes implies efficiency gains.

A* Search Properties

• We covered the “graph-search” version of A* in this lecture.
• I.e., we maintain a CLOSED list.

• Optimal
• If the heuristic is consistent (stronger condition than admissibility) then A* search

(graph search version) will find the optimal solution.

• Completeness
• If a solution exists, then A* will find it (eventually A* will visit all nodes)
• Under some conditions

• Every node has a finite number of successor nodes (b is finite). Number of nodes is finite.
• Positive costs for edges.

41

Admissible Heuristics from Relaxed Problems

42

• Optimal solution in the original
problem is also a solution for the
relaxed problem.
• Cost of the optimal solution in the

relaxed problem is an admissible
heuristic in the original problem.
• At least this much work is to be done

during search.
• Finding the optimal solution in the

relaxed problem should be “easy”
• Without performing search.

A* Search: Finding sub-optimal solutions

• Problem with A* search
• Despite the heuristic, the priority queue

can be very large.
• A* takes too long to find the optimal solution,

memory runs out.
• Note that A* will give the optimal solution.

• Can we do fewer expansions?
• Trading off optimality.

• In essence, how can we modify A* such
that sub-optimal solutions can be found
quickly?

43

Problem with A*

Weighted A*

• Modify the prioritization function
• Expands states in the order of f’(n) = g(n) + w*h(n) values, where w > 1.0

44

A weighted heuristic accelerates the search by making nodes closer to the goal more
attractive, the cost to goal starts to dominate.

Weighted A*

• What is the effect?
• Creates a bias towards expansion of

states that are closer to goal.
• f’(n) is not admissible but finds

good sub-optimal solutions quickly.
• Trade off between search effort and

solution quality.
• Usually, orders of magnitude faster

than A*.

45

Effect of running towards the goal. May lead to
sub-optimality.

Weighted A*

• What is the effect?
• Creates a bias towards expansion of

states that are closer to goal.
• f’(n) is not admissible but finds

good sub-optimal solutions quickly.
• Trade off between search effort and

solution quality.
• Usually, orders of magnitude faster

than A*.

46

Effect of running towards the goal. May lead to
sub-optimality.

Planning during Execution

• One off plans may not work.
• May need to repeat the process

• Various kinds of errors
• Imperfect plan execution.

• Did not land up at the right grid cell.
• Something in the environment is now visible or changed.

• A door is now closed.

• How to replan fast?
• Anytime heuristic search

• Return the best plan possible within T msecs
• If you have more time, you can improve the plan.

47

Anytime Planning with weighted A*

48

Constructing anytime search based on weighted A*:
- Find the best path possible given some amount of time for planning
- Run a series of weighted A* searches with decreasing ε (the weight w in the last slides):

