COL864: Special Topics in Al
Semester I1I, 2021-22

State Space Planning: A*

Rohan Paul

Outline

e Last Class
e State Estimation

* This Class

e Search Algorithms
* Uninformed A*

* |Informed A* and extensions
* Reference Material

* Primary reference are the lecture notes. For basic background refer to AIMA
Ch. 3.

Acknowledgements

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,

Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

Planning with Graphs

* Planning graphs

* Nodes: possible states (designated
start and goal states) wi

* Edges: connection between states if an
action connects the two states.

* Goal is to find the optimal path
(sequences of actions.)

* Motion planning

e Agraphis constructed (from
skeletonization or cell decomposition
etc.)

* Example: PRM or grids or some other
decomposition of the space.

Other planning problems

* Task planning where pre-condition
relationships exist between tasks.

OR

/’

|
I‘\ llll/

\

S

7

4

/

.S

OR

—’I s

3 /

VAR

S

\)
\‘_-7 gl!.ll/

the cost (s 1,S,,q) Of
an edge from s, to s,,

al

Assembly planning

Applications L.
PP s

Tile puzzle

8
3
4
yw%’
QO 2
8 7 |5 8 S 8 |7 |5 8 |7 |5

71 31 3|1
4 6 4 2 |6 4 2 6 4 |2 |6

LY
:ﬁ
Ly SN
l-s'ﬂ
Loy — B

w
N
-
w

Searching Graphs for a Least-cost Path

* |Important quantity

* g*(s) —the cost of the least cost path from the
start state to s.

* Many search algorithms (including A*) work by
computing g*(s) values for graph vertices

g*(s) — the cost of a least-cost path from s, tos

(states).
* The g*(s) values are the “cost so far” from the
start state to the state s. g" *= I g *=
/
* Problem: how to determine g*(s.4)? . S;) Sl
8 ” 1 \ g = g
|/g / "\‘
st nV S.E‘_’.'L’
the cost of a shortest path g(\}}\ - v /
from s, to s found so far J \ S 3 S
/ - @\ : = /
. g*=5

© Y. B

g*(s) values for nodes in a graph

Searching Graphs for a Least-cost Path

* The g*(s) values satisfy a @*(s) — the cost of a least-cost path from s, tos

. . . start :
recursive relationship. | |
g* values satisty: g*(s) =ming._ .. &%) tc(s"s)

Searching Graphs for a Least-cost Path

° * o .
From g* values how to get the iyt with 5,,, and from any state s backtrack to the predecessor

path? state s " such that | ' . .
* First compute the g*-values are § = argmln.\"'ep/'t'd[.\')(g (s"')+c(s",s))

computed a least-cost path
from s, 10 Sgoy)

* Then perform backtracking.

Searching Graphs for a Least-cost Path

 Example: an agent in a grid-based graph
* Computing g*(s) values and then backtracking to get the path.

8-connected grid 3.8/ 3.4 3.8/ 4.2[4.4 4.8

3.8 3.4 3.8 4.2 4.4 4.8

&y 2.8 2.4 2.8 3.8 3.4 3.8 2824 2.8 3.8 34 38

T 2.4 1.4 24 3.4 2.4/ 14 4 3.4
> 111\4. 2 (1 (o)1]2]3 2 |1 {o+7]2 |3

Actions and costs g*(s) values for states in the grid Path obtained via backtracking

Uninformed A* Search

Perform an operation
on the graph to get
the g*(s) values.

Main function

2(s,..) = 0, all other g-values are infinite; OPEN = [s_, .},

» ComputePath();

ComputePath function
while(s

goa

start)

publish solution; //compute least-cost path usi&g-valucs

set of candidates for expansion

(1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;

expand s;

Jfor every expanded state
g(s) is optimal (g(s) = g*(s))

Uninformed A* Search — cntd.

What is expansion?

Main function

2(s,..) = 0, all other g-values are infinite; OPEN = [s_, .},

ComputePath();

publish solution; //compute least-cost path usi&g-valucs

ComputePath function

set of candidates for expansion

while(s,,,, 1s not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;

> expand s;

Jfor every expanded state
g(s) is optimal (g(s) = g*(s))

star

/cZ\’o:
\«;
—

g=

Uninformed A* Search — cntd.

ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,

mmsert s into CLOSED:;

Check if the state is not in
closed.

Decrease g*(s) if a lower-cost
path is found for a state s.

for every successor s " of s such that s 'not in CLOSED
it g(s’) = g(s) +cfs,s)

. \

a(s’) = g(s) +c(s,s);

set of states that have already been expanded

/ insert s " into OPEN;

Y= o0 Y= o0
tries to decrease g(s') using the 2
found path from s, tos _ S, S,
' g_: () y= oo
s ,1

Example

ComputePath function
while(s

goa

;1 not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;,

insert s into CLOSED,;

for every successor s " of s such that s 'not in CLOSED

if g(s") > g(s) + c(s.s)
g(s’) =g(s) tc(s,s),
insert s " into OPEN;,

CLOSED = {}
OPEN = {S,,,/

next state to expand: S

sStart

& |

(50

g= o0

NN

f=oo
2
3 >

=00
@Kgoo

~E
&

g= @

Example

ComputePath function

while(s,,, is not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,

insert s into CLOSED,;

for every successor s’ of s such that s 'not in CLOSED

g (SQ) > g (S.\'mrt) + C(S.s'mrl’ Sj

if g(s’) > g(s) +c(s,s’)
g(s’) = g(s) +c(s,s);
insert s ' into OPEN;

CLOSED = {}
OPEN = {s ...}
next state to expand.: s

start

/

&

(s)——

g= o0

o0 =00
2
2
1

- %

P

g= o

Example

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
insert s into CLOSED,;
for every successor s of s such that s 'not in CLOSED
ifg(s) > gls) + c(s.s)
2(s’) = g(s) + c(s.5);
insert s " into OPEN;

goa

Example

ComputePath function
while(s,,,, 1s not expanded and OPEN # 0)
remove s with the smallest g(s) from OPEN;,
insert s into CLOSED;
for every successor s " of s such that s 'not in CLOSED
if g(s’) > g(s) +c(s.s’)
g(s’) = g(s) +els,s),
insert s ' into OPEN;,

CLOSED = {s.,] g ¢ ®\K -

OPEN = {s,]

next state to expand: s, ’ @

g_

Example

ComputePath function
while(s,,,, 1s not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
insert s into CLOSED:;
for every successor s of s such that s 'not in CLOSED
it g(s’) > g(s) +c(s.s7)
g(s) =g(s) +c(s.s),
insert s " into OPEN;

CLOSED = {5, s,
OPEN = {s s,/
next state to expand.: ?

Example

ComputePath function
while(s,,,, is not expanded and OPEN # 0)

remove s with the smallest g(s) from OPEN;
insert s into CLOSED,;
for every successor s’ of s such that s 'not in CLOSED
if g(s’) > gfs) + c(s.s)
g(s) =g(s) +cls.s);
insert s " into OPEN:;

CLOSED = {5,055/ 6\

OPEN = {s s,/

next state to expand.: s, ‘_,@

Example

CLOSED = {510,055
OPEN = {s,,5;/
next state to expand: ?

CLOSED = {5,40525)
OPEN = {s,,5;}
next state to expand.: s,

Example

Optional optimization:

If OPEN contains multiple states with the

smallest g-values and s, is one of them,

then select s, for expansion (as the path
through the other node will be longer).

CLOSED = {Sstarl’ S8y Sl} @
OP EN - {Sj’sgoa[}

next state to expand. ?

CLOSED = {555,545}
Exa m p I e OPEN - {Sj’sgoauz

next state to expand.' Sgoa[

I =3
CLOSED = {S 1055555 1sSopuit J ®\K g=J
starev 222 PV goa @

OPEN = {s;}

done ‘ ./'
—>
g=2

Properties
- For every expanded state g(s) = g*(s)

- For every other state g(s) > g*(s)
- Once the g*() values are computed, determine the least-

sta

cost path by backtracking. l

Estimating Cost-to-goal via Heuristics

 Till now we computed “cost so far”

 The uninformed A* search expands nodes based on the cost of the node from the
start node, c(s,, s)
* Till now, we are agnostic about the goal.

* While planning we often have an intuition about “approximate cost to
goal”.
* |f we knew the exact cost then no search would be needed.

e But, even if we do not know c(s, s,) exactly, we often have some intuition about this
distance. This intuition is called a F\eurlstlc h(s).

* Heuristic
* h(s) = estimated cost of the cheapest path from the state s to a goal state.

* Heuristics can be arbitrary, non-negative, problem-specific functions.
e Constraint, h(s) =0 if s is a goal.

22

A* Search

e Coreldea
* Rank states by how promising they are to find the goal
* Create a ranking by combining the “cost so far” and the “estimated cost to go”.
* Compute a function f(s) for a state that combines the two costs.

* Prioritize the exploration of nodes based on the combined ranking.

» Always expand node with lowest f(s) first, where
* g(s) = actual cost from the initial state to s.
* h(s) = estimated cost from n to the next goal.
* f(s) =g(s) + h(s), the estimated cost of the cheapest solution through s. It is the cost so far and an estimate of the cost to go.

an (under) estimate of the cost

of a shortest path from s to s,

the cost of a shortest path
to s found so far

h(s)

froms,,,,

Example

ComputePath function

while(s,,, , 1s not expanded and OPEN # 0)
remove s with the smallest /f(s) = g(s)+h(s)] from OPEN:;

insert s into CLOSED:;

for every successor s " of s such that s 'not in CLOSED

if g(s’) > g(s) +c(s,s’)
g(s’) =g(s) +efs,s),
insert s into OPEN:;

CLOSED = {]
OPEN = {S start}
next state to expand: S

start

Example

ComputePath function
while(s,,,, s not expanded and OPEN #0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) + (‘(S.S:) 2(5,) > &(5,,,) + (5,055
g(s) =g(s) telss),
insert s " into OPEN:

g=0 (: }—'2 g= o
CLOSED = |} sy l ®\ h=0
1

OPEN = {S

l
next state to expand: s.,,,, () 3 ®/

Example

ComputePath function
while(s,,, , 1s not expanded and OPEN #0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED:
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) + c(s,s")
g(s) =g(s) +elss),
insert s into OPEN;

Example

ComputePath function

while(s,,,, 1s not expanded and OPEN #0)
remove s with the smallest /f(s) = g(s)+th(s)] from OPEN;

insert s into CLOSED:;

for every successor s’ of s such that s 'not in CLOSED

if g(s’) > g(s) +c(s,s’)
g(s’) =g(s) +efs,s),
insert s " into OPEN:

CLOSED =
OPEN = [s,}
next state to expand. s,

s tar l/

Example

ComputePath function
while(s,,, 1s not expanded and OPEN #0)

remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED:;
for every successor s’ of s such that s 'not in CLOSED
if g(s’) > g(s) +c(s,s)
g(s) =g(s) telss);
insert s into OPEN:;

CLOSED = {Sstart’ S 2} -

OPEN = {55} ‘

next state to expand.: s, . 3
g=2

Example

ComputePath function

while(s,,, , is not expanded and OPEN #0)

remove s with the smallest /f(s) = g(s)+h(s)] from OPEN;,

insert s into CLOSED:;

for every successor s " of s such that s 'not in CLOSED

ifg(s’) > g(s) +cfs,s’)
g(s’) = gfs) +efs.s),
insert s into OPEN:

CLOSED = s, .555,/
OPEN = 194’ g(ml}

next state to expand.: s,

g=0
h=3

S

g:

’

7—7

h

I

/
)

2

g=3
h=1

@/

g—
h=

g= 5
h

Example

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;,

insert s into CLOSED:;
for every successor s’ of s such that s 'not in CLOSED

if g(s’) > g(s) +c(s,s)
g(s’) =gfs) +c(s,s);
insert s into OPEN;

CLOSED = {S.s‘tart’SZ’SI’s4}
OPEN = {538 gou1f

next state to expand. S,

Example

ComputePath function
while(s,,, i1s not expanded and OPEN # 0)

remove s with the smallest /f(s) = g(s)+h(s)] from OPEN,

insert s into CLOSED:;
for every successor s of s such that s 'not in CLOSED

if g(s’) > g(s) +c(s,s’)
g(s’) =g(s) +c(s,s);
insert s into OPEN;

lz:=.. h=1

5’7:(3) 2 @\ g=3
- 1= J
CLOSED = {S 140525 1S S gotf 1=
OPEN = [s;/ ./

h=2 h

done

g_7

Example

ComputePath function
while(s, , 1s not expanded and OPEN #0)

remoffe s with the smallest [f(s) = g(s)+h(s)] from OPEN;,
insert s into CLOSED:;
for every successor s’ of s such that s 'not in CLOSED
if g(s) > g(s) + c(s.5)
g(s) =g(s) +clss),
insert s into OPEN:

=
h=3

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound @;’

we can now compute a least-cost path g=2

A*: Uninformed vs. Informed Search

* A*: expands states in the order of f = g+h values
* Uninformed A* or (or Uniform Cost Search) : expands states in the order of g values
* Intuitively: f(s) — estimate of the cost of a least cost path from start to goal via state s

A* search with Euclidean distance heuristic.

Uninformed Search
Informed Contours
Sta
Sstart
ooal

Informed Search
Contours Start
Uninformed

33

Implementation Details

* OPEN List

* Priority queue (common to use a binary
heap)

* Priority based on the f function.

* Intuition

* The queue maintains solution hypothesis.

* Prioritization based on which states are likely to
reach to the goal.

* CLOSED List

 Typically, each state has a Boolean flag
indicating that it is closed.

* Back pointers

» After the search terminates, the least cost
path is given by backtracking back pointers
from Sgoq O Setart

Main function
g(s,,.,.) = 0; all other g-values are infinite; OPEN = /s !
set all backpointers bp to NULL;
ComputePath();
publish solution; //backtrack least-cost path using backpointers bp
ComputePath function
while(s,,, 1s not expanded and OPEN # 0)
remoi'e s with the smallest /f(s) = g(s)+h(s)] from OPEN,
insert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
if g(s’) > g(s) +c(s,s’)
g(s’) = g(s) + c(s,s’); bp(s’) =s;
insert s " into OPEN,

When the min-cost path is updated, also update
the back pointer.

Example

* A heuristic for a grid-based graph

h(cell <x’y>) = max(lx- goal > y-ygoalu
A B C D E F
8-connected grid |
h=5| h=4| h=3| h=2| h=1| h=1 goal
4 4l
\ T 14 5| 4| h=3| h=2| h=1| 0|~

1
2
01 >
| 4 AT 3 | h=5| h=4
/ll 1.4 4| =5 h4
/1

robot

Support for Multiple Goal Candidates

* Examples

* Arobot is to reach a parking
location.

* Choice of locations some are closer,
and some are further away.

* The agent wants to escape from a
room and there are multiple exits.

e Can only escape via a door.

* How to plan in the presence of
multiple goals?
* How to find a least cost path that is
lowest across all possible goals?

36

Multi-Goal A*: Introducing “Imaginary” Goal

Multiple-goal problem

g=c0 g= o
h=1 A h=0
=0 N
=0 (5)
SSta 2

Equivalent problem with a single goal

g
h

Transform the graph with an “imaginary goal”.
Following which run A*. The augmentation
helps pick one goal from the many goals. 37

Multi-Goal A*: What if some goals are better?

The non-uniform goal preferences can be
encoded as edge costs.

38

Heuristics: Admissibility and Consistency

* Admissibility
* Let h*(n) be the shortest path from n to any goal state.
* Heuristic h is called admissible if h(n) £ h*(n) Vn.

* Admissible heuristics are optimistic, they often think that the cost to the goal is less than
actual

* If h is admissible, then h(g) =0, Vg € G
* Atrivial case of an admissible heuristic is h(n) =0, Vn.

* Consistency (monotonicity)

* An admissible heuristic h is called consistent if for every state s and for every successor s’, h(s)
<c(s, s’) + h(s’)

* This is a version of triangle inequality, so heuristics that respect this inequality are metrics.

* Consistency is a stricter requirement than admissible. If consistent then the heuristic is
admissible.

Heuristics: Dominance

* Dominance

* Comparing two heuristics.

* Heuristic function h, (strictly) dominates h; if
* both are admissible and
» for every node n, h,(n) is (strictly) greater than hy(n).

* What is the implication?
e A* search with a dominating heuristic function h2 will never expand more nodes that A* with h1.
* Expansion of fewer nodes implies efficiency gains.

A* Search Properties

* We covered the “graph-search” version of A* in this lecture.
e |.e., we maintain a CLOSED list.

* Optimal

* If the heuristic is consistent (stronger condition than admissibility) then A* search
(graph search version) will find the optimal solution.

* Completeness

* If a solution exists, then A* will find it (eventually A* will visit all nodes)
* Under some conditions

* Every node has a finite number of successor nodes (b is finite). Number of nodes is finite.
* Positive costs for edges.

Admissible Heuristics from Relaxed Problems

* Optimal solution in the original
problem is also a solution for the
relaxed problem.

* Cost of the optimal solution in the
relaxed problem is an admissible
heuristic in the original problem.

e At least this much work is to be done
during search.

* Finding the optimal solution in the
relaxed problem should be “easy”

* Without performing search.

8-connected grid

>

Tl
|

1.4
1
1.4

hicell <x,y>) = max(|x-Xypul,|V-Yooul)

A B C D E F

1| p=s

h=4| h=3| h=2

h=1

h=1

2| h=5

——

3| h=5

| S———

4 | h=5

h=4| h=3| h=2

h=4

/

robot

h=1| h=0

h=1

h=1

7N\
h=4| h=3] h=2
_

h=2(h=2

&0 al

42

A* Search: Finding sub-optimal solutions

 Problem with A* search

* Despite the heuristic, the priority queue
can be very large.

* A* takes too long to find the optimal solution,
memory runs out.

* Note that A* will give the optimal solution.

* Can we do fewer expansions? >
* Trading off optimality.

* In essence, how can we modify A* such

that sub-optimal solutions can be found
quickly?

Problem with A*

for large problems this results in A™ quickly
running out of memory (memory: O(n))

start

43

goal

Weighted A*

* Modify the prioritization function
e Expands states in the order of f’(n) = g(n) + w*h(n) values, where w > 1.0

A weighted heuristic accelerates the search by making nodes closer to the goal more
attractive, the cost to goal starts to dominate.

LS

SIart

Sgoal

44

Weighted A*

e What is the effect?

* Creates a bias towards expansion of
states that are closer to goal.

e f'(n) is not admissible but finds
good sub-optimal solutions quickly.

 Trade off between search effort and
solution quality.

* Usually, orders of magnitude faster
than A*.

Effect of running towards the goal. May lead to
sub-optimality.

Weighted A*

e What is the effect?

* Creates a bias towards expansion of
states that are closer to goal.

e f'(n) is not admissible but finds
good sub-optimal solutions quickly.

 Trade off between search effort and
solution quality.

* Usually, orders of magnitude faster
than A*.

Effect of running towards the goal. May lead to
sub-optimality.

Planning during Execution

* One off plans may not work.

* May need to repeat the process

* Various kinds of errors

* Imperfect plan execution.
e Did not land up at the right grid cell.

* Something in the environment is now visible or changed.

A dooris now closed.

* How to replan fast?

e Anytime heuristic search
* Return the best plan possible within T msecs

* |f you have more time, you can improve the plan.

47

Anytime Planning with weighted A*

Constructing anytime search based on weighted A*:
- Find the best path possible given some amount of time for planning
- Run a series of weighted A* searches with decreasing € (the weight w in the last slides):

=25 =15 e =1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

