COL864: Special Topics in AI Semester II, 2021-22

State Space Planning: A*

Rohan Paul

Outline

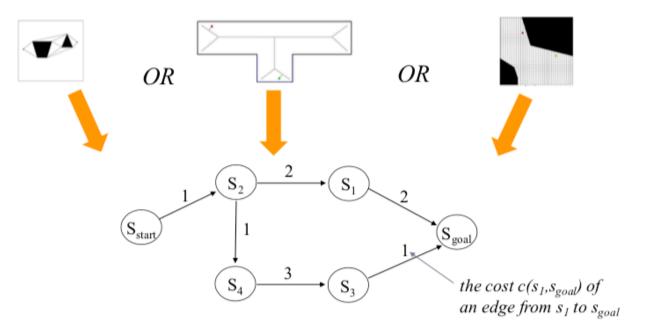
- Last Class
 - State Estimation
- This Class
 - Search Algorithms
 - Uninformed A*
 - Informed A* and extensions
- Reference Material
 - Primary reference are the lecture notes. For basic background refer to AIMA Ch. 3.

Acknowledgements

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun, Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and others.

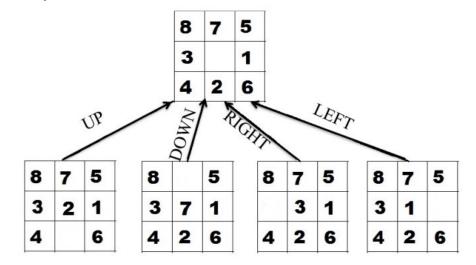
Planning with Graphs

- Planning graphs
 - Nodes: possible states (designated start and goal states)
 - Edges: connection between states if an action connects the two states.
 - Goal is to find the optimal path (sequences of actions.)
- Motion planning
 - A graph is constructed (from skeletonization or cell decomposition etc.)
 - Example: PRM or grids or some other decomposition of the space.
- Other planning problems
 - Task planning where pre-condition relationships exist between tasks.

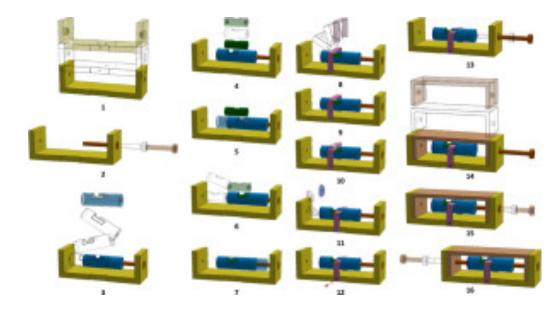


Applications

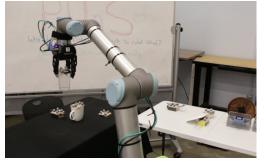
Tile puzzle

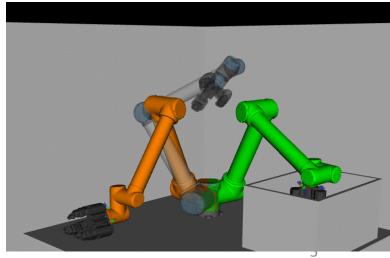


Assembly planning

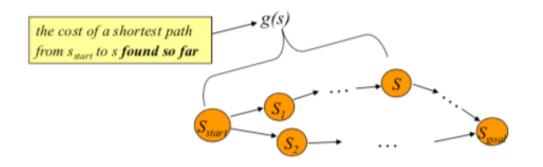


Complex motion planning

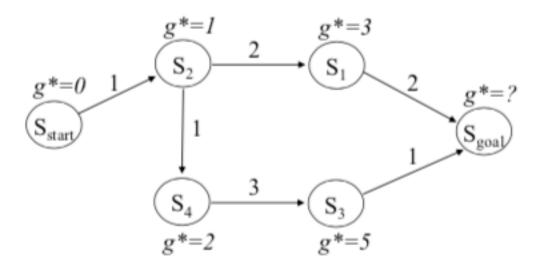




- Important quantity
 - g*(s) the cost of the least cost path from the start state to s.
 - Many search algorithms (including A*) work by computing g*(s) values for graph vertices (states).
 - The g*(s) values are the "cost so far" from the start state to the state s.
- Problem: how to determine g*(s_{goal})?



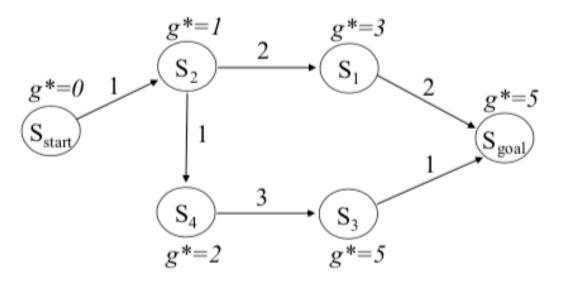
 $-g^*(s)$ – the cost of a least-cost path from s_{start} to s



g*(s) values for nodes in a graph

• The g*(s) values satisfy a recursive relationship.

 $g^*(s)$ – the cost of a least-cost path from s_{start} to sg* values satisfy: $g^*(s) = \min_{s'' \in pred(s)} g^*(s'') + c(s'',s)$

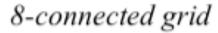


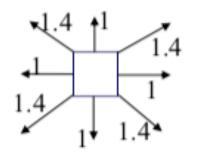
- From g* values how to get the path?
 - First compute the g*-values are computed a least-cost path from s_{start} to s_{goal}
 - Then perform backtracking.

start with s_{goal} and from any state *s* backtrack to the predecessor state *s*' such that $s' = \arg \min_{s' \in pred(s)} (g^*(s'') + c(s'', s))$

 $g^{*=0} \xrightarrow{g^{*=1}} 2 \xrightarrow{g^{*=3}} S_1$ $g^{*=0} \xrightarrow{g^{*}=1} 2 \xrightarrow{g^{*}=3} S_1$ $g^{*=0} \xrightarrow{g^{*}=1} 2 \xrightarrow{g^{*}=3} S_1$ $g^{*=0} \xrightarrow{g^{*}=3} 3 \xrightarrow{g^{*}=3} S_1$

- Example: an agent in a grid-based graph
- Computing g*(s) values and then backtracking to get the path.

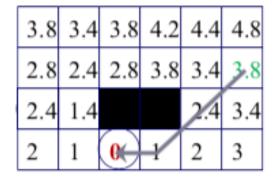




Actions and costs

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

g*(s) values for states in the grid



Path obtained via backtracking

Uninformed A* Search

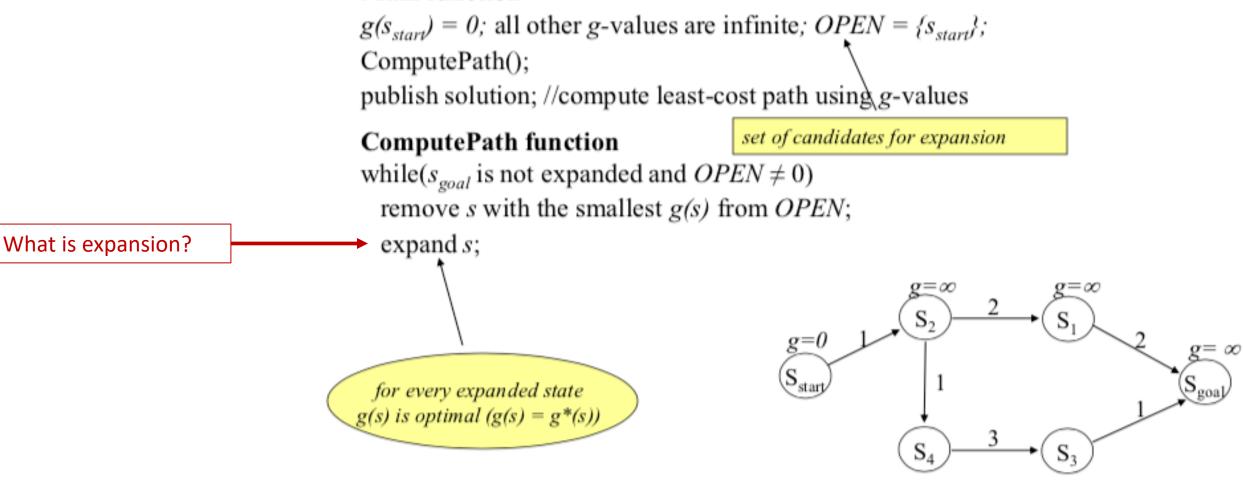
Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; Perform an operation ComputePath(); on the graph to get publish solution; //compute least-cost path using g-values the g*(s) values. set of candidates for expansion ComputePath function while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest *g(s)* from *OPEN*; expand s; S_2 g=0 $\sigma = \infty$ (S_{start}) for every expanded state g(s) is optimal $(g(s) = g^*(s))$ 3 S_4 $g = \infty$ $g = \infty$

10

Uninformed A* Search – cntd.

Main function



11

 $g = \infty$

 $g = \infty$

Uninformed A* Search – cntd.

ComputePath function

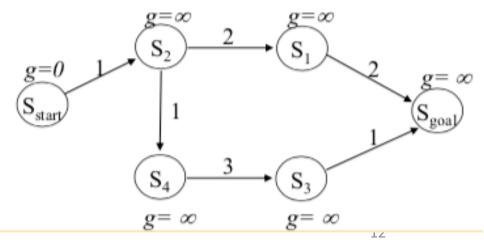
while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest g(s) from OPEN; insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
/ insert s' into OPEN;

tries to decrease g(s') using the found path from s_{start} to s set of states that have already been expanded

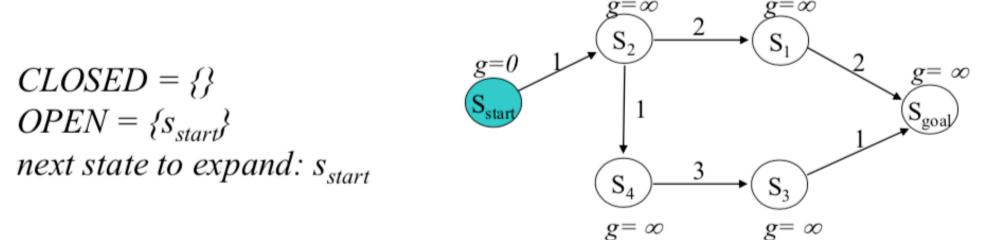


Check if the state is not in closed. Decrease g*(s) if a lower-cost path is found for a state s.

ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s* ' of *s* such that *s* ' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');

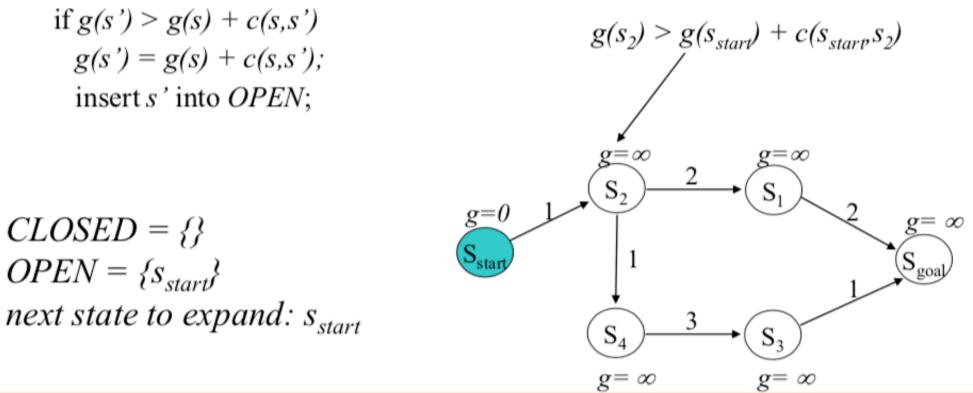
insert s' into OPEN;



ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED



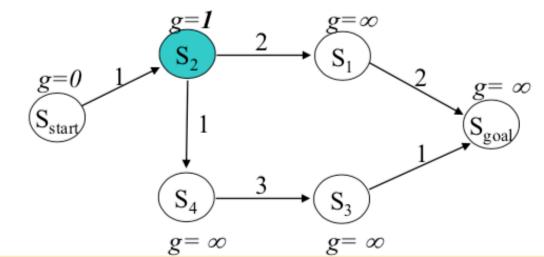
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest *g(s)* from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;



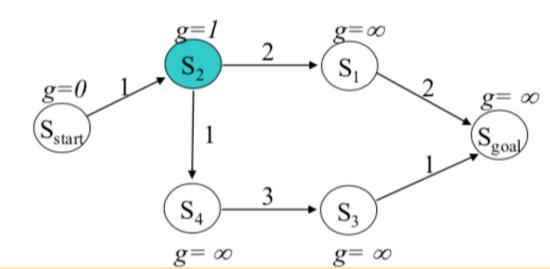
ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s*' not in *CLOSED*

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

 $CLOSED = \{s_{start}\}$ $OPEN = \{s_2\}$ next state to expand: s_2



ComputePath function

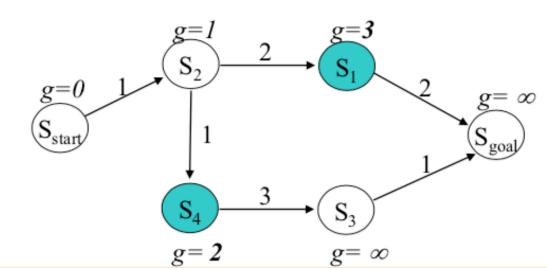
while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: ?

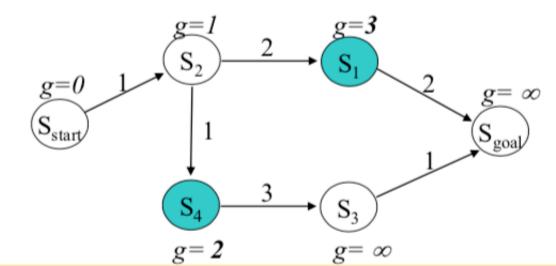


ComputePath function

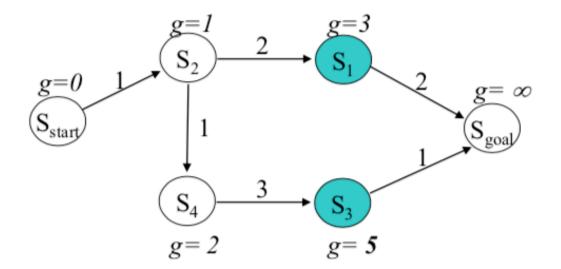
while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s* ' of *s* such that *s* ' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');

insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: s_4

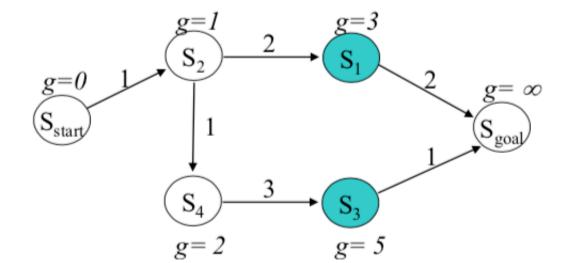


 $CLOSED = \{s_{start}, s_2, s_4\}$ $OPEN = \{s_1, s_3\}$ next state to expand: ?



$$CLOSED = \{s_{start}, s_2, s_4\}$$

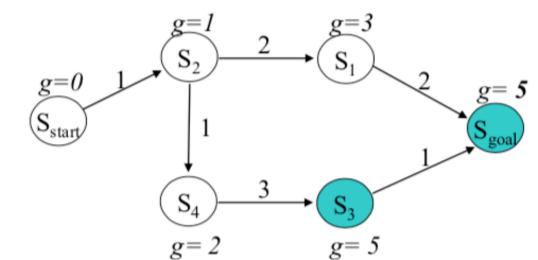
 $OPEN = \{s_1, s_3\}$
 $next state to expand: s_1$



Optional optimization:

If OPEN contains multiple states with the smallest g-values and s_{goal} is one of them, then select s_{goal} for expansion (as the path through the other node will be longer).

$$CLOSED = \{s_{start}, s_2, s_4, s_1\}$$
$$OPEN = \{s_3, s_{goal}\}$$
$$next state to expand: ?$$

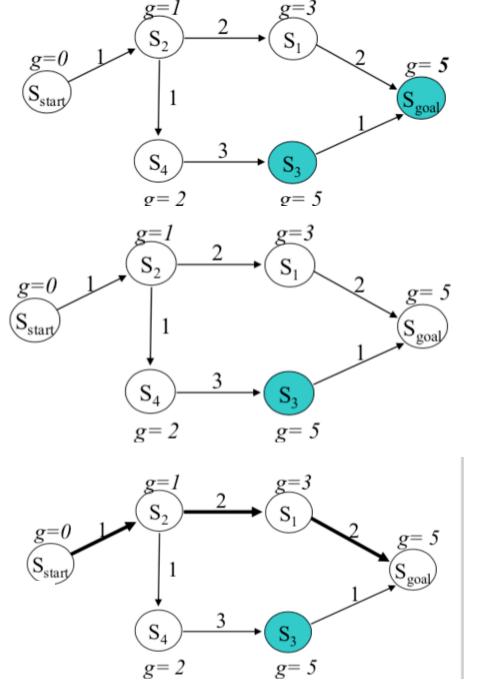


 $CLOSED = \{s_{start}, s_2, s_4, s_1\}$ $OPEN = \{s_3, s_{goal}\}$ $next state to expand: s_{goal}$

$$CLOSED = \{s_{start}, s_2, s_4, s_1, s_{goal}\}$$
$$OPEN = \{s_3\}$$
$$done$$

Properties

- For every expanded state g(s) = g*(s)
- For every other state $g(s) \ge g^*(s)$
- Once the g*() values are computed, determine the leastcost path by backtracking.

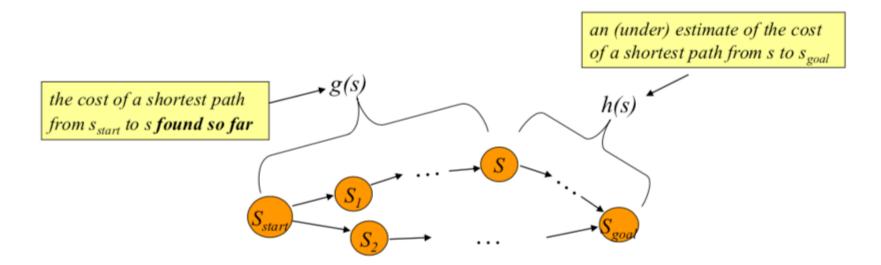


Estimating Cost-to-goal via Heuristics

- Till now we computed "cost so far"
 - The uninformed A* search expands nodes based on the cost of the node from the start node, c(s₀, s)
 - Till now, we are agnostic about the goal.
- While planning we often have an *intuition* about *"approximate cost to goal"*.
 - If we knew the exact cost then no search would be needed.
 - But, even if we do not know c(s, s_g) exactly, we often have some intuition about this distance. This intuition is called a heuristic, h(s).
- Heuristic
 - h(s) = estimated cost of the **cheapest path** from the **state s to a goal state**.
 - Heuristics can be arbitrary, non-negative, **problem-specific** functions.
 - Constraint, h(s) = 0 if s is a goal.

A* Search

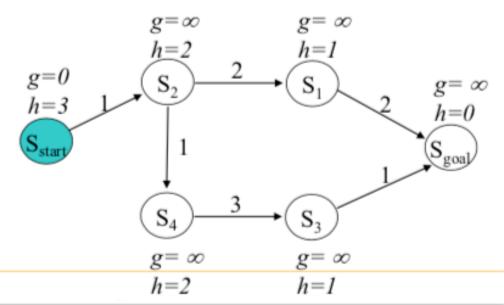
- Core Idea
 - Rank states by how promising they are to find the goal
 - Create a ranking by combining the "cost so far" and the "estimated cost to go".
 - Compute a function f(s) for a state that combines the two costs.
- Prioritize the exploration of nodes based on the combined ranking.
 - Always expand node with lowest f(s) first, where
 - g(s) = actual cost from the initial state to s.
 - h(s) = estimated cost from n to the next goal.
 - f(s) = g(s) + h(s), the estimated cost of the cheapest solution through s. It is the cost so far and an estimate of the cost to go.



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED*

 $CLOSED = \{\}$ $OPEN = \{s_{start}\}$ next state to expand: s_{start}



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s' not in CLOSED if g(s') > g(s) + c(s,s') $g(s_2) > g(s_{start}) + c(s_{start}s_2)$ g(s') = g(s) + c(s,s');insert s' into OPEN; $g = \infty$ $g = \infty$ h=2h=1g=0 S_2 $g = \infty$ h=3h=0 $CLOSED = \{\}$ S_{star} Sgoal $OPEN = \{s_{start}\}$

 S_4

 $g = \infty$

h=2

 $g = \infty$

h=1

next state to expand: s_{start}

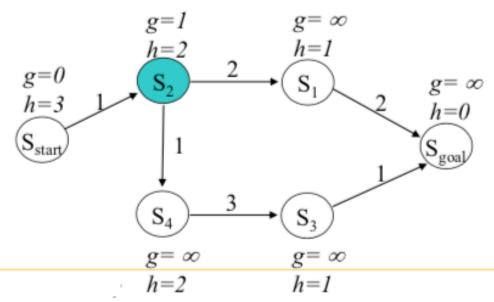
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

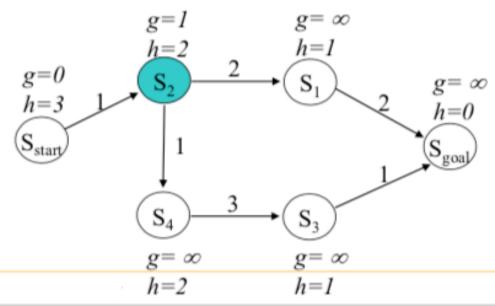
 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED*

 $CLOSED = \{s_{start}\}$ $OPEN = \{s_2\}$ $next state to expand: s_2$

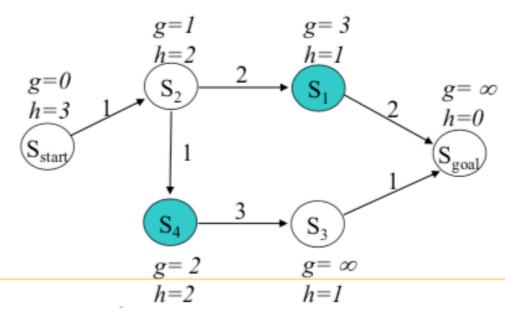


ComputePath function

while(s_{goal} is not expanded and OPEN≠0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s 'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s'); insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ $next state to expand: s_1$



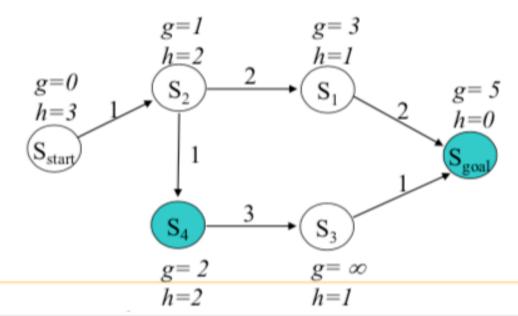
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED* if g(s') > g(s) + c(s s')

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2, s_1\}$ $OPEN = \{s_4, s_{goal}\}$ $next state to expand: s_4$

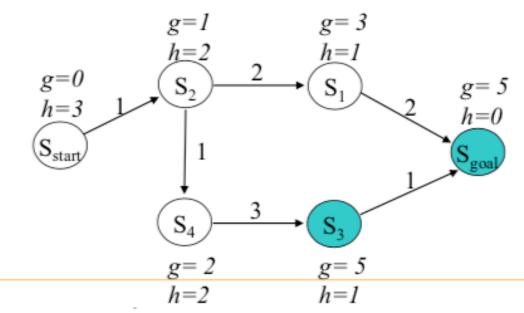


ComputePath function

while(s_{goal} is not expanded and OPEN≠0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s 'not in CLOSED
if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');insert s' into OPEN;

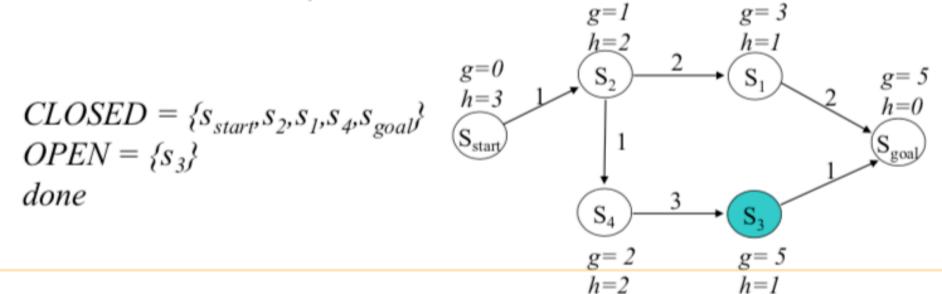
 $CLOSED = \{s_{start}, s_2, s_1, s_4\}$ $OPEN = \{s_3, s_{goal}\}$ $next state to expand: s_{goal}$



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from OPEN; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED* if g(s') > g(s) + c(s,s')

f(g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s'not in CLOSED if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');insert s' into OPEN; g=1g=3h=1g=0 S_{2} h=3(S_{start} for every expanded state g(s) is optimal for every other state g(s) is an upper bound S_4 we can now compute a least-cost path g=5g=2

h=2

h=1

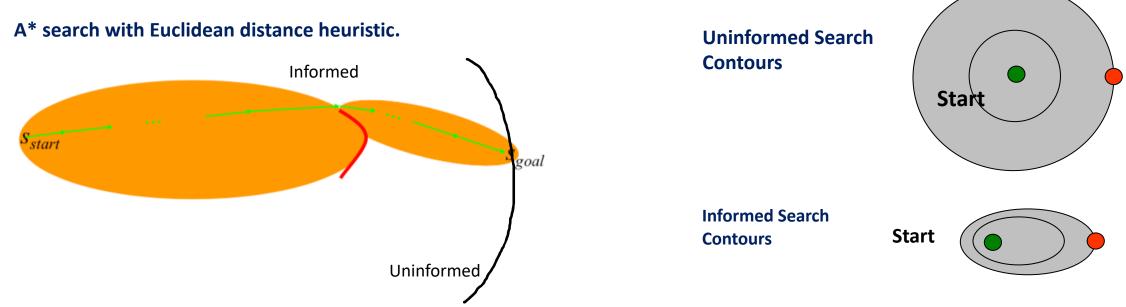
g=5

h=0

 $(\mathbf{S}_{\text{goal}})$

A*: Uninformed vs. Informed Search

- A*: expands states in the order of **f** = **g**+**h** values
- Uninformed A* or (or Uniform Cost Search) : expands states in the order of **g** values
- Intuitively: *f(s)* estimate of the cost of a least cost path from start to goal via state *s*



Implementation Details

- OPEN List
 - Priority queue (common to use a binary heap)
 - Priority based on the f function.
 - Intuition
 - The queue maintains solution hypothesis.
 - Prioritization based on which states are likely to reach to the goal.
- CLOSED List
 - Typically, each state has a Boolean flag indicating that it is closed.
- Back pointers
 - After the search terminates, the least cost path is given by backtracking back pointers from s_{goal} to s_{start}

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; set all backpointers bp to NULL;

ComputePath();

publish solution; //backtrack least-cost path using backpointers bp

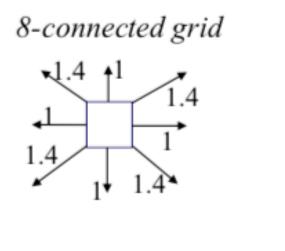
ComputePath function

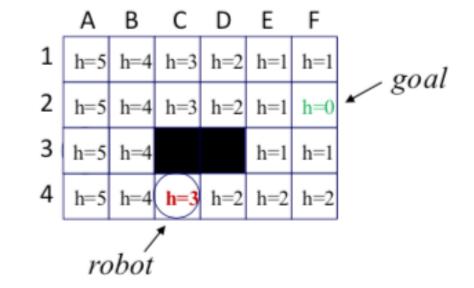
while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s'* of *s* such that *s'* not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); bp(s') = s; insert *s'* into *OPEN*;

When the min-cost path is updated, also update the back pointer.

• A heuristic for a grid-based graph

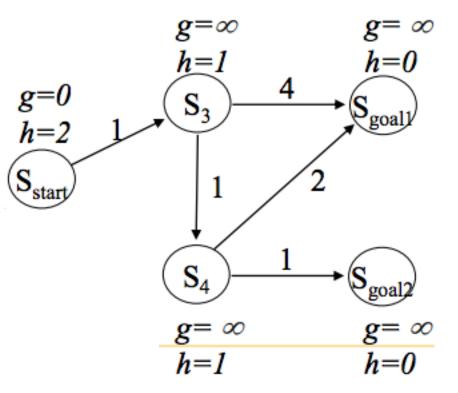
$$h(cell < x, y >) = max(|x-x_{goal}|, |y-y_{goal}|)$$





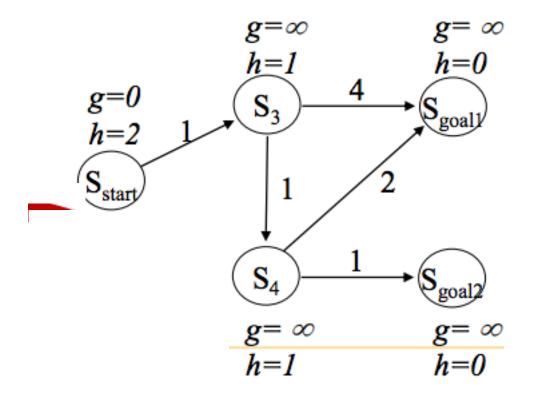
Support for Multiple Goal Candidates

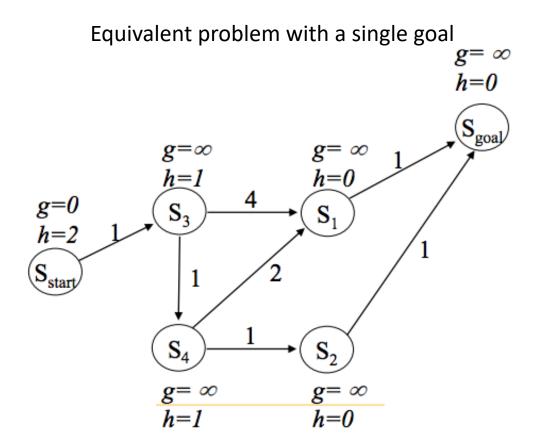
- Examples
 - A robot is to reach a parking location.
 - Choice of locations some are closer, and some are further away.
 - The agent wants to escape from a room and there are multiple exits.
 - Can only escape via a door.
- How to plan in the presence of multiple goals?
 - How to find a least cost path that is lowest across all possible goals?



Multi-Goal A*: Introducing "Imaginary" Goal

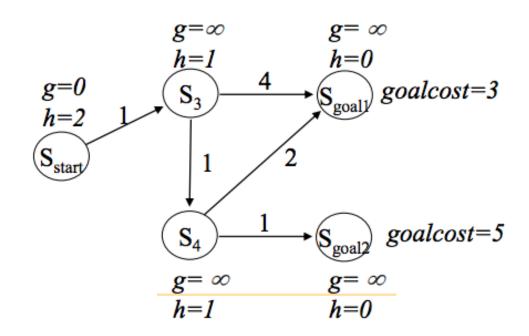
Multiple-goal problem

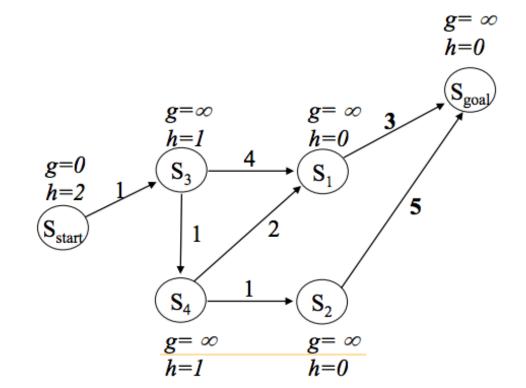




Transform the graph with an "imaginary goal". Following which run A*. The augmentation helps pick one goal from the many goals. ³⁷

Multi-Goal A*: What if some goals are better?





The non-uniform goal preferences can be encoded as edge costs.

Heuristics: Admissibility and Consistency

Admissibility

- Let **h***(**n**) be the shortest path from n to any goal state.
- Heuristic h is called *admissible* if $h(n) \le h^*(n) \forall n$.
- Admissible heuristics are *optimistic*, they often think that the cost to the goal is less than actual
- If h is admissible, then h(g) = 0, $\forall g \in G$
- A trivial case of an admissible heuristic is h(n) = 0, $\forall n$.

Consistency (monotonicity)

- An admissible heuristic h is called consistent if for every state s and for every successor s', h(s) ≤ c(s, s') + h(s')
- This is a version of triangle inequality, so heuristics that respect this inequality are metrics.
- Consistency is a stricter requirement than admissible. If consistent then the heuristic is admissible.

Heuristics: Dominance

• Dominance

- Comparing two heuristics.
- Heuristic function h_2 (strictly) dominates h_1 if
 - both are admissible and
 - for every node n, $h_2(n)$ is (strictly) greater than $h_1(n)$.
- What is the implication?
 - A* search with a dominating heuristic function h2 will never expand more nodes that A* with h1.
 - Expansion of fewer nodes implies efficiency gains.

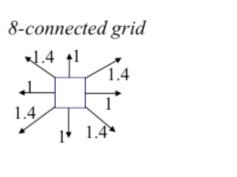
A* Search Properties

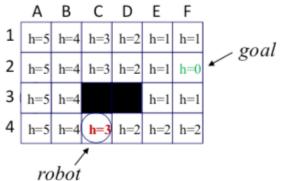
- We covered the "graph-search" version of A* in this lecture.
 - I.e., we maintain a CLOSED list.
- Optimal
 - If the heuristic is *consistent* (stronger condition than admissibility) then A* search (graph search version) will find the optimal solution.
- Completeness
 - If a solution exists, then A* will find it (eventually A* will visit all nodes)
 - Under some conditions
 - Every node has a finite number of successor nodes (b is finite). Number of nodes is finite.
 - Positive costs for edges.

Admissible Heuristics from Relaxed Problems

- Optimal solution in the original problem is also a solution for the relaxed problem.
- Cost of the optimal solution in the relaxed problem is an admissible heuristic in the original problem.
 - At least this much work is to be done during search.
- Finding the optimal solution in the relaxed problem should be "easy"
 - Without performing search.

 $h(cell < x, y >) = max(|x-x_{goal}|, |y-y_{goal}|)$



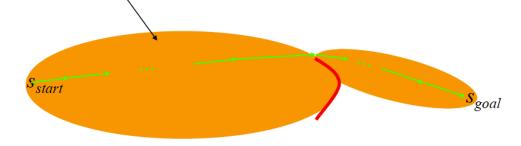


A* Search: Finding sub-optimal solutions

- Problem with A* search
 - Despite the heuristic, the priority queue can be very large.
 - A* takes too long to find the optimal solution, memory runs out.
 - Note that A* will give the optimal solution.
- Can we do fewer expansions?
 - Trading off optimality.
- In essence, how can we modify A* such that sub-optimal solutions can be found quickly?

Problem with A*

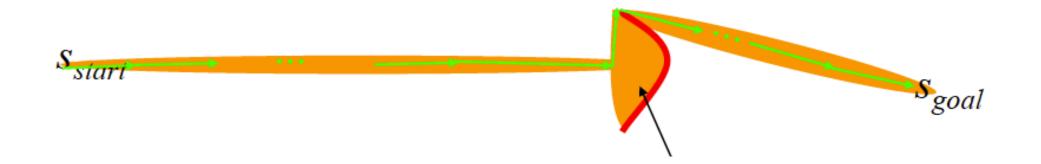
for large problems this results in A* quickly running out of memory (memory: O(n))



Weighted A*

- Modify the prioritization function
 - Expands states in the order of $f'(n) = g(n) + w^*h(n)$ values, where w > 1.0

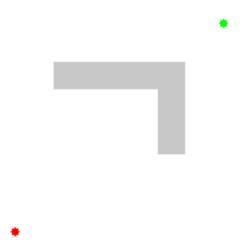
A weighted heuristic accelerates the search by making nodes closer to the goal more attractive, the cost to goal starts to dominate.



Weighted A*

- What is the effect?
 - Creates a bias towards expansion of states that are closer to goal.
 - f'(n) is *not admissible* but finds good *sub-optimal* solutions *quickly*.
 - Trade off between search effort and solution quality.
 - Usually, orders of magnitude faster than A*.

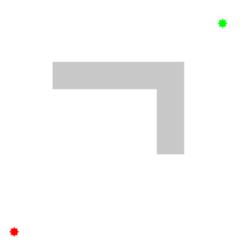
Effect of running towards the goal. May lead to sub-optimality.



Weighted A*

- What is the effect?
 - Creates a bias towards expansion of states that are closer to goal.
 - f'(n) is *not admissible* but finds good *sub-optimal* solutions *quickly*.
 - Trade off between search effort and solution quality.
 - Usually, orders of magnitude faster than A*.

Effect of running towards the goal. May lead to sub-optimality.



Planning during Execution

- One off plans may not work.
- May need to repeat the process
 - Various kinds of errors
 - Imperfect plan execution.
 - Did not land up at the right grid cell.
 - Something in the environment is now visible or changed.
 - A door is now closed.
- How to replan fast?
 - Anytime heuristic search
 - Return the best plan possible within T msecs
 - If you have more time, you can improve the plan.

Anytime Planning with weighted A*

Constructing anytime search based on weighted A*:

- Find the best path possible given some amount of time for planning
- Run a series of weighted A* searches with decreasing ε (the weight w in the last slides):

