COL864: Special Topics in AI Semester II, 2021-22

Agent Representation - I

Rohan Paul

Today's lecture

- Last Class
- Course Introduction
- This Class
- Agent Representation - I

Agent Environment Interaction

- Embodied AI agent
- Takes observations from the environment.
- Goal or objective. Synthesizes goaldirected actions.
- Autonomous
- You can tell the agent what to do without having to say how to do it.

From Observations to Physical Actions

- State Estimation
- What is the state of the agent and the environment.
- Planning
- (High-level)Sequence of actions to reach the goal.
- Low-level Control
- Performing each action reliably.

Manipulation

From Observations to Physical Actions

- For some environments and tasks a clear separation may not be modeled.

Uncertainty

- Imagine an unmanned vehicle (land, air, manipulation etc.) in operation.
- How does the vehicle make decisions about what to do next?
- Things we might be uncertain about:
- If the vehicle runs its propulsion system (or motors), what will happen? Is the vehicle working or not?
- The world is stochastic.
- Where is the vehicle?
- Noisy observations.
- What is around the vehicle?
- The world is partially unobservable.

Any decision-making model must tackle the uncertainty and complexity as above.

Physical Interactions: Generating Movement

Coordinate Frames

- Coordinate frame
- Global
- On the agent.
- Pose, a particular point on its body, (e.g., x, y, z, heading etc.) with respect to a coordinate frame.
- State changes occur due to actions the agent takes.
- Need a way to determine the pose w.r.t. any coordinate frame.
- Relationship maintained in coordinate transforms.

How does movement occur?

- Simple agents

More complex physical agents

- An agent capable of manipulation
- Simply a number of links connected via joints.

How is movement generated?

- Joints typically have motors that exert torque.
- Also called actuation Typically, abstracted away for algorithmic purposes.

Internal mechanics of joints

DC motor

Stepper motor

Composing Transforms

- An agent capable of manipulation
- Simply a number of links connected via joints.
- Each link is associated with a. coordinate frame.
- The coordinate frames can be composed.

Planning Motions

- Given
- Initial state
- Goal state
- How to generate actions?

Task Space and Configuration Space

- Task Space
- Workspace in which the agent operates.
- May be populated with obstacles.
- Configuration space (C-space)
- Parameter space of the robot.
- Space spanned by its allowable degrees of freedom.
- C-space obstacles
- Non allowable configurations in the Cspace.
- Includes all configurations where the robot collides with the obstacle.

reference point

Task space (left) and configuration space (right) for a translating planar agent (cannot rotate).

Task Space and Configuration Space

Task space

- Easier to describe the task.
- Problem: Not all points in the task space may be reachable
- There are physical constraints of the agent's embodiment.
Configuration space (C-space)
- Each point satisfies the intrinsic physical constraints.
- Each point is attainable as it

Figure: AIMA Ch 25.4 corresponds to a valid configuration of the agent.

Holonomicity

- Robot specified in terms of parameters (degree of freedom).
- Holonomic
- if the number of local degrees of freedom of movement equals the number of global degrees of freedom.
- Non-holonomic otherwise.

Holonomic (ODIN, University of Hawaii and PPRK (CMU).

Non-holonomic (car cannot turn in place).

From Configuration Space to Task Space

- Forward kinematics
- From the parameters specifying the agent
(theta parameters) determine the position
- From the parameters specifying the agent
(theta parameters) determine the position of the end-effector.
- Compose the transformations one by one.

Forward Kinematics

From Task Space to Configuration Space

- Inverse kinematics
- Determining the setting of the parameters to yield the required end effector position.
- Given the final position of the endeffector (end point of the arm), determine the theta parameters for the arm.

From Task Space to Configuration Space

- Inverse kinematics
- Solve the inverse problem to obtain theta The function f is often non-linear.

$$
x=f(\theta)
$$

Maps configuration space to work space

$$
\begin{aligned}
& \text { Solve for } \theta_{d} \text { in: } \\
& \qquad x_{d}-f\left(\theta_{d}\right)=0
\end{aligned}
$$

Typically done using Newton-Raphson method.

Find configuration(s) that map to a given work space point

Example: Moving the Agent

Initial Configuration

I.Task space to Configuration space

Initial
configuration

Goal Configuration

I.Task space to Configuration space

Finding a feasible path

I.Task space to Configuration space
2. Configuration space trajectory

Finding a feasible path

I.Task space to Configuration space
2. Configuration space trajectory

