COL864: Special Topics in AI Semester II, 2021-22

Agent Representation - I

Rohan Paul

Today's lecture

- Last Class
 - Course Introduction
- This Class
 - Agent Representation I

Agent Environment Interaction

- Embodied AI agent
 - Takes observations from the environment.
 - Goal or objective. Synthesizes goaldirected actions.
- Autonomous
 - You can tell the agent what to do without having to say how to do it.

From Observations to Physical Actions

- State Estimation
 - What is the state of the agent and the environment.
- Planning
 - (High-level)Sequence of actions to reach the goal.
- Low-level Control
 - Performing each action reliably.

Manipulation

6DOF Pose

Observed Images

From Observations to Physical Actions

 For some environments and tasks a clear separation may not be modeled.

Another example: AI Habitat <u>https://aihabitat.org/</u>

Uncertainty

- Imagine an unmanned vehicle (land, air, manipulation etc.) in operation.
- How does the vehicle make decisions about what to do next?
- Things we might be uncertain about:
 - If the vehicle runs its propulsion system (or motors), what will happen? Is the vehicle working or not?
 - The world is stochastic.
 - Where is the vehicle?
 - Noisy observations.
 - What is around the vehicle?
 - The world is partially unobservable.

Any decision-making model must tackle the uncertainty and complexity as above.

Physical Interactions: Generating Movement

Coordinate Frames

- Coordinate frame
 - Global
 - On the agent.
- Pose, a particular point on its body, (e.g., x, y, z, heading etc.) with respect to a coordinate frame.
- State changes occur due to actions the agent takes.
- Need a way to determine the pose w.r.t. any coordinate frame.
- Relationship maintained in coordinate transforms.

How does movement occur?

- Simple agents
 - Point-like or disk-like agents
- Linear and angular velocities change the state from current to the next time step.
- Position and heading direction is changed.

More complex physical agents

- An agent capable of manipulation
 - Simply a number of links connected via joints.

How is movement generated ?

- Joints typically have motors that exert torque.
- Also called actuation Typically, abstracted away for algorithmic purposes.

Internal mechanics of joints

DC motor

The input pulse of a stepping motor

Stepper motor

Composing Transforms

- An agent capable of manipulation
 - Simply a number of links connected via joints.
- Each link is associated with a. coordinate frame.
- The coordinate frames can be composed.

Physical agent

Planning Motions

- Given
 - Initial state
 - Goal state
- How to generate actions?

Task Space and Configuration Space

- Task Space
 - Workspace in which the agent operates.
 - May be populated with obstacles.
- Configuration space (C-space)
 - Parameter space of the robot.
 - Space spanned by its allowable degrees of freedom.
- C-space obstacles
 - Non allowable configurations in the Cspace.
 - Includes all configurations where the robot collides with the obstacle.

Task space (left) and configuration space (right) for a translating planar agent (cannot rotate).

Task Space and Configuration Space

Task space

- Easier to describe the task.
- Problem: Not all points in the task space may be reachable
- There are physical constraints of the agent's embodiment.

Configuration space (C-space)

- Each point satisfies the intrinsic physical constraints.
- Each point is attainable as it corresponds to a valid configuration of the agent.

Figure: AIMA Ch 25.4

Holonomicity

• Robot specified in terms of parameters (degree of freedom).

• Holonomic

- if the number of local degrees of freedom of movement equals the number of global degrees of freedom.
- Non-holonomic otherwise.

Holonomic (ODIN, University of Hawaii and PPRK (CMU).

Non-holonomic (car cannot turn in place).

From Configuration Space to Task Space

- Forward kinematics
 - From the parameters specifying the agent (theta parameters) determine the position of the end-effector.
 - Compose the transformations one by one.

From Task Space to Configuration Space

- Inverse kinematics
 - Determining the setting of the parameters to yield the required end effector position.
 - Given the final position of the endeffector (end point of the arm), determine the theta parameters for the arm.

From Task Space to Configuration Space

- Inverse kinematics
 - Solve the inverse problem to obtain theta The function f is often non-linear.

Example: Moving the Agent

Initial Configuration

I. Task space to Configuration space

Initial configuration

Goal Configuration

I. Task space to Configuration space

Finding a feasible path

I. Task space to Configuration space

2. Configuration space trajectory

Finding a feasible path

- I. Task space to Configuration space
- 2. Configuration space trajectory

