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Outline

• Last Class
• Reinforcement Learning

• This Class
• Bayesian Learning, MLE/MAP, Learning in Probabilistic Models.

• Reference Material
• Please follow the notes as the primary reference on this topic. Supplementary 

reading on topics covered in class from AIMA Ch 20 sections 20.1 – 20.2.4.
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Learning Probabilistic Models

• Models are useful for making optimal decisions. 
• Probabilistic models express a theory about the domain and can be used for 

decision making. 

• How to acquire these models in the first place?
• Solution: data or experience can be used to build these models

• Key question: how to learn from data?
• Bayesian view of learning (learning task itself is probabilistic inference)
• Learning with complete and incomplete data. 
• Essentially, rely on counting. 
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Posterior Probability of Hypothesis

Probability of a bag of a certain type given 
observations.

Bayes Rule

IID assumption

True hypothesis eventually dominates.  Probability of indefinitely 
producing uncharacteristic data à0



Bayesian Prediction

• Predictions are weighted average over the 
predictions of the individual hypothesis.

• Bayesian prediction eventually agrees with 
the true hypothesis. 

• For any fixed prior that does not rule out the 
true hypothesis, the posterior probability of 
any false hypothesis will eventually vanish. 

• Why keep all the hypothesis?
• Learning from small data, early commitment to a 

hypothesis is risky, later evidence may lead to a 
different likely hypothesis. 

• Better accounting of uncertainty in making 
predictions. 

• Problem: maybe slow and intractable, cannot 
estimate and marginalize out the hypotheses. 

What is the probability that the next 
candy is of type lime?

Observations



MAP Estimation

Marginalization over 
hypothesis may be difficult 
hence may take only the 
most probable hypothesis. 



MAP Vs. Bayesian Estimation



MLE Estimation

Make predictions with the hypothesis that maximizes the data likelihood. Essentially, assuming a 
uniform prior with no preference of a hypothesis over another.  



Maximum Likelihood Estimation (MLE)

• Write the expression for the likelihood of 
the data given the probabilistic model as 
characterized by the parameters. 
• Take the log likelihood.

• Optimize the likelihood given the 
parameters.
• Write down the derivative of the log 

likelihood with respect to each parameter. 
• Find the parameters such that the derivatives

are zero. 



MLE Example

• Estimating the parameters of a biased coin. 
• Setup
• P(Heads) = q,  P(Tails) = 1-q
• Flips are independent and identically distributed 

according to an unknown distribution. 
• Observe a sequence D of aH Heads and aT Tails
• Learning task: parameter q.
• Hypothesis space: Binomial distributions

D={xi | i=1…n},  P(D | θ ) = ΠiP(xi | θ )

Data: sequence of coin toss 
observations 

H H T H T



MLE Steps

• Formulate the objective Function

• MLE of q that maximizes the probability of D.

• Optimize the objective function. 

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T ] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T ] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T ] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

�̂ = argmax
✓

lnP (D | �)

ln �↵H

d

d�
lnP (D | �) =

d

d�
ln �↵H (1� �)↵T

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T ] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1



Maximum a posteriori (MAP) Estimates

• Maximum likelihood estimate (MLE)
• Estimates the parameters that maximizes 

the data likelihood. 
• Relative counts give MLE estimates

• Maximum a posteriori estimate (MAP)
• Bayesian parameter estimation
• Encodes a prior over the parameters (not all 

parameters are equal prior values). 
• Combines the prior and the likelihood while 

estimating the parameters. 



Learning Parameters for a Probability Model

• Probabilistic models require 
parameters (numbers in the 
conditional probability tables).
• We need these values to make 

predictions. 
• Can we learn these from data (i.e., 

samples from the Bayes Net)?
• How to do this? Counting and 

averaging. Can we use samples to estimate the 
values in the tables? 



Learning Parameters for a Probability Model

Classification Problem
• Task: given inputs x, predict labels (classes) y
• Examples:

• Spam detection (input: document,
classes: spam / ham)

• OCR (input: images, classes: characters)
• Medical diagnosis (input: symptoms, classes: diseases)
• Fraud detection (input: account activity, classes: fraud / no fraud)



Bayes Net for Classification

• Input: images / pixel grids
• Output: a digit 0-9

• Setup:
• Get a large collection of example images, each labeled with a digit
• Note: someone has to hand label all this data!
• Want to learn to predict labels of new, future digit images

• Features: The attributes used to make the digit decision
• Pixels: (6,8)=ON
• Shape Patterns: NumComponents, AspectRatio, NumLoops
• …

0

1

2

1

Not clear



Bayes Net for Classification
• Naïve Bayes: Assume all features are independent effects of the label

• Simple digit recognition:
• One feature (variable) Fij for each grid position <i,j>
• Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
• Each input maps to a feature vector, e.g.

Y

F1 FnF2



Parameter Estimation

• Need the estimates of local conditional probability tables.

• P(Y), the prior over labels
• P(Fi|Y) for each feature (evidence variable)
• These probabilities are collectively called the parameters of the 

model and denoted by q
• Till now, the table values were provided. 
• Now, use data to acquire these values. 



Parameter Estimation

• P(Y) – how frequent is the class-type for digit 3?
• If you take a sample of images of numbers how frequent is this 

number

• P(Fi|Y) – for digit 3 what fraction of the time the cell is on?
• Conditioned on the class type how frequent is the feature

• Use relative frequencies from the data to estimate these 
values.



Parameter Estimation: Complete Data

Note:  The data is “complete”. Each data 
point had values observed for “all” the 
variables in the model. 



Parameter Estimation



Parameter Estimation



Parameter Estimation



Problem: values not seen in the training data

If one feature was not seen in the training data, the likelihood goes to zero.
If we did not see this feature in the training data, does not mean we will 
not see this in training. Essentially overfitting to the training data set.  



Laplace Smoothing

• Pretend that every outcome occurs once 
more than it is actually observed. 

• If certain counts are not seen in training 
does not mean that they have zero 
probability of occurring in future. 

• Another version of Laplace smoothing
• instead of 1, add k times
• k is an adjustable parameter. 

• Essentially, encodes a prior (pseudo-
counts). 

H H T



Learning Multiple Parameters

• Estimate latent parameters 
using MLE.

• There are two CPTs in this 
example. 

• Observations are of both 
variables: Flavor and 
Wrapper. 

• Take log likelihood. 



Learning Multiple Parameters
• Minimize data likelihood to estimate the parameters. 

Maximum Likelihood Parameter Learning 
with complete data for a Bayes Net 
decomposes into separate learning 
problems, one for each parameter. 



How to learn the structure of the Bayes Net? 

• Problem: Estimate/learn the structure 
of the model

• Setup a search process (like local search, 
hill climbing etc.)

• For each structure, learn the 
parameters. 

• How to score a solution?
• Use Max. likelihood estimation. 
• Penalize complexity of the structure 

(don’t want a fully connected 
model).

• Additionally check for validity of the 
conditional independences. 



Parameter Learning when some variables are 
not observed

• If we knew the missing 
value for B. Then we can 
estimate the CPTs.

• If we knew the CPTs then 
we can infer the probability 
of the missing value of B. 

• It is a chicken and egg 
problem. Data is incomplete. One sample has (A = 1, B= ? and C = 0 )



Expectation Maximization

• Initialization
• Initialize CPT parameter values (ignoring missing information)

• Expectation 
• Compute expected values of unobserved variables assuming current 

parameters values. 
• Involves BayesNet inference (exact or approximate)

• Maximization
• Compute new parameters (of the CPTs) to maximize the probability of data 

(observed and estimated)
• Alternate the EM steps until convergence. Convergence is guaranteed. 



Expectation Maximization



Expectation Maximization



Parameter Learning with Missing Data
Consider a problem of inferring the genre of 
a movie (Comedy or Drama) from the ratings 
given by two film reviewers R1 and R2.

Setting where only the ratings are observed.  

Slide adapted from Dorsa Sadigh and Percy Liang



Maximum Marginal Likelihood

Marginalize over the latent 
variables in the likelihood

Slide adapted from Dorsa Sadigh and Percy Liang



Expectation Maximization

Slide adapted from Dorsa Sadigh and Percy Liang



Expectation Maximization

The CPTs for the two reviewers is the same.  

Estimated Fractional samples

(g=c, r1=2, r2=2)     prob: 0.69
(g=d, r1=2, r2=2)    prob: 0.31
(g=c, r1=1, r2=2)     prob: 0.5
(g=d, r1=1, r2=2)    prob: 0.5

Revising probabilities based on 
fractional samples. 

Slide adapted from Dorsa Sadigh and Percy Liang



EM in Continuous Space: Gaussian Mixture 
Modeling

Web link: https://lukapopijac.github.io/gaussian-mixture-model/

• Problem: clustering task where we want 
to discern multiple category in a 
collection of given points. 
• Assume a mixture of components 

(Gaussian)
• Don’t know which data point comes 

from which component. 
• Use EM to iteratively determine the 

assignments and the parameters of the 
Gaussian components. 

P (x) =
kX

i=1

P (C = i)P (x|C = i)
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Closely related: K-Means Clustering

A GMM yields a probability distribution 
over the cluster assignment for each 
point; whereas K-Means gives a single 
hard assignment



K-Means: Application 

Goal of Segmentation is to partition 
an image into regions each of 
which has reasonably homogenous 
visual appearance. 

Apply K-Means in the colour space. 



Learning a Best Fit Hypothesis: Linear 
Regression Task
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Linear regression (no bias)

Linear regression (with bias)

Error term/Loss term

Material from
https://www.deeplearningbook.org/
Chapter 5

Examples:
- Predicting pollution levels from visibility
- Predicting reactivity of a molecule from 

structural data.

Learning: Optimizing the loss will estimate the model parameters w and b. 
Online: Given the trained model, we can predict a value. 

https://www.deeplearningbook.org/


Linear Regression Example
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Material from
https://www.deeplearningbook.org/
Chapter 5

Learning/Training:
Optimize the error w.r.t. the model parameters, w

Optimal w and the implied linear model

Function/model space Parameter space

Inference:
Use the trained model i.e. w, to perform predictions

https://www.deeplearningbook.org/


Model Fitting to Data
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Material from
https://www.deeplearningbook.org/
Chapter 5

Overfitting and underfitting with 
polynomial functions

We seek a reasonable model 
that is neither underfitting nor 
over fitting. 

That means, we prefer certain 
types of models. 

How to “regularize” or solution, 
incorporate certain preferences?

https://www.deeplearningbook.org/


Regularization
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Material from
https://www.deeplearningbook.org/
Chapter 5

• Adding a preference for one solution in its hypothesis 
space to another. 
• Incorporate that preference in the objective 

function we are optimization. 

• Weight term
• Adding a term to the loss function that prefers 

smaller squared sum of weights. A prior over the 
parameters. 

• Penalize a very complex model to explain the 
date. 

• Lambda parameter 
• Selected ahead of time that controls the strength 

of our preference for smaller weights.
• It is a “hyper”-parameter that needs tuning, 

expressing our trade off.  

https://www.deeplearningbook.org/


Training and Generalization Errors
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• Goal
• Doing learning to estimate parameters of a model. 
• Optimizing a loss function that measures the good ness of a model. 

• Data set consists of labeled instances 
• Digit images and digits
• Emails with labels such as spam or no spam

• Need for Generalization
• A machine learning algorithm must perform well on new, previously unseen 

inputs 
• Note just those on which the model was trained. 
• Essentially, it should not memorize the data. 

• Training and Test sets
• The learner should never look at the test data. 
• Training set -> training error
• Test set -> “generalization” error

• Central Challenge for a Learning Algorithm
• Make the training error small
• Make the gap between the training and the test error small

Training
Data

Held-Out or 
Validation 

Data

Test
Data



Relation between model capacity and error
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Material from
https://www.deeplearningbook.org/
Chapter 5

• Underfitting regime
• Training error and generalization 

error are both high. 
• Increase capacity

• Training error decreases 
• Gap between training and 

generalization error increases.
• Overfitting 

• The size of this gap outweighs the 
decrease in training error, 

• capacity is too large, above the 
optimal capacity. 

We can train a model only on the training set. The test set is not available 
during training.  
How do we know the generalization error when we cannot use the test set?

https://www.deeplearningbook.org/


Hyper-parameters and Validation Sets
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• Parameters: P(X), P(Y|X)
• Hyper-parameters: k, lambda etc. 

• Selecting hyper-parameters
• For each value of the hyperparameters, train and test on 

the held-out data or the validation data set.
• Choose the best value and do a final test on the test data

Training
Data

Held-Out or 
Validation 

Data

Test
Data



Optimizing the loss
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• The loss term is composed of the 
predictions under the weights and 
the regularization term. 

• The goal is to optimize the loss 
function given the parameters 



Gradient Descent
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• Compute the gradient and take the step in that direction. 
• Gradient computation

• Analytic 
• Numerical

original W

negative gradient direction
W_1

W_2



Mini-batch Gradient Descent
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Problem: Large data sets. Difficult to compute the full loss 
function over the entire training set in order to perform 
only a single parameter update

Solution: Only use a small portion of the training set 
to compute the gradient.

original W

noisy gradient from minibatch

W_1

W_2



Stochastic Gradient Descent
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Setting the mini-batch to contain only a single 
example.

Gradients are noisy but still make good 
progress on average. 

original W

True gradients in blue
minibatch gradients in red

W_1

W_2



Gradient vs Mini-batch Gradient Descent
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Cost function decomposes as a sum 
over training examples of per-
example loss function

Gradient for an additive cost function

Mini-batch m’, where m’ is kept constant 
while m is increasing. 

Update the parameters with the 
estimated gradient from the mini-batch.

Theta denotes the parameters. Same as w used in the previous slides. 


