COL333/671: Introduction to AI Semester I, 2022-23
 Probabilistic Reasoning over Time

Rohan Paul

Outline

- Last Class
- Probabilistic Reasoning
- This Class
- Probabilistic Reasoning over Time
- Reference Material
- AIMA Ch. 15

Acknowledgement

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Doina Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Anca Dragan, Nicholas Roy and others.

Reasoning: Sequence of Observations

- Reasoning over time or space
- Several Applications
- Monitoring a disease
- Robot localization
- Target Tracking
- Speech recognition
- User attention
- Gesture recognition

Wildlife monitoring

https://movementecologyjournal.biomedcentral.com/article s/10.1186/s40462-021-00243-z

Predicting student attrition

2.2.3 Forum Interaction Features

The forum is the primary means of student support and interaction during the course. The forum's basic software mechanisms allow us to observe the following useful features

Number of threads viewed this week, where a thread can only be viewed once a day. Since most active students undertake this passive interaction it s an important metric of engagement.
2. Number of threads followed this week, which is a slighty more active sign of engagement than

Number of upvotes given this week, indicating posts students found to be usefull, which is al
more active sign of engagement,
are this feature is a strong indicator .
Number of replies received this weet to eng
directly correlates with how much belonging as strudent feels in the cousse
.directy correlates with how much beelonging a student feils in the course. Number of upvotes received this week to any post previously made. This is important for the same reasons as 5 .
2.2.4 Assignment Foaturos

Students are exposed to ungraded lecture problems that are intertwined with lecture videos, as well as graded quizzes and homeworks that assesss their understanding of the material. Graded dassignments are convenienty due at the end of a week. Since these types of problems carry very different weights, we defin hem individually as follows:

1. Cumulative percentage score on homework problems that are due at the end of this week, or have been due in previous weeks. When monitoring this value from week to week, we again get a good gauge on how tar up-to-date a student is on the course.
2. Cumulative percentage score on quiz problems that are due at the end of this week, or have been
due in previous weeks.
. Cumulative percentage score on lecture problems that are available from the start of the course until this week. The difference between this and features 1 and 2 is that there is no due date for lecture
problems, so a student actually has the possibility to catch up on them at any point in the course
problems, so a student actually has the possibility to catch up on them at any point in the course.
3. Percentage score on homework problems that are only due this week. The score that a student

Figure 4 Attrition with time for students who view a consistent percentage of lecture videos each week. As an example, if a student is active in the course up until week 4 , and views $25 \%-5 \% \%$ of lecture minutes each we

Loan monitoring

Markov Models

- Value of X at a given time is called the state.

- Transition probabilities or dynamics,
- Specify how the state evolves over time
- Initial state probabilities
- Stationarity assumption: transition probabilities the same at all times.
- (First order) Markov Property
- Past and future independent given the present
- Each time step only depends on the previous

Markov Models

States: $\mathrm{X}=\{$ rain, sun $\}$

Initial distribution: 1.0 sun

CPT P($\left.X_{t} \mid X_{t-1}\right)$:
Representing the Markov model

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Markov Models: Example

- Initial distribution: 1.0 sun

-What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)=\quad & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Forward Algorithm for a Markov Chain

-What's $P(X)$ on some day t ?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Forward Algorithm for a Markov Chain

- From initial observation of sun
$\left\langle\begin{array}{l}1.0 \\ 0.0\end{array}\right\rangle$

$\left\langle\begin{array}{l}0.84 \\ 0.16\end{array}\right\rangle$
$\left\langle\begin{array}{l}0.804 \\ 0.196\end{array}\right\rangle$
\Longrightarrow $\left.\begin{array}{l}0.75 \\ 0.25\end{array}\right\rangle$
$\begin{array}{llll}\mathrm{P}\left(X_{1}\right) & \mathrm{P}\left(X_{2}\right) & \mathrm{P}\left(X_{3}\right) & \mathrm{P}\left(X_{4}\right)\end{array} \mathrm{P}\left(X_{\infty}\right)$
- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Hidden Markov Models (HMMs)

- Markov Chains
- Assume that we observe the state directly.
- Often this is not the case. We only have noisy observations of the state.

- Hidden Markov Models
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Weather HMM

The world state (rainy or sunny) is not directly observed. Instead have some observation such as a person carrying an umbrella or not.

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P\left(E_{t} \mid X_{t}\right)$

R_{t-1}	R_{t}	$P\left(R_{t} \mid R_{t-1}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

HMMs - Conditional Independences

HMMs make two important independence assumptions.

- Future state depends on past states via the present state.

- The current observation is independent of all else given current state

$$
\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)
$$

$$
\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)
$$

Filtering or Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
- $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $\mathrm{B}_{1}(\mathrm{X})$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $\mathrm{B}(\mathrm{X})$

Example: Robot Localization

Robot can take actions $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$ Detects walls from its sensors

Sensor model: can read in which directions there is a wall, never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob

$\mathrm{t}=2$

Example: Robot Localization

Prob

$t=3$

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob

$t=5$

Inference: Estimate State Given Evidence

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Approach: start with $\mathrm{P}\left(\mathrm{X}_{1}\right)$ and derive B_{t} in terms of $\mathrm{B}_{\mathrm{t}-1}$
- Equivalently, derive B_{t+1} in terms of B_{t}
- Two Steps:
- Passage of time
- Evidence incorporation

Estimating State Given Evidence: Base Cases

- Evidence incorporation
- Incorporating noisy observations of the state.

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
P\left(X_{1} \mid e_{1}\right)=\frac{P\left(X_{1}, e_{1}\right)}{\sum_{x_{1}} P\left(x_{1}, e_{1}\right)}
$$

$$
P\left(X_{1} \mid e_{1}\right)=\frac{P\left(e_{1} \mid X_{1}\right) P\left(X_{1}\right)}{\sum_{x_{1}} P\left(e_{1} \mid x_{1}\right) P\left(x_{1}\right)}
$$

- Passage of time
- The system state at the next time step given transition model

$$
\begin{aligned}
\left(x_{1}\right) \rightarrow & P\left(X_{2}\right) \\
& P\left(X_{2}\right)=\sum_{x_{1}} P\left(x_{1}, X_{2}\right)
\end{aligned}
$$

Next, perform these two computations repeatedly over each time step

$$
P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1}\right)
$$

Passage of Time

Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

Then, after one time step:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

Basic idea: the beliefs get "pushed" through the transitions

Incorporating Observations

Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

View it as a "correction" of the belief using the observation

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Inference: Weather HMM

Passage of time and correction at each stage.

Online Belief Updates: Inference over Time

- Every time step, we start with current $P(X \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Forward Algorithm

We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto X_{t} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Large Number of States

A grid over a large space can lead to a large state space.

Imagine tracking a car at a city scale.

The grid size will be very large!
Difficult to run the forward algorithm.

Particle Filtering

Problem: Sometimes $|\mathrm{X}|$ is too big to use exact inference

- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous (though here we focus on the discrete case)

Solution: approximate inference

- Track samples of X, not all values.
- Samples are called "particles"
- Time spent per step is linear in the number of samples
- Keep the list of particles in memory, not states
- Larger the number of particles, the better is the approximation.

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|\mathrm{X}|$
- $P(x)$ approximated by number of particles with value x
- Several x can have $P(x)=0$. Note that $(3,3)$ has half the number of particles.
- Larger the number of particles, better is the approximation.

Particles:

Representation: Passage of Time

Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Perform simulation or sampling
- The samples' frequencies reflect the transition probabilities
- In the example, most samples move clockwise, but some move in another direction or stay in place.
- This is an outcome of the probabilistic transition model.

Representation: Incorporate Evidence

- As seen previously, incorporating evidence adjusts or weighs the probabilities.
- Attach a weight to each sample.
- Weigh the samples based on the likelihood of the evidence.

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

Particles:

Representation: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- Now the update is complete for this time step, continue with the next one
Particles:
$(3,2) \mathrm{w}=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) \mathrm{w}=.4$

Representation: Particles

Particles: track samples of states rather than an explicit distribution

Application: tracking of a red pen. The blue dots indicate the estimated positions. Video: https://www.youtube.com/watch?v=SV6CmEha51k

Most Likely Explanation Queries

HMMs defined by

- States X
- Observations E
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X \mid X_{-1}\right)$
- Emissions: $P(E \mid X)$

Problem: Most-likely Explanation $\arg \max _{1: t} P\left(x_{1: t} \mid e_{1: t}\right)$ Determine the most likely sequence of states given all the evidence.

Solution: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

Each arc represents some transition

$$
x_{t-1} \rightarrow x_{t}
$$

Each arc has weight

$$
P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)
$$

Each path is a sequence of states
The product of weights on a path is that sequence's probability along with the evidence The most likely explanation query - is like finding the best path in this structure.

Viterbi Algorithm

Forward Algorithm (Sum)

$$
f_{t}\left[x_{t}\right]=P\left(x_{t}, e_{1: t}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
$$

Viterbi Algorithm (Max)

$$
\begin{aligned}
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Viterbi Algorithm

$$
\begin{aligned}
x_{1: T}^{*} & =\underset{x_{1: T}}{\arg \max } P\left(x_{1: T} \mid e_{1: T}\right)=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T}, e_{1: T}\right) \\
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =\max _{x_{1: t-1}} P\left(x_{1: t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{1: t-2}} P\left(x_{1: t-1}, e_{1: t-1}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

