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Outline

• Last Class
• Constraint Satisfaction

• This Class
• Adversarial Search 

• Reference Material
• AIMA Ch. 5 (Sec: 5.1-5.5)
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Game Playing and AI

• Games: challenging decision-making 
problems
• Incorporate the state of the other agent in 

your decision-making. Leads to a vast 
number of possibilities. 
• Long duration of play. Win at the end. 
• Time limits: Do not have time to compute 

optimal solutions. 

4



Games: Characteristics
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• Core: contingency problem
• The opponent’s move is not known ahead of time. A player must respond 

with a move for every possible opponent reply. 

• Output
• Calculate a  strategy (policy) which recommends a move from each state.

• Zero-Sum Games
• Adversarial: agents have opposite 

utilities (values on outcomes)

• Axes:
• Players: one, two or more. 
• Actions (moves): deterministic or 

stochastic
• States: fully known or not. 



Playing Tic-Tac-Toe: Essentially a search problem!
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Slide adapted from Dan Klein and from Mausam

Terminal nodes we get -1, 0 or 1 for loss, tie or 
win. Think of this value as a ”utility” of a state. 



Single-Agent Trees
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2 0 2 6 4 6… …



Computing “utility” of states to decide actions
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Non-Terminal States:
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2 0 2 6 4 6… …

Value of a state: 
The best achievable 

outcome (utility) 
from that state

Terminal States:



Game Trees: Presence of an Adversary

-20 -8 -18 -5 -10 +4… … -20 +8

The adversary’s actions are not in our control. Plan as a contingency considering all possible actions taken by the adversary. 



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Adversarial Search (Minimax)
• Consider a deterministic, zero-sum game
• Tic-tac-toe, chess etc. 
• One player maximizes result and the other minimizes result. 

• Minimax Search
• Search the game tree for best moves. 
• Select optimal actions that move to a position with the highest minimax 

value. 
• What is the minimax value?

• It is the best achievable utility against the optimal (rational) adversary. 
• Best achievable payoff against the best play by the adversary.



Minimax Algorithm
• Ply and Move

• Move: when action taken by both players.
• Ply: is a half move. 

• Backed-up value
• of a MAX-position: the value of the largest successor 
• of a MIN-position: the value of its smallest successor. 

• Minimax algorithm
• Search down the tree till the terminal nodes.  
• At the bottom level apply the utility function. 
• Back up the values up to the root along the search 

path (compute as per min and max nodes) 
• The root node selects the action. 

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively



Minimax Example

12 8 5 23 2 144 6

3 2 2
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Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v



Minimax Implementation
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Useful, when there are multiple adversaries. 



Minimax Properties

• Completeness
• Yes

• Complexity
• Time: O(bm)
• Space: O(bm)

• Requires growing the tree till the 
terminal nodes.   

• Not feasible in practice for a game 
like Chess. 



Minimax Properties

• Optimal
• If the adversary is playing optimally (i.e., 

giving us the min value)
• Yes

• If the adversary is not playing optimally 
(i.e., not giving us the min value)
• No. Why? It does not exploit the opponent’s 

weakness against a suboptimal opponent).

10 10 9 100

MAX

MIN

You: Cricle. Opponent: Cross

If min returns 9? Or 100?



Necessary to examine all values in the tree?

12 8 5 23 2 14

3 <=2 2
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Alpha-Beta Pruning: General Idea
• General Configuration (MIN version)

• Consider computing the MIN-VALUE at some node n, 
examining n’s children

• n’s estimate of the childrens’ min is reducing. 

• Who can use n’s value to make a choice?  MAX
• Let a be the best value that MAX can get at any choice 

point along the current path from the root

• If the value at n becomes worse than a, MAX will not pick 
this option, so we can stop considering n’s other children 
(any further exploration of children will only reduce the 
value further)

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Pruning: General Idea
• General Configuration (MAX version)

• Consider computing the MAX-VALUE at some node n, 
examining n’s children

• n’s estimate of the childrens’ max is increasing. 

• Who can use n’s value to make a choice?  MIN
• Let b be the lowest (best) value that MIN can get at any 

choice point along the current path from the root

• If the value at n becomes higher than b, MIN will not pick 
this option, so we can stop considering n’s other children 
(any further exploration of children will only increase the 
value further)

MIN

MAX

MIN

MAX n

b



Pruning: Example



Pruning: Example

8 <=4



Pruning: Example
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Pruning: Example



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision. 
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Alpha-Beta Pruning – Order of nodes matters
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12 8 5 23 2 14

3 <=2 2
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Alpha-Beta Pruning – Order of nodes matters
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12 8 5 143 2 2

3 <=2

3

<=2



Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision. 

3. The alpha-beta search cuts the largest amount off the tree when we 
examine the best move first

• However, best moves are typically not known. Need to make estimates.
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Alpha-Beta Pruning – Order of nodes matters
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Slide adapted from Prof. Mausam

If the nodes were indeed encountered as “worst 
moves first” – then no pruning is possible 

If the nodes were encountered as “best moves first” 
– then pruning is possible 

Note: In reality, we don’t know the ordering. 



Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision. 

3. The alpha-beta search cuts the largest amount off the tree when we 
examine the best move first

• Problem: However, best moves are typically not known. 
• Solution: Perform iterative deepening search and evaluate the states. 

4. Time Complexity
• Best ordering - O(bm/2). Can double the search depth for the same resources. Effective 

branching factor becomes b^{1/2} instead of b.  
• On average – O(b3m/4) if we expect to find the min or max after b/2 expansions. 
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Alpha-Beta for Chess

Slide adapted from Prof. Mausam

Minimax for Chess



Cutting-off Search
• Problem (Resource costraint):

• Minimax search: full tree till the terminal nodes. 
• Alpha-beta prunes the tree but still searches till the 

terminal nodes.
• We can’t search till the terminal nodes. 

• Solution: 
• Depth-limited Search (H-Minimax)
• Search only to a limited depth (cutoff) in the tree
• Replace the terminal utilities with an evaluation function 

for non-terminal positions.

? ? ? ?

-1 -2 4 9

4
MIN

MAX

-2 4

Cut off

Terminal nodes

Evaluations



Evaluation Functions
• Evaluation functions score non-terminals in depth-limited search. 
• Estimate the chances of winning. 

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

• e.g.  fi(s) = (number of pieces of type i), each weight wi etc.



Evaluation Functions
• Evaluation functions take a state and output an estimate of the true minimax value of 

that node. 
• Typically, “better” states will be assigned higher values by a good evaluation function in 

comparison to ”worse” states. Evaluation functions serve a similar purpose as heuristics in classical 
search.

• Depth-limited search applies evaluation function at the maximum solvable depth
• Gives them mock terminal utilities by the evaluation function. 

• Evaluation functions require features (some aspect of the current state). 
• Functions may or may not be linear. Require considerable thought and experimentation for 

designing. 
• The better the evaluation function is, the closer the agent will come to behaving 

optimally. 
• Going deeper into the tree before using the evaluation function also tends to give better results. 

Reduces the compromise of optimality. 



Determining “good” node orderings
• The ordering of nodes helps alpha-beta pruning. 

• Worst ordering O(bm). Best ordering O(bm/2).

• How to find good orderings 
• Problem: we only know them when we evaluate the nodes. 

• One approach – iterative deepening to determine 
evaluations for nodes
• What if we can do iterative deepening to a certain depth. Use the 

evaluation function at the set depth and then compute the values for the 
nodes in the tree that is generated. 

• Next time, use the evaluations of the previous search to order the nodes. 
Use them for pruning.  

• Use evaluations of the previous search for order. 



Game of Chance: Expectimax
• When the result of an action is not exactly 

known. Need a notion of uncertainty or 
chance in action selection. 

• Explicit randomness in the opponent’s 
action selection
• Unpredictable opponents: the ghosts move 

randomly in Pacman. 
• Rolling dice by a player in a game. 

• Pessimistic assumption is not valid for the 
adversary
• The adversary may not be that bad. May not 

provide the worst value. Optimal response 
may not be guaranteed. 
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10 10 9 100

max

Expectimax: 
At chance nodes the outcome is 
uncertain. Calculate the expected 
utilities: weighted average 
(expectation) of children



Expectimax Search

5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Mixed-type layers in a game tree are 
also possible. More than two agents. 



Expectimax Search

12 9 6 03 2 154 6 12 93 2

Can we perform pruning? 



Expectimax Search
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v



Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true 

expectimax value

• Depth-limit can also be applied 
in Expectimax search.
• Use heuristics to estimate the 

values at the depth limit. 



• The game of Go originated in China more than 
2000 years ago.
• Usually played on 19x19, also 13x13 or 9x9 

board 
• Black and white place down stones alternately.
• Surrounded stones are captured and removed. 
• The player with more territory wins the game.
• Complex strategy for capturing and creating a 

territory. 
• Grand challenge in AI game playing because of 

its complexity. 

Example: Game of Go



Example: Game of Go

Significantly higher branching factor compared 
to Chess. 
- Alpha-beta pruning/minimax does not scale. 
Not easy to evaluate all the action outcomes.  

Design of a heuristic function is difficult
- Most positions are in a flux till the end 

game. Value not a strong indicator of 
winning. 

Alternate approach, Monte-Carlo Tree Search.  

Popularized by Alpha Go
https://www.deepmind.com/research/highlighted-
research/alphago

https://www.deepmind.com/research/highlighted-research/alphago


Monte Carlo Tree Search (MCTS)

1. Simulations/Rollouts 

• Evaluation of a state V(s) using roll outs or 
simulating what will happen from this 
state on wards. 
• From state s play many times using a 

policy (e.g., random) and count wins 
and losses. 

• For games in which the only outcomes are 
a win or a loss, 
• The “win percentage” approximates 

the  “average utility”.



Monte Carlo Tree Search (MCTS)

2. Selective Search

• May not evaluate all states. 
• Be selective with evaluations on more 

promising actions/states. 
• Explore parts of the tree (without an explicit 

depth for exploration) that will 
• Improve the decision at the root (improve 

the estimation of the value function) 
• Grow the tree of states as needed to 

improve the value estimates of a state. 



Selection 
• Start from the root and select a move (via a 

selection/tree policy). 
• Used for nodes we have seen before 

Expansion 
• When we reach the frontier,  grow the search tree by 

generating a new child node of the node selected from 
the frontier.  



Selection 
• Start from the root and select a move (via a 

selection/tree policy). 
• Used for nodes we have seen before 

Expansion 
• When we reach the frontier,  grow the search tree by 

generating a new child node of the node selected from 
the frontier.  

Simulation 
• Perform playout from the newly generated child node. 
• Select moves for both players according to a playout 

policy (also called default policy) such as random action 
selection. 

• Do not record the nodes in the tree. 

Backpropagation 
• After reaching a terminal node 
• Update value and visits for states expanded in selection 

and expansion



Example



MCTS Procedure



Exploration vs. Exploitation

Selection Strategy 
• How to select moves/actions in the tree?
• Bias the moves towards those providing 

higher value.
• But we may not know about the value of 

certain states or may be very uncertain about 
them. Hence, sometimes we should explore 
too. 

• Fundamental trade-off between exploration 
and exploitation. 

How to select the moves balancing 
exploration and exploitation.



Upper Confidence Bound applied to Trees 

• N(n) = number of rollouts from node n
• U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))
• C is the tunable parameter. 

• The first term is the exploitation term: the average utility of node n. 
• The second term is the exploration term: how uncertain we are about the node’s utility.

• The denominator is the number of visits to the states, so states visited less often are preferred. 
• The numerator is the log of the number of times the parent is explored. 
• If we are selecting n for some non-zero percentage of times then the exploration term goes to zero as 

the counts increase. 
• We will revisit this concept in the discussion on Reinforcement Learning later. 



Alpha Go combined learning with MCTS (used a NN to 
predict values/utilities of states). Employed self play etc. 



• Not all games are zero sum. 
• Loss for one agent may not be win for 

the other agent. 
• Different agents may have different 

tasks in the game that don’t directly 
involve strictly competing against each 
other. 

• Multi-agent utilities.
• Generalization of minimax. 
• Each player maximizes its own utility at 

each node they control and ignore the 
utilities of the other agents. 

• General gams with multi-agent 
utilities 
• Can invoke cooperation 
• The utility selected at the root tends to 

yield a reasonable utility for all 
participating agents. 

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Multiple players and other games



Game Playing AI: Wrap up

• Game playing domains
• Very large amount of contingency reasoning. 

• Exact decision making is nearly impossible. 
• Approximate evaluation functions etc. 
• Force efficient use of computation ( alpha-beta 

pruning. )
• An important test bed for AI algorithms. 

• We play games intuitively, used to reasoning. 
• Easy to compare human and computer 

performance. 
• Game playing has produced important 

research ideas
• Reinforcement learning (checkers)
• Iterative deepening (chess)
• Monte Carlo tree search (chess, Go)
• Solution methods for partial-information games 

in economics (poker)
54

“Games are to AI as grand prix is to automobile design”
Games viewed as an indicator of intelligence. 


