
Rohan Paul

COL333/671: Introduction to AI
Semester I, 2022-23

Constraint Satisfaction

1

Outline

• Last Class
• Local Search Algorithms

• This Class
• Constraint Satisfaction Problems

• Reference Material
• AIMA Ch. 6

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

3

Standard Search Problems

4

• A path from the start to the goal state is
the solution.
• Paths have costs (or depths).
• Heuristics provide problem-specific

guidance.
• State is a “black box”, arbitrary data

structure
• Goal test can be any function over

states.

Route finding problem solved as a
search problem

Constraint Satisfaction Problems (CSPs)

5

• CSP
• A set of variables {X1, X2, …, Xn) to which values (d1, d2 , …, dn) from a domain

D can be assigned.

• Solution
• A complete variable assignment that is consistent (satisfies all the given

constraints).

• States
• Explicitly represented as variable assignments

• Goal test:
• The set of constraints specifying allowable combination of values for subset

of variables.

Example: Map Coloring

6

• Variables:

• Domains:

• Constraints: adjacent regions must have different
colors

• Solutions are assignments satisfying all constraints,
e.g.:

Implicit:

Explicit:

Constraint Graph

7

• Binary constraint satisfaction problem
• Each constraint relates (at most) two variables

• Binary constraint graph
• Nodes are variables
• Arcs show constraints

• General-purpose CSP solvers make use of the graph
structure to speed up search.
• E.g., Tasmania is an independent subproblem.

Example: Sudoku

8

Variables: Each (open) square
Domains: {1, 2, …, 9}
Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

Example: Scheduling

9

An example of a manually prepared roster of persons
assigned to shifts/rooms.

Types of Constraints

10

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent to reducing domains),

e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., sudoku constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems

Solving CSPs

11

• Standard search formulation of CSPs

• States: values assigned so far (partial
assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

Standard Search

12

…

• Enumerate all assignments to variables. Create
the entire tree.

• Check all the constraints at the end. Goal can be
checked at the bottom of the tree.

• Can use a search method like DFS.

Goals: consistent and
complete assignments.

Problem with a direct DFS search?
• Testing the constraints at the end, only then we know that the goal has been attained.
• Do we need to wait till all variables assigned if we already know that the assignment is failing.
• Can we test incrementally and detect failures earlier than the complete assignment?

Height is the number of
variables.

One stage of successor generation. Select variable Q
and try Red, Blue or Green values.

Backtracking Search over Assignments

13

• Search component
• At each step, consider assignments to a single variable
• Variable assignments are commutative (we can pick the order)
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]

• Inference or Constraint Checking
• Can we check constraints incrementally instead of all at the end?

• Incremental ”goal test”. Check constraints as the variable is assigned.
• I.e. only assign values to variables which do not conflict previous assignments.

• Some computation is involved in checking constraints.
• Backtracking Search

• Depth-first search with incremental variable assignment and constraint checking on
the go.

• Back track as soon as a failure is detected.

Backtracking Search

14

• Informally,
• Pick a variable to assign.
• Pick an assignment for the variable.
• Check if all the constraints are

satisfied.
• If the constraints are not satisfied,

then try a different assignment.
• If no assignments left, need to back

track.
• If the assignment is complete, then

we have a solution.
• ……. Generate successors by selecting variables and values. Incrementally

check the violation of constraints (backtrack when necessary).

Backtracking Search: Pseudocode

15

Backtracking = DFS + variable-ordering + fail-on-violation

Backtracking Search

16

How to order the variables during backtracking search?

Ordering Variables

17

• Most Constrained Variable (Minimum Remaining Values)
• When you have multiple variables to assign, then choose the

variable with the fewest remaining legal values in its domain
• A CSP solution must have an assignment for all variables.
• Try the variables likely to fail early rather than late. Fail fast.

…
Detect infeasibility
early on, not at
the bottom

After assigning WA = R, the variables NT and SA have two legal values
where as Q, NSW, V and T have three legal values. Prefer selecting NT
or SA over the other remaining variables.

Degree Heuristic

18

• Take the case of picking the first variable to assign.
• Minimum Remaining Values Heuristic does not help in the first variable. All have the same

number of legal values in the domain.
• In general, how to break ties among MRV variables?

• Degree Heuristic
• Select the variable involved in the largest number of constraints on other unassigned

variables.
• Why?

• This value reduces possible values for others. In effect, reduces branching factor.

Variable SA should be picked. SA
is involved in 5 constraints.
Others variables are involved in
3, 2 or 0 constraints.

Backtracking Search

19

Ordering Values

20

• Least Constrained Value
Given a variable choose a value that rules out the fewest values in the remaining
unassigned variables.

• Leave maximum flexibility for subsequent assignments.
• We only need one value (assigned to a variable) so that the constraints are satisfied.

Look for most likely solutions first. Fail last.

Consider the case where: WA = R and NT = G.
Next, we pick Q for an assignment. Options are Q=R or Q=B.
Examine effect on SA (Q=Red is a better option) as it leaves a possible assignment instead of Q=Blue.

If Q = Red then, there is one
possible assignment for SA = B

If Q = Blue then, there is no
legal value left for SA.

Solving CSPs: Improving Efficiency

21

• Which variable should be
assigned next?
• In what order should its values

be tried?
• Can we detect inevitable

failures early?
• Can we take advantage of the

problem structure?

• Basic Idea: Track domains for unassigned variables and eliminate values that violate constraints with existing
assignments. Propagate information from assigned to unassigned variables linked with a constraint.

• Forward Checking: When a variable X is assigned, check the unassigned variable Y connected to X by a
constraint. Delete from Y any value that is inconsistent with the value assigned for X.

Inference/Filtering: Forward Checking

WA
SA
NT Q

NSW
V

Problem with Forward Checking

23

• Forward Checking propagates information from assigned to unassigned variables. No propagation
between unassigned variables.

• Only 1-step look ahead, does not examine all future implications of the current assignment.

WA SA

NT Q

NSW

V

NT and SA cannot be blue. This
partial assignment could be
extended. Still, we went ahead.
No information propagated
between two unassigned
variables.

Arc Consistency

Takeaway

• If the domain values at the head (Y) change when assigned, then we need to check if the values in the tail (X) are
still consistent with the assignment to Y. If not , then remove the values for X that are inconsistent, thereby
making the arc X -> Y ”arc consistent”.

Enforcing Consistency of a Single Arc
• An arc X ® Y is consistent iff for every value for x (the “tail” of the arc) there is some value y (the “head”

of the arc) which could be assigned without violating a constraint.

• Enforcing consistency of arcs pointing into the new assignment. Examine the domains of all variables that
act as a “tails” for a constraint arc coming into the variable assigned just now as the “head”.

WA SA

NT Q

NSW

V

Remember: Always delete the domain value from
the “tail” of the arc.

Enforcing Arc Consistency for the Entire CSP
• Ensure that all arcs in the constraint graph are consistent:

• Take away
• If X loses a value in its domain, the neighbors of X (arcs coming in) need to be re-examined for consistency.
• Arc consistency detects failure earlier than forward checking.
• Forward checking was 1-step look ahead. Arc consistency further examines implications.
• If no values left in the domain of a variable, then do not continue and backtrack as the CSP does not have a

solution

WA SA

NT Q

NSW

V

AC-3: Enforcing Arc Consistency in a CSP
Mackworth, 1977

Maintain a queue of arcs

Obtain an arc

Enforce arc consistency
between Xi (tail) –> Xj (head).
Checking if due to assignment
for Xj is adjustment needed
for Xi?

If the domain of Xi (tail) changes
due to Xj (head) then, add all the
edges coming into Xi from the
Xk. (Done by inserting Xk, Xi)

Runtime: O(n2d3) [n2 edges x d2 time in consistency x d arc insertions (only domain reduction triggers insertion of an edge in the queue)]

Backtracking Search (with Inference)

• Run Forward Checking or Arc Consistency.
• Also called interleaving search and

inference.
• Polynomial time
• We will still back track at times as AC-3

cannot detect all the inconsistencies
(detecting all inconsistencies is NP-hard).

Arc Consistency: Limitation
• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Example:
• This CSP has a consistent assignment

(see top figure).
• Consider the second assignment, arc

consistency is established but there is
no overall solution in this case (see
below figure).

K-Consistency
• Increasing degrees of consistency

• 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

• 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

• K-Consistency: For each k nodes, any consistent assignment to k-1 can
be extended to the kth node.

• Higher k more expensive to compute.

• k=2 case is arc consistency.
• In our example, arc consistency was enforced (K=2) but path

consistency (K=3) was not. The overall inconsistency could not be
detected with K=2.

Exploiting Problem Structure

• Independent subproblems are identifiable as
connected components of constraint graph
• Example: Tasmania and mainland do not interact
• Decomposing a graph of n variables into subproblems of only

c variables simplifies the problem.

• Tree-structured CSPs
• Some CSP structures are easier to solve
• Theorem: if the constraint graph has no loops, the CSP

can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is

O(dn)

General idea: Some CSP structures are easy to solve. Either find and exploit that structure or perform
reductions to simplify the problem.

Tree-Structured CSPs

• Algorithm for tree-structured CSPs
• Topological sort: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply Make-Arc-Consistent (Parent(Xi), Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) by picking any

consistent value from the domain.

• Overall idea
• If we can handle the instantiation of certain variables, then the remaining problem can be simplified.
• Conditioning: instantiate a variable, prune its neighbors' domains and solve the residual graph
• The residual graph is easier to solve as it is tree structured.

• Cutset conditioning
• Find a subset of variables S, such that the remaining constraint graph becomes a tree after the removal of S (S is a cycle

cut set).
• Instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree.
• Remove from the domains of the remaining variables any values that are inconsistent with the assignment for S

Improving Structure

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Note: branching on the number of ways to instantiate the cut set variables.
Finding the “optimal” cutset is not easy (in general NP-hard). Easier if we know about the problem structure.

