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Standard Search Problems
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• A path from the start to the goal state is 
the solution. 
• Paths have costs (or depths). 
• Heuristics provide problem-specific

guidance.
• State is a “black box”, arbitrary data 

structure
• Goal test can be any function over 

states. 

Route finding problem solved as a 
search problem



Constraint Satisfaction Problems (CSPs)
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• CSP
• A set of variables {X1, X2, …, Xn) to which values (d1, d2 , …, dn) from a domain 

D can be assigned.

• Solution
• A complete variable assignment that is consistent (satisfies all the given 

constraints). 

• States
• Explicitly represented as variable assignments

• Goal test:
• The set of constraints specifying allowable combination of values for subset 

of variables. 



Example: Map Coloring
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• Variables:

• Domains:

• Constraints: adjacent regions must have different 
colors

• Solutions are assignments satisfying all constraints, 
e.g.:

Implicit:

Explicit:



Constraint Graph
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• Binary constraint satisfaction problem
• Each constraint relates (at most) two variables

• Binary constraint graph
• Nodes are variables
• Arcs show constraints

• General-purpose CSP solvers make use of the graph 
structure to speed up search. 
• E.g., Tasmania is an independent subproblem.



Example: Sudoku
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Variables: Each (open) square
Domains: {1, 2, …, 9}
Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region



Example: Scheduling
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An example of a manually prepared roster of persons 
assigned to shifts/rooms. 



Types of Constraints
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• Varieties of Constraints
• Unary constraints involve a single variable (equivalent to reducing domains), 

e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., sudoku constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems



Solving CSPs
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• Standard search formulation of CSPs

• States: values assigned so far (partial 
assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an 

unassigned variable
• Goal test: the current assignment is 

complete and satisfies all constraints



Standard Search
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…

• Enumerate all assignments to variables. Create 
the entire tree. 

• Check all the constraints at the end. Goal can be 
checked at the bottom of the tree. 

• Can use a search method like DFS.

Goals: consistent and 
complete assignments.

Problem with a direct DFS search?
• Testing the constraints at the end, only then we know that the goal has been attained. 
• Do we need to wait till all variables assigned if we already know that the assignment is failing. 
• Can we test incrementally and detect failures earlier than the complete assignment?

Height is the number of 
variables. 

One stage of successor generation. Select variable Q 
and try Red, Blue or Green values.



Backtracking Search over Assignments

13

• Search component
• At each step, consider assignments to a single variable
• Variable assignments are commutative (we can pick the order)
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]

• Inference or Constraint Checking
• Can we check constraints incrementally instead of all at the end?

• Incremental ”goal test”. Check constraints as the variable is assigned. 
• I.e. only assign values to variables which do not conflict previous assignments. 

• Some computation is involved in checking constraints. 
• Backtracking Search

• Depth-first search with incremental variable assignment and constraint checking on 
the go.

• Back track as soon as a failure is detected. 



Backtracking Search
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• Informally, 
• Pick a variable to assign. 
• Pick an assignment for the variable. 
• Check if all the constraints are 

satisfied. 
• If the constraints are not satisfied, 

then try a different assignment. 
• If no assignments left, need to back 

track. 
• If the assignment is complete, then 

we have a solution. 
• ……. Generate successors by selecting variables and values. Incrementally 

check the violation of constraints (backtrack when necessary).



Backtracking Search: Pseudocode
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Backtracking = DFS + variable-ordering + fail-on-violation



Backtracking Search
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How to order the variables during backtracking search? 



Ordering Variables
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• Most Constrained Variable (Minimum Remaining Values)
• When you have multiple variables to assign, then choose the 

variable with the fewest remaining legal values in its domain
• A CSP solution must have an assignment for all variables. 
• Try the variables likely to fail early rather than late. Fail fast. 

…
Detect infeasibility 
early on, not at 
the bottom

After assigning  WA = R, the variables NT and SA have two legal values 
where as Q, NSW, V and T have three legal values. Prefer selecting NT 
or SA over the other remaining variables.  



Degree Heuristic
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• Take the case of picking the first variable to assign.
• Minimum Remaining Values Heuristic does not help in the first variable. All have the same 

number of legal values in the domain. 
• In general, how to break ties among MRV variables?

• Degree Heuristic
• Select the variable involved in the largest number of constraints on other unassigned 

variables. 
• Why? 

• This value reduces possible values for others. In effect, reduces branching factor. 

Variable SA should be picked. SA 
is involved in 5 constraints. 
Others variables are involved in 
3, 2 or 0 constraints. 



Backtracking Search
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Ordering Values
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• Least Constrained Value
Given a variable choose a value that rules out the fewest values in the remaining 
unassigned variables.

• Leave maximum flexibility for subsequent assignments.
• We only need one value (assigned to a variable) so that the constraints are satisfied. 

Look for most likely solutions first. Fail last.

Consider the case where: WA = R and NT = G. 
Next, we pick Q for an assignment. Options are Q=R or Q=B. 
Examine effect on SA (Q=Red is a better option) as it leaves a possible assignment instead of Q=Blue.  

If Q = Red then, there is one 
possible assignment for SA  = B

If Q = Blue then, there is no 
legal value left for SA. 



Solving CSPs: Improving Efficiency
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• Which variable should be 
assigned next?
• In what order should its values 

be tried?
• Can we detect inevitable 

failures early? 
• Can we take advantage of the 

problem structure?



• Basic Idea: Track domains for unassigned variables and eliminate values that violate constraints with existing 
assignments. Propagate information from assigned to unassigned variables linked with a constraint. 

• Forward Checking: When a variable X is assigned, check the unassigned variable Y connected to X by a 
constraint. Delete from Y any value that is inconsistent with the value assigned for X. 

Inference/Filtering: Forward Checking

WA
SA
NT Q

NSW
V



Problem with Forward Checking
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• Forward Checking propagates information from assigned to unassigned variables. No propagation 
between unassigned variables. 

• Only 1-step look ahead, does not examine all future implications of the current assignment. 

WA SA

NT Q

NSW

V

NT and SA cannot be blue. This 
partial assignment could be 
extended. Still, we went ahead. 
No information propagated 
between two unassigned 
variables. 



Arc Consistency

Takeaway

• If the domain values at the head (Y) change when assigned, then we need to check if the values in the tail (X) are 
still consistent with the assignment to Y.  If not , then remove the values for X that are inconsistent, thereby 
making the arc X -> Y ”arc consistent”. 



Enforcing Consistency of a Single Arc
• An arc X ® Y is consistent iff for every value for x (the “tail” of the arc) there is some value y (the “head” 

of the arc) which could be assigned without violating a constraint. 

• Enforcing consistency of arcs pointing into the new assignment. Examine the domains of all variables that 
act as a “tails” for a constraint arc coming into the variable assigned just now as the “head”.

WA SA

NT Q

NSW

V

Remember: Always delete the domain value from 
the “tail” of the arc.



Enforcing Arc Consistency for the Entire CSP
• Ensure that all arcs in the constraint graph are consistent:

• Take away
• If X loses a value in its domain, the neighbors of X (arcs coming in) need to be re-examined for consistency. 
• Arc consistency detects failure earlier than forward checking.
• Forward checking was 1-step look ahead. Arc consistency further examines implications. 
• If no values left in the domain of a variable, then do not continue and backtrack as the CSP does not have a 

solution

WA SA

NT Q

NSW

V



AC-3: Enforcing Arc Consistency in a CSP
Mackworth, 1977

Maintain a queue of arcs

Obtain an arc

Enforce arc consistency 
between Xi (tail) –> Xj (head).
Checking if due to assignment 
for Xj is adjustment needed 
for Xi?

If the domain of Xi (tail) changes 
due to Xj (head) then, add all the 
edges coming into Xi from the 
Xk. (Done by inserting Xk, Xi) 

Runtime: O(n2d3) [n2 edges x d2 time in consistency x d arc insertions (only domain reduction triggers insertion of an edge in the queue)]



Backtracking Search (with Inference)

• Run Forward Checking or Arc Consistency. 
• Also called interleaving search and 

inference. 
• Polynomial time
• We will still back track at times as AC-3 

cannot detect all the inconsistencies 
(detecting all inconsistencies is NP-hard). 



Arc Consistency: Limitation
• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not 

know it)

• Example:
• This CSP has a consistent assignment 

(see top figure). 
• Consider the second assignment, arc 

consistency is established but there is 
no overall solution in this case (see 
below figure).  



K-Consistency
• Increasing degrees of consistency

• 1-Consistency (Node Consistency): Each single node’s domain has a 
value which meets that node’s unary constraints

• 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

• K-Consistency: For each k nodes, any consistent assignment to k-1 can 
be extended to the kth node.

• Higher k more expensive to compute.

• k=2 case is arc consistency. 
• In our example, arc consistency was enforced (K=2) but path 

consistency (K=3) was not. The overall inconsistency could not be 
detected with K=2. 



Exploiting Problem Structure

• Independent subproblems are identifiable as 
connected components of constraint graph
• Example: Tasmania and mainland do not interact
• Decomposing a graph of n variables into subproblems of only 

c variables simplifies the problem. 

• Tree-structured CSPs
• Some CSP structures are easier to solve
• Theorem: if the constraint graph has no loops, the CSP 

can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is 

O(dn)

General idea: Some CSP structures are easy to solve. Either find and exploit that structure or perform 
reductions to simplify the problem. 



Tree-Structured CSPs

• Algorithm for tree-structured CSPs
• Topological sort: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply Make-Arc-Consistent (Parent(Xi), Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) by picking any 

consistent value from the domain. 



• Overall idea
• If we can handle the instantiation of certain variables, then the remaining problem can be simplified. 
• Conditioning: instantiate a variable, prune its neighbors' domains and solve the residual graph
• The residual graph is easier to solve as it is tree structured. 

• Cutset conditioning
• Find a subset of variables S, such that the remaining constraint graph becomes a tree after the removal of S (S is a cycle 

cut set). 
• Instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree. 
• Remove from the domains of the remaining variables any values that are inconsistent with the assignment for S

Improving Structure



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset

Note: branching on the number of ways to instantiate the cut set variables.
Finding the “optimal” cutset is not easy (in general NP-hard). Easier if we know about the problem structure.  


