
Rohan Paul

COL333/671: Introduction to AI
Semester I, 2022-23

Local Search Algorithms

1

Outline

• Last Class
• Informed Search

• This Class
• Local Search Algorithms

• Reference Material
• AIMA Ch. 4.1

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

3

Search Methods for Discrete Optimization

4

• Setting
• A set of discrete states, X.
• An objective/evaluation function assigns a “goodness” value to a

state, Eval(X)
• Problem is to search the state space for the state, X* that

maximizes the objective.

• Searching for the optimal solution can be challenging. Why?
• The number of states is very large.

• Cannot simply enumerate all states and find the optimal.
• We can only evaluate the function.

• Cannot write it down analytically and optimize it directly.

Key Idea
- Searching for “the optimal”

solution is very difficult.
- Question is whether we can search

for a reasonably good solution.

Example

5Inspired from this example: https://www.shell.in/energy-and-innovation/ai-
hackathon/_jcr_content/par/textimage_1834506119_1619963074.stream/1612943059963/4b0a86b7cc0fe7179148284ffed9ef33524c2816/windfarm-layout-optimisation-challenge.pdf

Problem: Optimizing the locations of windmills in a
wind farm
• An area to place windmills.
• Location of windmills affects the others. Reduced

efficiency for those in the wake of others.
• Grid the area into bins.
• A large number of configurations of windmills

possible.
• Given a configuration we can evaluate the total

efficiency of the farm.
• Can neither enumerate all configurations nor

optimize the power efficiency function analytically.
• Goal is to search for the configuration that

maximizes the efficiency.

Example

4-Queens Problem
• Discrete set of states: 4 queens in 4

columns (44 = 256 states)
• Goal is to find a configuration such that

there are no attacks.
• Moving a piece will change the configuration.

• Any configuration can be evaluated using a
function
• h(x) = number of attacks (number of violated

binary constraints)
• Search for the configuration that is

optimal such that h = 0.

Slide adapted from from Dan Klein and Anca Dragan

Local Search Methods

• Keep track of a single "current" state
• We need a principled way to search/explore the state space hoping to find

the state with the optimal evaluation.
• Do not maintain a search tree as we need the solution not the path that

led to the solution.
• Only maintain a single current state.

• Perform local improvements
• Look for alternatives in the vicinity of that solution
• Try to move towards more better solutions.

7

Hill-climbing Search

8

Let S be the start node and let G be the goal node.
Let h(c) be a heuristic function giving the value of a node
Let c be the start node

Loop
Let c’ = the highest valued neighbor of c
If h(c) ≥ h(c’) then return c
c = c’

Hill climbing

Start at a configuration. Evaluate the neighbors. Move to the highest valued
neighbor if its value is higher than the current state. Else stay.

Hill climbing for 4 -queens

9

• Select a column and move the queen to
the square with the fewest conflicts.

• Perform local modifications to the state by
changing the position of one piece till the
evaluation is minimum.

• Evaluate the possibilities from a state and
then jump to that state.

Example

10

• Local search looks at a state
and its local neighborhood.

• Not constructing the entire
search tree.

• Consider local modifications
to the state. Immediately
jump to the next promising
neighbor state. Then start
again.

• Highly scalable.

Problem with hill climbing

Hill climbing can get stuck in the local
maxima.

Why? The neighbors may not be of
higher value. The search will stay at
the current state for a long time.

Optimization Landscape

Example: 8 Queens Problem

12

Local minima (h = 1). Every successor has a higher cost.

Improvements

13

• Random Re-start
• A series of searches from randomly generated initial states.
• Escape a plateau or local minimum.

• Stochastic Hill Climbing
• Instead of picking the best move, pick any move that produces an

improvement.
• Probability: steepness of the uphill move.
• Introduce randomness.

How to escape local minima?
- One way is to pick “bad” moves.

Simulated Annealing

14

• Allows some apparently bad moves - to escape local maxima.
• Decrease the size and the frequency of bad moves over time.

A form of Monte-Carlo Search. Move around the environment to explore it instead of systematically
sweeping. Powerful technique for large domains.

Simulated Annealing: How to decide p?

15

• Considering a move from state of value E to a
lower valued state of E’. That is considering a
sub-optimal move (E is higher than E’).
• If (E − E’) is large:
• Likely to be close to a promising maximum.
• Less inclined to to go downhill.

• If (E − E’) is small:
• The closest maximum may be shallow
• More inclined to go downhill is not as bad.

Simulated Annealing: Selecting Moves

16

• If the new value Ei is better than the old value E, move to Xi

• If the new value is worse (Ei < E) then move to the neighboring solution
as per Boltzmann distribution.

• Temperature (T>0)
• T is high, exp is ~0, acceptance probability is ~1, high probability of acceptance of

a worse solution.
• T is low, the probability of moving to a worse solution is ~ 0, low probability of

acceptance of a worse solution.
• Schedule T to reduce over time.

Simulated Annealing: Properties

17

• T is high
• The algorithm is in an exploratory phase
• Even bad moves have a high chance of

being picked

• T is low
• The algorithm is in an exploitation phase
• The “bad” moves have very low

probability

• If T is decreased slowly enough
• Simulated annealing is guaranteed to

reach the best solution in the limit.

Simulated Annealing: Example

18

Able to escape local maxima.

Local Beam Search

19

• Look for solutions from multiple points in parallel.
• Algorithm
• Track k states (rather than 1).
• Begin with k randomly sampled states.
• Loop
• Generate successors of each of the k-states
• If anyone has the goal, the algorithm halts
• Otherwise, select only the k-best successors from the list and repeat.

• Note:
• Each run is not independent, information is passed between parallel search threads.
• Promising states are propagated. Less promising states are not propagated.
• Problem: states become concentrated in a small region of space.

Stochastic Beam Search

20

• Local beam search
• Problem: states become concentrated in a small region of space
• Search degenerates to hill climbing

• Stochastic beam search
• Instead of taking the best k states
• Sample k states from a distribution
• Probability of selecting a state increases as the value of the state.

Summary

This Module
• Local Search

Next Module
• Variable-based models

21

