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Search Methods for Discrete Optimization

] Eval(X
* Setting %)
* A set of discrete states, X.
* An objective/evaluation function assigns a “goodness” value to a
state, Eval(X)
* Problem is to search the state space for the state, X* that
maximizes the objective.
* Searching for the optimal solution can be challenging. Why? Key Idea
* The number of states is very large. - Searching for “the optimal”
 Cannot simply enumerate all states and find the optimal. SOIUt".’“ IS very difficult.
« We can only evaluate the function. - Question is whether we can search
. , S for a reasonably good solution.
e Cannot write it down analytically and optimize it directly.
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Problem: Optimizing the locations of windmills in a N R A
wind farm T .
|
* An area to place windmills. N e

* Location of windmills affects the others. Reduced
efficiency for those in the wake of others.

* Grid the area into bins.

* Alarge number of configurations of windmills
possible.

e Given a configuration we can evaluate the total
efficiency of the farm.

* Can neither enumerate all configurations nor
optimize the power efficiency function analytically.

* Goalis to search for the configuration that
maximizes the efficiency.

Figure 5: Turbines experiencing multiple wakes. As an example, turbine 3 is experiencing
wake effects from both turbine 1 and 2. Image adopted from [4].

Inspired from this example: https://www.shell.in/energy-and-innovation/ai-
hackathon/_jcr_content/par/textimage 1834506119 1619963074.stream/1612943059963/4b0a86b7cc0fe7179148284ffed9ef33524c2816/windfarm-layout-optimisation-challenge.pdf



Example

4-Queens Problem

* Discrete set of states: 4 queensin 4
columns (4% = 256 states)

* Goalis to find a configuration such that
there are no attacks.

* Moving a piece will change the configuration.

* Any configuration can be evaluated using a
function

* h(x) = number of attacks (number of violated
binary constraints)

e Search for the configuration that is
optimal such that h =0.

Slide adapted from from Dan Klein and Anca Dragan



Local Search Methods

* Keep track of a single "current” state

* We need a principled way to search/explore the state space hoping to find
the state with the optimal evaluation.

* Do not maintain a search tree as we need the solution not the path that
led to the solution.

* Only maintain a single current state.

* Perform local improvements
* Look for alternatives in the vicinity of that solution
* Try to move towards more better solutions.



Hill-climbing Search

Let S be the start node and let G be the goal node.
Let h(c) be a heuristic function giving the value of a node

Let c be the start node

Loop
Let ¢’ = the highest valued neighbor of c

If h(c) = h(c’) then return c
c=c

Hill climbing

Start at a configuration. Evaluate the neighbors. Move to the highest valued
neighbor if its value is higher than the current state. Else stay.




Hill climbing for 4 -queens
74 v Queers v v D =

e Select a column and move the queen to
the square with the fewest conflicts.

* Perform local modifications to the state by
changing the position of one piece till the
evaluation is minimum.

* Evaluate the possibilities from a state and
then jump to that state.




Example

Local search looks at a state
and its local neighborhood.

Not constructing the entire
search tree.

Consider local modifications
to the state. Immediately
jump to the next promising
neighbor state. Then start
again.

Highly scalable.
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Problem with hill climbing

Optimization Landscape

Hill climbing can get stuck in the local objectixe function lobal maximum
maxima.

Why? The neighbors may not be of
higher value. The search will stay at shoulﬁ

the current state for a long time. local maximum

"flat" local maximum

»state space

current
state



Example: 8 Queens Problem

1). Every successor has a higher cost.

Local minima (h
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Improvements

* Random Re-start
* A series of searches from randomly generated initial states.
* Escape a plateau or local minimum.

 Stochastic Hill Climbing

* Instead of picking the best move, pick any move that produces an
iIimprovement.

* Probability: steepness of the uphill move.
* Introduce randomness.

How to escape local minima?
- One way is to pick “bad” moves.
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Simulated Annealing

* Allows some apparently bad moves - to escape local maxima.
* Decrease the size and the frequency of bad moves over time.

e Algorithm sketch

1. Start at initial configuration X of value E (high is good)
2. Repeat:
(a) Let X; be a random neighbor of X and E; be its value
(b) If E < E; then let X < X; and E + E;
(c) Else, with some probability p, still accept the move: X + X; and

e Best solution ever found is always remembered

A form of Monte-Carlo Search. Move around the environment to explore it instead of systematically

sweeping. Powerful technique for large domains. y



Simulated Annealing: How to decide p?

e Considering a move from state of value E to a E = E(X)
lower valued state of E’. That is considering a
sub-optimal move (E is higher than E’).

e If (E-FE’)is large:
* Likely to be close to a promising maximum.
* Less inclined to to go downhill.

E’= E(X)

e If (E-E’)is small:
E=E(X)

* The closest maximum may be shallow I~
* More inclined to go downhill is not as bad.
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Simulated Annealing: Selecting Moves

* If the new value E; is better than the old value E, move to X

* If the new value is worse (E; < E) then move to the neighboring solution

as per Boltzmann distribution. E— E.
o (£55)

* Temperature (T>0)

* Tis high, exp is ~0, acceptance probability is ~1, high probability of acceptance of
a worse solution.

* Tis low, the probability of moving to a worse solution is ~ O, low probability of
acceptance of a worse solution.

e Schedule T to reduce over time.
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Simulated Annealing: Properties

* Tis high
* The algorithm is in an exploratory phase
* Even bad moves have a high chance of

being picked
*Tis low
* The algorithm is in an exploitation phase
* The “bad” moves have very low
probability
* If Tis decreased slowly enough

e Simulated annealing is guaranteed to
reach the best solution in the limit.

M
0
0 100 200 300 400 220

Temperature

Note that larger
deviations from
uphill search are
allowed at high
temperature

Iterations
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Simulated Annealing: Example

Able to escape local maxima.

= T = 11 5893

2
&)
N

2

T = 158975

Starting point: We move
most of the time uphill

Wo

© T = 12,877

/

Iteration 150:
Random downhill
moves allow us to
escape the local
extremum

o T=232731
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Local Beam Search

* Look for solutions from multiple points in parallel.

* Algorithm
e Track k states (rather than 1).
* Begin with k randomly sampled states.
* Loop
* Generate successors of each of the k-states
* If anyone has the goal, the algorithm halts
e Otherwise, select only the k-best successors from the list and repeat.

* Note:
* Each runis not independent, information is passed between parallel search threads.
* Promising states are propagated. Less promising states are not propagated.
* Problem: states become concentrated in a small region of space.




Stochastic Beam Search

* Local beam search
* Problem: states become concentrated in a small region of space
* Search degenerates to hill climbing

* Stochastic beam search
* Instead of taking the best k states
* Sample k states from a distribution
* Probability of selecting a state increases as the value of the state.

20



Summary

This Module

e Local Search

Next Module
e Variable-based models
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