COL333/671: Introduction to Al

Semester I, 2022-23

Solving Problems by Searching
Informed Search

Rohan Paul

Outline

e Last Class
 Uninformed Search

* This Class

* Informed Search

* Key idea behind Informed Search
* Best First Search

* Greedy Best First Search

* A* Search: evaluation Function

 Reference Material
 AIMA Ch. 3

Acknowledgement

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina

Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

What othe rknowledge can be leveraged during
search?

* *

2D route finding problem: (left) uninformed search (right) an approach that uses approx. distance to goal
information.

Informed Search

e Uniform Cost Search
* Expand the lowest cost path
 Complete
e Optimal

* Problem

* Explores options in every “direction”
* No information about goal location

* Informed Search

* Use problem-specific knowledge beyond the
definition of the problem to guide the search
towards the goal.

Recall: Tree Search

Note: Central to tree search is how nodes (partial plans) kept in the frontier are expanded (prioritized)

Prioritization essentially means among many partial plans which one we should search first (over other
options we have in the frontier).

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier 1s empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

A nodes expanded from the frontier is “most
desirable” using some evaluation

* Best First Search
* Always choose the node from frontier that has the best evaluation (according

to a function).
 The search orders nodes in the frontier (via priority queue) for expansion using

this evaluation.

* Incorporate an evaluation of every node
e Lets say we evaluate a node with a function f() value.
* Estimates the desirability of a node for the purposes of potentially reaching
the goal. A search strategy is defined by picking the order of node expansion.
 Expand most desirable unexpanded node. Order the nodes in frontier in

decreasing order of desirability.

Approaches for evaluating a node

Sstart S Send

O o e

PastCost(s) FutureCost(s)

 Central Idea

* To evaluate a need we need two things: cost so far and cost to go.

* Uninformed search methods expand nodes based on the cost (or distance) from the
start state to the the current state, d(s,, s)
* Evaluation based on the exact cost so far.
* Informed search methods additionally estimate of the cost (or distance) from the
current state to the goal state, d(s, s,) and use it in deciding which node to expand next.
* Evaluation based on the exact cost so far + an estimate of cost to go
* Note: What if we knew the exact distance to goal d(s, s,)?

* Then there is no need to search, we could just be greedy! In practice, we do not know that exactly
and must make an “estimate”.

A heuristic approximates the cost to goal

|Il

* An intuition about “approximate cost to goa

* Even if we do not know d(s, s,) exactly, we often have some intuition about
this distance. This intuition is called a heuristic, h(n).

* Heuristic function h(n)

* Assigns an estimate of the actual cost to go for each state.

* Formally, h(n) = estimated cost of the cheapest path from the state at node n to a goal
state.

* Heuristic function can be arbitrary, non-negative, problem-specific functions.

e Constraint, h(n) = 0if nis a goal. If you are at the goal, then there is no more cost to be
incurred.

Example Heuristic — Path Planning

* Consider a path along a road
system

 What is a reasonable heuristic?
e The straight-line Euclidean distance
from one place to another
* Is it always, right?

e Certainly not — actual paths are
rarely straight!

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

h(x)

10

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
30
199
374

Example Heuristic — 8 Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)

e h, = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

Intuitively, heuristics are trying to estimate how much more effort is needed from the current
state to the goal.

Greedy Best-First Search (only guided by
heuristic)

Sstart S Send

O O O

PastCost(s) FutureCost(s)

e Best-First Search

* At any time, expand the most promising node on the frontier according to the
evaluation function f(n).

* Greedy Best-First Search

» Best-first search that uses h(n) as the evaluation function, Only guided by “cost to
go” (not “cost so far”).

* The evaluation function is, f(n) = h(n), the estimated cost from a node n to the goal.

12

Greedy Best-First Search

 Which path does Greedy Best-First Search return?

2
START A B C

h

4 h=3 h=2 h=1

13

A* Search

 Core ldea

 Combine the greedy search (the estimated cost to go) with the uniform-search
strategy (the cost incurred so far).

* Minimize estimated path costs. Avoid expanding paths that are already
expensive.
* Always expand node with lowest f(n) first, where
e g(n) = actual cost from the initial state to n.
* h(n) = estimated cost from n to the next goal.
* f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

e Can | use any heuristic?
* Any heuristic will not work. [properties soon]

Example: UCS, Greedy and A* Search

* Uniform-cost orders by path cost, or backward cost g(n)
* Greedy orders by goal proximity, or forward cost h(n)

e A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Example

Which path will A* search find?

START

-2
I
H

Does any heuristic function work?

* For the following choices, would the
optimal solution be found?

« h(A) =1
* h(A) =2
e h(A) = 3

* Can we put conditions on the choice
of heuristic to guarantee optimality?

Admissible Heuristics

* Let h*(n) be the actual shortest path from n to any goal state.

* Heuristic h is called admissible if h(n) < h*(n) Vn.

* Admissible heuristics are optimistic, they often think that the cost to
the goal is less than the actual cost.

* If h is admissible, then h(g) =0, Vg € G

A trivial case of an admissible heuristic is h(n) =0, Vn.

Admissible or not admissible?

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)

e hy = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

Straight line distance

A* Tree Search: Route Finding Example

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

Use of both cost so far and straight
line heuristic.

A* Tree Search: Route Finding Example

(e) After expanding Fagaras

591=338+253

(f) After expanding Pitesti

646=280+366

CSibiu 3

591=338+253

CSibiv >

B
|||||||||

526=366+160 417=317+100 553=300+253

671=291+380

450=450+0

CCraiova>

526=366+160

C_Arad >

Pitesti

1Mis0ara
447=118+329

CSibiu 3

53=300+253

418=418+0 | 615=455+160 607=414+193

449=75+374

CZerind >

449=75+374

Bucharest remains on the frontier with cost 450. The
goal is not popped. The other path is also explored

with cost 418.
A* Tree Search will find the optimal path if the

heuristic is admissible.

Consistency (monotonicity)

* Consistency

* An admissible heuristic h is called consistent if for every state s and for
every successor s’, h(s) < c(s, s’) + h(s’)
* This is a version of triangle inequality
* Consistency is a stricter requirement than admissibility.

* Property
* |f his a consistent heuristic and all costs are non-zero, then f values cannot
decrease along any path:
e Claim f(n’)>= f(n), where n’ is the successor of n.
* g(n’) = g(n) +c(n, a, n’)
* f(n’) =g(n) +c(n, a, n’) + h(n’) >=f(n)

Admissibility and Consistency

e Main idea: estimated heuristic costs < actual costs
* Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

* Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

A* Search Properties

* Optimality
* Tree search version of A* is optimal if the heuristic is admissible.
* Graph search version of A* is optimal if the heuristic is consistent.

 Completeness

* If a solution exists, A* will find it provided that:
* every node has a finite number of successor nodes (b is finite).
* there exists a positive constant 0> 0 such that every step has at least cost §
* Then there exists only a finite number of nodes with cost less than or equal to C*.

How a heuristic affects search

St Goal

Start Goal

For 8-puzzle, average number of
states expanded over 100
randomly chosen problems in
which optimal path is length...

...4 steps |...8 steps | ...12 steps
lterative Deepening (see 112 6,300 |3.6 x 106
previous slides)
A* search using “number of 13 39 227
misplaced tiles” as the heuristic
A* using “Sum of Manhattan 12 25 73

distances” as the heuristic

Impact: reduction in the number of nodes

expanded for reaching the goal.

Effective branching factor

* Let A* generate N nodes to find a goal at depth d

* Let b* be the branching factor that a uniform tree of depth d would have in
order to contain N+1 nodes.

N +1=14+b*+(b*)" +...+ (b*)*
N +1= (""" =1)/(b*-1)
N~ (%) = b*~ YN
* Varies across problem instances, but nearly constant for hard problems.

e Acts as a measure of a heuristic’s overall usefulness.
* A way to compare different heuristics.

Comparing Heuristics

e d = distance from goal

Effective branching factors for A* search for the 8-
@ Average over 100 instances

puzzle: |

. L. . . Search Cost (nodes generated) Effective Branching Factor
Comparison of two heuristics: Misplaced tiles (h,) y IDS [A*(h1) | A"(hz) || IDS | A" (k) | A" (h2)

and Manhattan distance (hz) 2 10 6 6 I 245 | 1.79 1.79

4 112 13 12 || 287 | 148 1.45

6 680 20 18 2.73 1.34 1.30

- 8 6384 39 25 | 280 | 1.33 1.24

Heuristic (hz-) expands fewer nodes and has a w0l 47107 02 w0 | 270 | 138 L%

lower effective branching factor 12 || 3644035 297 73l 278 | 142 1.04

14 - 5390 113 - 1.44 1.23

16 - 1301 211 - 1.45 1.25

18 N 3056 363 = 1.46 1.26

20 N 7276 676 = 1.47 1.47

22 = 18094 1219 = 1.48 1.28

24 - 39135 1641 = 1.48 1.26

27
Reference: AIMA

Ways to design heuristics

* Heuristics are useful for search.

* Ways to construct heuristics

* Exact solution cost of a relaxed version of the problem
* E.g., If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h; gives the shortest solution
* |If the rules are relaxed so that a tile can move to any adjacent square, then h, gives the shortest solution

 Combining heuristics
* Prior experience in terms of seeing plans for problems encountered in the past.

28

Method I: Creating admissible heuristics from
relaxed problems

* Relaxation
* Ignore constraints/rules.
* Increase possibilities for actions.

* State space graph for the relaxed
problem is a super-graph of the original

Permitting straight line movement adds edges to

state Space the graph.
* The removal of restrictions adds more edges.
* Hope is that in the relaxed graph, it is easier %% E%
to find a solution. Gl e

Start State Goal State

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)
e hy = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

Admissible Heuristics from Relaxed Problems

e Optimal solution in the original problem is also a solution for the relaxed
problem.

* Cost of the optimal solution in the relaxed problem is an admissible
heuristic in the original problem.

* Finding the optimal solution in the relaxed problem should be “easy”
* Without performing search.

* |f decomposition is possible, it is easier to directly solve the problem.

30

Comparing heuristics: dominance

* Heuristic function h, (strictly) dominates h, if
* both are admissible and Typical search costs:

 for every node n, h,(n) is (strictly) greater than h,(n). d=14 IDS = 3,473,941 nodes

* A* search with a dominating heuristic function h,
will never expand more nodes that A* with h;

 Domination leads to efficiency

e Prefer heuristics with higher values, they lead to
fewer expansions and more goal-directedness during
search.

31

Method II: Combining admissible heuristics

e Heuristic design process

* We may have a set of heuristics but not a single
“clearly best” heuristic.

* Have a set of heuristics for a problem and none of
them dominates any of the other.

* Combining heuristics h(n) = maxz(ha(n), hp(n))
e Can use a composite heuristic

e Max of admissible heuristics is admissible when the
component heuristics are admissible.

* The composite heuristic dominates the component
heuristic.

32
Slide adapted from Dan Klein

Combining admissible heuristics

exact
* Fundamentally, heuristic functions form a semi- |
lattice structure
* Some heuristics can be compared to others via maa:‘(ha, hb)
dominance.
* There may be others not comparable. /\
e Can create composites by combining component ha hb
heuristics.
* Bottom of lattice is the zero heuristic l
* No or little computation effort hc
* Not useful during search \
* Top of lattice is the exact heuristic ~eT0

* A lot of computation effort
* Really useful during search (give the exact cost) .
Slide adapted from Dan Klein

Trade-off

Good heuristics make search easier.
But good heuristics may also need
more time to compute.

curred in search

of computing

) .. heuristi
Effectiveness of the heuristic © heuristie

(reduced search time with the
heuristic) vs. effort required to
compute the heuristic

Cost of searching
with the heuristic

l N i
ho " Not always clear where the total minimum
) occurs

> * Old wisdom was that the global min was
Reduced .Ievel of "=--- closer to cheaper heuristics
abstraction * Current insights are that it may well be far
(i.e. more and more concrete) from the cheaper heuristics for manv problems

34
Slide adapted from Mausam

A* Search: Other Properties

* Exponential worst-case time and space complexity
* Let e = (h* - h)/h* (relative error)
e Complexity O(b®d) where be is the effective branching factor.
* With a good heuristic complexity is often sub-exponential

* Optimally efficient
* With a given h, no other search algorithm will be able to expand fewer nodes

 |f an algorithm does not expand all nodes with f(n) < C* (the cost of the optimal
solution) then there is a chance that it will miss the optimal solution.

* Main Limitation: Space Requirement

* The number of states within the goal contour search space is still exponential
in the length of the solution.

A* Search may still take a long time to find
the optimal solution

for large problems this results in A™ quickly
running out of memory (memory. O(n))

- The memory needed is O(total number of states). The frontier is O(b”d). Despite using
the heuristic, it may be difficult to store the frontier.

- How to reduce memory requirement for A*?

36
Adapted from Maxim Likhachev

Iterative Deepening A* (IDA*)

* Key Idea

* A* uses a lot of memory. Alternative: Don’t’ keep all the nodes, recompute them. Borrow
idea from iterative deepening search (discussed before).

* IDA*
* Use an f-value limit, rather than a depth limit for search.
* Expandallnodesuptofl, f2,.....
» Keep track of the next limit to consider
* so we will search at least one more node next time.
* |f the depth-bounded search fails, then the next bound is the minimum of the f-values
that exceeded the previous bound.

* IDA" checks the same nodes as A" but recomputes them using a depth-first search (DFS)
instead of storing them.

37

Iterative Deepening A* (IDA*)

. Iterative deepening A*. Actually, pretty different from A*. Assume

costs integer.

1. Do loop-avoiding DFS, not expanding any node with
f(n) > 0. Did we find a goal? If so, stop.

2. Do loop-avoiding DFS, not expanding any node with
f(n) > 1. Did we find a goal? If so, stop.

3. Do loop-avoiding DFS, not expanding any node with
f(n) > 2. Did we find a goal? If so, stop.

4. Do loop-avoiding DFS, not expanding any node with
f(n) > 3. Did we find a goal? If so, stop.

...keep doing this, increasing the f(n) threshold by 1 each
time, until we stop.

Note: DFS in the inner loop is giving the space advantage.

IDA* example
e If f;=4, then which nodes are searched?

e If f,=8, then which nodes are searched?

38

Weighted A*

* Key Idea o
SIart
* Optimal solution requires large effort. $

e Can we quickly find sub-optimal

goal

. A weighted heuristic accelerates the search by
solutions? making nodes closer to the goal more attractive,

. giving a more depth first character.
* Expand states in the order of
* f'(n) = g(n) + w*h(n) values,
* wherew > 1.0

* Create a bias towards expansion of
states that are closer to goal. Give it a
Greedy Best First Search like
characteristic.

e Orders of magnitude faster than A*

39
Adapted from Maxim Likhachev

Weighted A*

* f'(n) is not admissible but finds good sub-optimal solutions quickly.

* If h(n) is admissible then the sub-optimality is bounded.
e Cost(solution)) < e-cost(optimal solution) where e =w —1.0.

* Trade off between search effort and solution quality.

Adapted from Maxim Likhachev

History of A* Search

* Origin

* Shakey Experiment (Al Center at Stanford

* https://www.youtube.com/watch?v=GmU7SimF

* Peter Hart, Nils Nilsson and Bertram
Raphael first published the algorithm in 1968.

Djikstra was too slow for path finding.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp
=&arnumber=4082128

Research Institute)

kpU

A Formal Basis for the Heuristic Determination
of Minimum Cost Paths

PETER E. HART, memsEr, 1EEE, NILS J. NILSSON, MEMBER, 1EEE, AND BERTRAM RAPHAEL

Abstract—Although the problem of d i the
cost path through a graph arises naturally in a number of interesting
applications, there has been no underlying theory to guide the
development of efficient search procedures. Moreover, there is no
adequate conceptual framework within which the various ad hoc
search strategies proposed to date can be compared. This paper
describes how heuristic information from the problem domain can
be incorporated into a formal mathematical theory of graph searching
and demonstrates an optimality property of a class of search strate-

gies.

I. INTRODUCTION
A. The Problem of Finding Paths Through Graphs

ANY PROBLEMS of engineering and scientific
importance can be related to the general problem of
finding a path through a graph. Examples of such prob-
lems include routing of telephone traffic, navigation
through a maze, layout of printed circuit boards, and

Manuseript received November 24, 1067,

The authors are with the Artificial Intelligence Group of the
Applied Physics Laboratory, Stanford Research Institute, Menlo
Park, Calif.

hanical theorem-proving and problem-solving. These
problems have usually been approached in one of two
ways, which we shall call the mathematical approach and
the heuristic approach.

1) The mathematical approach typically deals with the
properties of abstract graphs and with algorithms that
preseribe an orderly examination of nodes of a graph to
establish a minimum cost path. For example, Pollock and
Wiebenson!! review several algorithms which are guaran-
teed to find such a path for any graph. Busacker and
Saaty® also discuss several algorithms, one of which uses
the concept of dynamic programming. ¥ The mathematical
approach is generally more concerned with the ultimate
achievement of solutions than it is with the computational
feasibility of the algorithms developed.

2) The heuristic approach typically uses special knowl-
edge about the domain of the problem being represented by
a graph to improve the computational efficiency of solu-
tions to particular graph-searching problems. For example,
Gelernter’s program used Euclidean diagrams to direct
the search for geometric proofs. Samuel® and others have
used ad hoe characteristics of particular games to reduce

In 1964 Nils Nilsson invented a heuristic based approach to increase the speed of
Dijkstra's algorithm. This algorithm was called A1. In 1967 Bertram Raphael made
dramatic improvements upon this algorithm, but failed to show optimality. He called this
algorithm A2. Then in 1968 Peter E. Hart introduced an argument that proved A2 was
optimal when using a consistent heuristic with only minor changes. His proof of the
algorithm also included a section that showed that the new A2 algorithm was the best
algorithm possible given the conditions. He thus named the new algorithm in Kleene
star syntax to be the algorithm that starts with A and includes all possible version

numbers or A*

41

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4082128

