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* Model-Free Policy-Based Methods (Policy Gradients)

* This Class

 Partially-Observable Markov Decision Processes

* Reference Material
* Please follow the notes as the primary reference on this topic.

* Planning and acting in partially observable stochastic domains, Leslie Pack
Kaelbling, Michael L. Littman, Anthony R. Cassandra, Artificial Intelligence
Journal (Sec. 3 and 4 (till 4.1)).

* https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
 AIMA: Ch 17 (Sections 17.4.1-17.4.2)
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Expressing MDPs as Graphical Model

m The policy (or controller) chooses the actions that cause the state transitions

m Posterior state is chosen according to the transition function 7'(s, a, s’).

m Structure of the graphical model also makes explicit the Markov assumption = future
states are conditionally independent of past states given knowledge of the current state.

m The Markov assumption models the conditional independence of future states from
past states given knowledge of the current state.
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Time t t+1 t+2



Partial Observability: Finding a person
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Nursebot Project (CMU). The robot is tasked to locate an elderly person on the floor and deliver them
a medicine reminder. The robot can localize itself well but can only know the presence of the person

when it is within a range of 2m.

5
Pineau et al. https://arxiv.org/pdf/1110.0027.pdf



Partial Observability in the MDP Formulation

 State representation: RobotPosition and PersonPosition (assume
discretization of the state space)

 Robot actions: MoveNorth, MoveSouth, MoveEast, MoveWest and
DeliverMessage (when the person and the robot is at the same location)

* Person’s motion is stochastic.

* Robot knows its own position but has no knowledge of the person unless
the person is within the range of 2m.

 Reward model. R = -1 for any motion action. R = 10 when the robot decides
to DeliverMessage and the person is in the same cell. Episode ends when
the message is delivered.

e Discount factor is 0.95




POMDP Representation

m When the true state of the world cannot be observed directly (or is “inaccessible™), the

world is considered as “Partially Observable.”

m [n partially observable domains, decisions cannot be made based on the state of the

world:

m [n partially observable domains, decisions are made based on our observations of the

world.

m Markov decision process is extended to partially observable Markov decision processes
(POMDPs) by adding observations and a probabilistic model of how observations are

generated.

m The POMDP is described formally as:

a set of states § = {s',s%,...5"})

a set of actions A = {a',a*,...,a™}

a set of transition probabilities T'(s*, a, s’) = p(s’|s', a)

a set of observations Z = {z',27,.. ., :‘}

a set of observation probabilities O(s', @, z*) = p(z| s, a)
an initial distribution over states, p(s")

asetofrewards R : S x A x Z x5+ R.

The reward function for a POMDP is often specified more compactly, such as

R:8x A R,



POMDP Graphical Model
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MDPs and POMDPs

MDP Graphical Model

Time

t

Reward :
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POMDP Graphical Model

Hidden
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Observation

Time t : t+1 : t+2

Reward not shown for brevity



MDPs and POMDPs

MDPs have: i POMDPs add:
States S . Observations O
e 4 TSA . .
Actions A Observation Function P(o|s)

Transition Function P(s'|s, a)

Reward R(s, a,s’)




Modeling Intent using POMDPs
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Can | have the marker?
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Bowil Bowl2 Marker 1 Marker 2 Spoon1 Spoon2
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Bowll Bowl2 Marker 1 Marker 2 Spoonl Spoon2 Bowl1l Bowl2 Marker1 Marker2 Spoon1 Spoon2

Fig. 1. Demonstration of our FETCH-POMDP model correctly fetching
item for user. Note the robot’s understanding of implicit information between
panels three and four. This reasoning is not hard-coded into our system, but
emerges from the solution of our POMDP.

https://h2r.cs.brown.edu/wp-content/uploads/2017/03/whitney17.pdf

Fig. 3. Screen-capture of RViz visualization of user pointing at item. The
blue vectors represent the calculated pointing vectors from each arm. The
left arm is down at the user’s side, and the right arm is pointing at item
four.

WM, ¢ &

Fig. 4. User's view of robot, with items arranged in the ambiguous
configuration.



POMDPs for Grasping

A. Observation only

4

1 6 6 1

B. Observation and reward

2
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1B 5 6 1B

Go down, see Tip-None  Go left (stuck), see Tip-None Go left (fell off comer), see None-None Go lefi, see None-Tip Go down (fell off comer), see None-None Go down, see Tip-Tip

Fig. 1. A. Observation partition; B. Observation and reward partition; C.
Closed partition; D. Partial policy graph for robot starting in an unknown Go down, see Tip-Tip Go right (stuck), see Tip-Tip  Go right, see In&Tip-Tip  Go down, see In&Tip-Tip ~ Close, see In&Tip-In&Tip Lift (success)
state above the table, with a deterministic transition and observation model.

Fig. 6. Sample run of two-finger grasp policy in high-fidelity simulation.

https://people.csail.mit.edu/lpk/papers/pomdp-grasp-final.pdf



Belief Space MDPs

m Since we don’t know the state, the set of future states and observations are not independent of past
observations.

m The statistic over the reward (e.g., E,,.7[>_, 7'r(s¢)] cannot be computed without the entire history of
actions and observations.

m We can’t compute p(sg.¢), can only compute p(sg.¢| 20.¢, ao.7)
® Intractable to condition on the entire history of observations.
s Introduce a notion of a belief b, = p(sq.¢|z0.¢, @g.¢) that expresses the agent’s belief over the state
derived from observations zg; and actions ag.;.
m The belief by = p(sg.t|z0.t, ap.r) can be computed recursively, and serves as a sufficient statistic to
determine future expected rewards.
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POMDP as a Belief State MDP

MDPs POMDPs

Action

Observation

Actions > SE -

AGENT |—'

States

AGENT

Fig. 1. An MDP models the synchronous interaction between agent and world. Fig.2. A POMDP agent can be decomposed into a state estimator (SE) and a policy (7).

14



Belief State MDP

b'(s")=Pr(s" | 0,a,b)
* Belief State Update _ Pr{osa.b)Pr(s' | a.b)

A 1 Pr(o|a.l

e As actions are taken and r(oa.b)
. . .() .,/. . . _“/ .I.“ '.. .l
observations rece|VEd, we need = Pr(o|s’.a) 3 sesPr(s’ |a.b,s) Pr(s | a, b)

. Pl‘(() la,b)
to update our belief state
O(s" a,0)Y csT(s.a,s")b(s)

Pr(o | a.b)

. [ ] [ ]
State tra n S |t|0 n S e 7(b,a.b’) is the state-transition function, which is defined as

* From one belief state to another, t(b.a.b') =Pr(b' |a.b) = 3 Pr(b' | a.b, 0)Pr(o | a.b).
given an action e

where
1 if SE(b.a.o)=1">

0 otherwise;

Pr(b" | b,a,o0) = {

* Reward function
e p(b,a) is the reward function on belief states, constructed from the original reward

¢ For d b@ll@f State’ from Or|g|na| function on world states:
reward function on world states. p(b.a) =Y b($)R(s. a).

seS



lllustrative POMDP Problems

m There are some famous POMDP benchmark problems that illustrate key ideas.

Tiger domain:

World is stochastic.

Agent doesn’t know which door the
tiger lurks behind.

Agent can either listens to the tiger
roar (—1), and modify its estimate of
which door the tiger is behind, or
open a door and escape (+10) or get
eaten (—100).

Problem forces the tradeoff between
listening (gathering more
information), or trusting the estimate
to open a particular door.

m Heaven & Hell:

i &

-

m World is deterministic.
m Agent doesn’t initially know which

side of the T junction has 4100
reward or —100 reward.

Map at the bottom of the L describes
which side has which reward.
Problem forces active information
gathering.

16



Tiger Example: Details

m There are two states: tiger-left and tiger-right.
m There are three actions: listen, open-left and open-right.
m The transition probabilities are as follows:
m listen: the state self-transitions with probability 1. That is,
. 1 Vs; == s,
p(si|listen, s;) = Y
0 otherwise
m open-left, open-right : transition to either tiger-left or tiger-right with probability 0.5
m There are two observations: heard-left, heard-right
m The observation probabilities are as follows:

m After the listen action:

p(heard-left|listen, tiger-left
p(heard-right|listen, tiger-left
p(heard-left|listen, tiger-right
p(heard-right|listen, tiger-right

)
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m After the open-left, open-right actions: heard-left and heard-right both have probability 0.5

m The reward function is as follows:

m R(s;,listen) = —1

m R(tiger-left, open-right) = 10

m R(tiger-right, open-right) = —100

m R(tiger-left, open-left) = —100

m R(tiger-right, open-left) = 10
m Our initial state distribution is p(s;) = 0.5 Vs;.
m Our discount factor is v = 0.75.

17



Updating the Belief

b; = bjien (s) =P Iisten(zlz’ls) Yo If Pisien(s | ) b(s")
b b, Y esPi08)56)

Updating the belief over the state using action and observation.
Action: Listen and Observation: Hear-Left

18



Value Function for POMDPs

* For MDPs

e Can compute the optimal value function and
then used to determine the optimal policy.

e How to do the same for POMDPs?

e Policy Trees

* |If the agent has only one step, then it can only
take one action.

* With two steps to go, it can take an action,
receive an observation and take another action
(depending on the previous observation)

e Can extend this to t-steps.
* Think of the policy tree as a “conditional”

* The agent knows what to do for any
observation that can arrive.

plan

t steps to go

t-1 steps to go

2 steps to go

I step to go

19



Value Function for POMDPs

t steps to go
t-1 steps to go

What is the expected discounted value to be
gained from executing a policy tree p?

L L] L]
L L] L]
° 2 steps to go
0, - Oy ps 10 g
L L L]
° ° ° | step to go

1-Step Case T-step Case

* If pisa 1-step policy tree (a single action). The * More generally, if p is a t-step policy tree then:
value of executing that action in state s is below.

* Here, a(p) is the action specified at the top node
of the policy tree, p.

Vp(s) =R (s. al( p)) +y- (Expected value of the future)

Vy(s) = R(S. (l([?)) =R(s,a(p)) +y Z Pr(s’" | s,a(p)) Z Pr(o; | s",a(p)) Vo, (py(s')
s'eS 0; €S2
=R(s,a(p)) +y Z T(s,a(p),s) Z O(s",a(p).oi) Vo, (s')
s'eS 0;,€2

20



Value Functions and Alpha Vectors

 Value function for the finite-horizon POMDP will be the supremum of
the value functions of each policy tree.
* The value of each tree is a hyperplane.
* The value function can therefore be represented by a set of hyper-planes
defined by the policy trees.
* Alpha-vectors
* The hyper-planes are called the alpha vectors

 Nomenclature: alpha-vectors is often used to denote both the coefficients of the
value hyper-planes and the value hyperplanes themselves.

21



Value Functions and Alpha Vectors

* Value of executing a policy tree p from  V,(b) = Z b(s)Vy(s)
some belief state b. eS

* Expectation over world states of
executing p in each state:

* Alpha-vector ap=1(Vy(s1),...,Vy(sn)) thenV,(b)=b-a,
* Note sometimes alpha is also used to
denote the value hyperplanes.

* To construct the optimal t-step policy,

* necessary to execute different policy
trees from different initial belief states.

Vi(b) =max b -«
peP

22



Value Functions and Policy Trees

V
I
v
expected P3
t-step
discounted
value %
|
[ 1

Optimal t-step value function is the upper
surface of the value functions associated with

all t-step policy trees.

v
P
I
| v

expected |
t-step | |
. | |
discounted | |
value | I |
I ' | |
| I | |
I I | |
} 1 1 {

a(p,) a(p-) a(p,)

0" 2 Yo

Optimal t-step situation-action mapping. In
which region of the belief space, which policy
tree is applicable.
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Optimal Policy and Policy Trees

* Optimal policy
* Different policy trees can be associated
with different regions of the belief space.

* The optimal policy consists of a division of
belief space into convex regions each
assigned its own policy tree.

* Example

* When there are three world states, the
belief state is determined by two values.

* Because of simplex constraints summing
to 1). The distribution adds to 1.

* The belief space is a triangle in the 2-
space. The value function can be assigned
to each point in the Z direction.

Fig. 6. A value function in three dimensions is made up of the upper surface of a set of planes.

24



The One-Step Policy

m Consider the simplest task of selecting one-step policy or making the choice of the first
action.

m [f we have a choice of actions, we should select the one with the higher value function.

m The value function if the expected value of the immediate reward for the one-step case.

m POMDPs use a notion of policy trees to understand a policy.
A

-100

»
»

uger-left tiger-right

m The value function for this policy tree is the expected value of the immediate reward
function under this policy tree for action oil, where the immediate reward for this
action (specified in the model) is
R(tiger-left, open-left) = —100, R(tiger-right, open-left) = 10.

m The value function for the one-step policy tree is a single line = the value function is
the expected immediate reward and expectation is linear.

m Can depict the belief space for a 2 state problem using a single axis if we parameterise

the belief b as the pair (p(tiger-right), 1 — p(tiger-right)). -



Linear Interpolation In Belief Space

Value
10T
—100L_ I >
tiger—left tiger—right
m Another way to see the linearity is to remember that the value function maps beliefs to
rewards:
V:BxA—TR (6)

and is defined as
V(b)=> p(s)V(s). (7)

m Means that to specify the value function for any one-step policy, we need only specify
the value at the states

m The complete value function for that policy tree will be the linear interpolation across
the belief space.

26



The Exact One-Step Policy

* The complete one step policy B

* |s generated by determining which one-step 10
policy tree is optimal for regions of the

belief space. |

* The action at the root describes the action - ber—right”

to take for each belief in that region of the

belief space. al

. -1
 The complete value function
* |s the supremum of the value functions for 3 :
the trees and determines which policy tree trger—Teft g
is assigned to which region of belief space.

open— / open—
right \ left
A ; :

L S I
tiger—left tiger—right

Valu
10

 Example
* In the middle there is greater uncertainty
and listening is preferred.

e At the edges where there is high
uncertainty, opening is preferred.

i i >
tiger—left tiger—right

27



Two Step Planning

m Having solved the one-step planning problem, we can use this solution to solve the
two-step planning problem.
m First see how to develop a two-step policy tree and then see how to compute the entire

two-step policy.
m Just as in the one-step case, entire two-step policy will be given by:

1 computing all possible two-step trees
2 assigning each tree to the region of belief space where its associated a-vector dominates

m Once the two-step policy is created, we can dispense with the trees and a-vectors from the
one-step policy.

m The t — 1 policy trees are only useful for computing the ¢ policy.
2

\ |

Valu:

heard- eard— i f\ >

right left / \

+
s $2 sy

m Figure depicts a horizon 2 policy tree on the left.

m The policy tree consists of an initial action, an (unpredictable) observation, and a
subsequent action.
m Can compute the value of this policy tree from the value functions of the one-step
policy trees.

28



Example: Value of executing a Policy Tree

 What is the expected discounted value to be gained from executing a policy tree p?
* Thisis also called “backing up” of alpha-vectors.
* The term “backing up” comes from the equivalence to Bellman backups studied earlier.
* |In the example, we compute the value for action listen for the states tiger-left and tiger-right.

* How to backup alpha vectors?
* The immediate reward of the root action at each state R(s, listen)

* And the value of each subtree Vi,
* weighted by the probability of the observation z,
* and the probability of being at each state given the observation.

29



Example: Value of executing a Policy Tree

The 2-Step computation of the
value of executing a policy tree
rooted at the listen action.
Computed for tiger-left and tiger
right states. The procedure is also

called backing up the alpha-vectors.

\*f_,“”“'“(l.ig('l'-l('ﬁ,) + R(tiger-left, listen) + 4 (

pltiger-left|tiger-left, listen)p(heard-right [tiger-left, liste
p(tiger-right [tiger-left, listen)p(heard-right|tiger-right, 1i

pltiger-left|tiger-left, listen)p(heard-left|tiger-left, listen

pltiger-right [tiger-left, listen)p(heard-left [tiger-right, list

= aftiger-left) = —1 + ().T.";(

| < 0.15 x =100+
0 x 0.85 x 10+
1 % 0.85 < 10+

0x 0,15 x —l()())

= «ftiger-left) = —5.875

Plisten

/0

(tiger-right) 4

0x 085 x 10+ 1 x0.15 x —l()())

= aftiger-right) = —5.875

)V, PO (ger-left) +

ropen-left

sten )V tiger-right )+
|

"‘mpvu-righl

| (tiger-left)+

m) \“",“"‘""""""h' (tigvr—right))

= — ] +().7:’»<() X (015 % =100 + 1 x 0.85 x 10+




Two-step Policy from Policy Trees

* While performing the recursion, need to | o o
compute all possible two-step trees | =
. ot D&
* And then assign each tree to the region of belief

S pa Ce W h e re it h a S S u pe ri O rity_ Subvectors( 1) Subvectors(2) Subvectors(3)

(); o- o— 0— (); v s\

Subvectors(4) Subvectors(5) Subvectors(6)

Computing the value of a policy tree requires
examining all the possible sub-trees.

Vp(s) = R(s, a( p)) +y- (Expected value of the future)

:R(s,a(p))+yZPr(s’ |s,a(p)) Z Pr(o; | s".a(p))Vo,(p(s") @ ( vie
Subvectors(7) Subvectors(9)

s'eS 0,

= R(s,a(p)) +y Z T(s,a(p),s’) Z O(S',a(p),o,-)V,,i(,,)(s')

s'eS 0; €N

Subvectors(8)

Figure: The set of 9 possible subtrees of this two-step
policy tree.



POMDP Value Iteration in Practice

It is |nfea5|blg to enumerate every-p0-55|ble t- V,(b) =max b - a,
step plan to find the one that maximizes the peP
value function.

In practice, we iterate over all the one-step
plans and toss out the plans that are not

optimal for any initial belief state (called \ /

pruning).

The process repeats till the planning horizon is
reached.

The alpha-vectors provide a compact
representation of the policy.

J
1

Pl

During value iterations, alpha vectors get
refined and pruned.



Policies for the Tiger Problem

Optimal policies for one time step Optimal policies for four timesteps
* Prefer to listen when you are highly uncertain. * The agent will choose to open a door for some belief states.
* Prefer to open the respective door if the belief is highly
certain. (0.00,0.06] [0.06,0.38] [0.38,0.62] [0.62,093] [0.93, 1.00]
;
[0.00, 0.10] [0.10, 0.90] [0.90, 1.00] ‘
O G

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]
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Other POMDP Applications

* Monitoring disease status

* Personalized Cotesting Policies for Cervical Cancer
Screening: A POMDP Approach Ebadi et al.

al

I'(b)

e

b(s)) =P(s;)=1  b(s;) =P(s;)=1 b(s1) b(sz)  b(sy) b b(sz)

Figure 4. Alpha vectors over belief space in a two-state partially observable Markov decision process
(POMDP); bold segment of the alpha vectors constitute a piecewise linear and convex (PWLC) value
function. a* is a redundant vector and can be eliminated.

Dexcision Decision
epoch ¢ epoch t+1

Figure 2. Timeline of the decision process.

* Human-Robot Dialogue - -

Figure 3. Belief simplex and update of belief states.

* Spoken Dialogue Management Using Probabilistic
Reasoning, Roy et al.

*Send Robot 1o Bedroom

Figure 2: A simplified graph of the basic Markov Decision Process underlying the dialog Only the
likelihood transitions are shown.
Observation True State Belief Entropy Action Reward
flo hello request_begun 0.406 say_hello 100
flo what is like start_meds 2.735 ask_repeat -100
flo what time is it for will the want time 0.490 say time 100
flo was on abc want_tv 1.176 ask_which _station -1
flo was on abe want_abc 0.886 say.abc 100
flo what is on nbe want_nbc 1.375 confirm_channel nbe -1
flo yes want.nbc 0.062 say_nbc 100
flo go to the that pretty good what send_robot 0.864 ask_robot_where -1
flo that that hello be send_robot_bedroom  1.839 confirm_robot_place -1
) . flo the bedroom any i send_robot_bedroom  0.194 go_to_bedroom 100
Figure 1: Florence Nightingale, the prototype nursing home flo go it eight a hello send robot 1110 ask robot-where -1

fob()[ use d in lhese experimenls. flo the kitchen hello send_robot kitchen  1.184 goto kitchen 100



Takeaways

* POMDPs consider the partial-observability of the state
* In an MDP state is assumed to be known
* Ina POMDP, the agent receives noisy observations

* The notion of a belief state is central to POMDPs

* A belief state is computed from past observations and actions.
* POMDP is an MDP in the belief space.

* The complete value function for a policy tree is a linear interpolation
across the belief space.

* The value function for a finite-horizon POMDP will be the supremum
of the value functions for each policy tree.



