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Outline

• Last Class
• Model-Free Policy-Based Methods (Policy Gradients)

• This Class
• Partially-Observable Markov Decision Processes

• Reference Material
• Please follow the notes as the primary reference on this topic. 
• Planning and acting in partially observable stochastic domains,  Leslie Pack 

Kaelbling, Michael L. Littman, Anthony R. Cassandra, Artificial Intelligence 
Journal (Sec. 3 and 4 (till 4.1)). 
• https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf

• AIMA: Ch 17 (Sections 17.4.1 - 17.4.2)
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Expressing MDPs as Graphical Model 
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Partial Observability: Finding a person
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Nursebot Project (CMU). The robot is tasked to locate an elderly person on the floor and deliver them 
a medicine reminder. The robot can localize itself well but can only know the presence of the person 
when it is within a range of 2m. 

Pineau et al. https://arxiv.org/pdf/1110.0027.pdf



Partial Observability in the MDP Formulation

• State representation: RobotPosition and PersonPosition (assume 
discretization of the state space)
• Robot actions: MoveNorth, MoveSouth, MoveEast, MoveWest and 

DeliverMessage (when the person and the robot is at the same location)
• Person’s motion is stochastic. 
• Robot knows its own position but has no knowledge of the person unless 

the person is within the range of 2m. 
• Reward model. R = -1 for any motion action. R = 10 when the robot decides 

to DeliverMessage and the person is in the same cell. Episode ends when 
the message is delivered. 
• Discount factor is 0.95
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POMDP Representation
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POMDP Graphical Model
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MDPs and POMDPs
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MDPs and POMDPs

MDPs have:

States 𝑆

Actions 𝐴
Transition Function 𝑃(𝑠&|𝑠, 𝑎)

Reward 𝑅(𝑠, 𝑎, 𝑠′)

POMDPs add:
Observations 𝑂

Observation Function 𝑃(𝑜|𝑠)



Modeling Intent using POMDPs

https://h2r.cs.brown.edu/wp-content/uploads/2017/03/whitney17.pdf



POMDPs for Grasping

https://people.csail.mit.edu/lpk/papers/pomdp-grasp-final.pdf



Belief Space MDPs
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POMDP as a Belief State MDP

14

MDPs POMDPs



Belief State MDP
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• Belief State Update
• As actions are taken and 

observations received, we need 
to update our belief state 

• State transitions
• From one belief state to another, 

given an action 

• Reward function
• For a belief state, from original 

reward function on world states. 



Illustrative POMDP Problems
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Tiger Example: Details



Updating the Belief
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Updating the belief over the state using action and observation.
Action: Listen and Observation: Hear-Left 



Value Function for POMDPs
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• For MDPs
• Can compute the optimal value function and 

then used to determine the optimal policy. 
• How to do the same for POMDPs?

• Policy Trees
• If the agent has only one step, then it can only 

take one action. 
• With two steps to go, it can take an action, 

receive an observation and take another action 
(depending on the previous observation) 

• Can extend this to t-steps.

• Think of the policy tree as a “conditional” plan
• The agent knows what to do for any 

observation that can arrive.  



Value Function for POMDPs
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What is the expected discounted value to be 
gained from executing a policy tree p?

1-Step Case
• If p is a 1-step policy tree (a single action). The 

value of executing that action in state s is below. 
• Here, a(p) is the action specified at the top node 

of the policy tree, p. 

T-step Case
• More generally, if p is a t-step policy tree then: 



Value Functions and Alpha Vectors
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• Value function for the finite-horizon POMDP will be the supremum of 
the value functions of each policy tree. 
• The value of each tree is a hyperplane. 
• The value function can therefore be represented by a set of hyper-planes 

defined by the policy trees. 

• Alpha-vectors
• The hyper-planes are called the alpha vectors
• Nomenclature: alpha-vectors is often used to denote both the coefficients of the 

value hyper-planes and the value hyperplanes themselves. 



Value Functions and Alpha Vectors
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• Value of executing a policy tree p from 
some belief state b. 
• Expectation over world states of 

executing p in each state:

• Alpha-vector
• Note sometimes alpha is also used to 

denote the value hyperplanes. 

• To construct the optimal t-step policy,
• necessary to execute different policy 

trees from different initial belief states. 



Value Functions and Policy Trees
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Optimal t-step value function is the upper 
surface of the value functions associated with 
all t-step policy trees. 

Optimal t-step situation-action mapping. In 
which region of the belief space, which policy 
tree is applicable.  



Optimal Policy and Policy Trees
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• Optimal policy
• Different policy trees can be associated 

with different regions of the belief space. 
• The optimal policy consists of a division of 

belief space into convex regions each 
assigned its own policy tree. 

• Example
• When there are three world states, the 

belief state is determined by two values. 
• Because of simplex constraints summing 

to 1). The distribution adds to 1. 
• The belief space is a triangle in the 2-

space. The value function can be assigned 
to each point in the Z direction. 



The One-Step Policy
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Linear Interpolation In Belief Space
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The Exact One-Step Policy
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• The complete one step policy 
• Is generated by determining which one-step 

policy tree is optimal for regions of the 
belief space. 

• The action at the root describes the action 
to take for each belief in that region of the 
belief space. 

• The complete value function 
• Is the supremum of the value functions for 

the trees and determines which policy tree 
is assigned to which region of belief space. 

• Example
• In the middle there is greater uncertainty 

and listening is preferred. 
• At the edges where there is high 

uncertainty, opening is preferred. 



Two Step Planning
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Example: Value of executing a Policy Tree
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• What is the expected discounted value to be gained from executing a policy tree p?
• This is also called “backing up” of alpha-vectors. 
• The term “backing up” comes from the equivalence to Bellman backups studied earlier. 
• In the example, we compute the value for action listen for the states tiger-left and tiger-right. 

• How to backup alpha vectors?
• The immediate reward of the root action at each state R(s, listen)
• And the value of each subtree Vi

1,
• weighted by the probability of the observation zi

• and the probability of being at each state given the observation.  



Example: Value of executing a Policy Tree
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The 2-Step computation of the 
value of executing a policy tree 
rooted at the listen action. 
Computed for tiger-left and tiger 
right states. The procedure is also 
called backing up the alpha-vectors. 



Two-step Policy from Policy Trees
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• While performing the recursion, need to 
compute all possible two-step trees

• And then assign each tree to the region of belief 
space where it has superiority.  

Computing the value of a policy tree requires 
examining all the possible sub-trees. 



POMDP Value Iteration in Practice

• It is infeasible to enumerate every possible t-
step plan to find the one that maximizes the 
value function. 

• In practice, we iterate over all the one-step 
plans and toss out the plans that are not 
optimal for any initial belief state (called 
pruning). 

• The process repeats till the planning horizon is 
reached. 

• The alpha-vectors provide a compact 
representation of the policy. 

During value iterations, alpha vectors get 
refined and pruned. 



Policies for the Tiger Problem
Optimal policies for one time step

• Prefer to listen when you are highly uncertain. 
• Prefer to open the respective door if the belief is highly 

certain. 

Optimal policies for four timesteps
• The agent will choose to open a door for some belief states.  



Other POMDP Applications
• Monitoring disease status

• Personalized Cotesting Policies for Cervical Cancer 
Screening: A POMDP Approach Ebadi et al. 

• Human-Robot Dialogue
• Spoken Dialogue Management Using Probabilistic 

Reasoning, Roy et al. 



Takeaways

• POMDPs consider the partial-observability of the state
• In an MDP state is assumed to be known 
• In a POMDP, the agent receives noisy observations

• The notion of a belief state is central to POMDPs
• A belief state is computed from past observations and actions. 
• POMDP is an MDP in the belief space. 

• The complete value function for a policy tree is a linear interpolation 
across the belief space.  
• The value function for a finite-horizon POMDP will be the supremum 

of the value functions for each policy tree. 
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