COL864: Special Topics in Al
Semester 11, 2020-21

Reinforcement Learning II — Model-free Methods

Rohan Paul

Outline

* Last Class
e Reinforcement Learning
* Model-Based Reinforcement Learning

* This Class

* Model-Free Reinforcement Learning

* Reference Material
* Please follow the notes as the primary reference on this topic.

Acknowledgements

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,

Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

Model-Based RL vs. Model-Free RL

* Model-Based RL
* Used data to infer a model and compute a policy
* Problem
» Storing the model (and computing the policy) can be difficult.
e Can we compute a policy in a way that “avoids” storing the model?
* Note that we still need to store “some” statistics over our experience
* Hence, maintain an estimate of the “value” function.

e Model-Free RL

* Bypass explicit learning of the intermediate model.

e Can sample trajectories from the world directly and estimate a value function
without the model.

Monte Carlo Methods

* Learning the state-value function for a given policy

* What is the value of a state?
* Expected return — expected cumulative future discounted reward

* Key Idea

* Sample trajectories from the world directly and estimate a value function
without a model

* Simply average the returns observed after visits to that state.

* As more returns are observed the average should converge to the expected
value.

* Each occurrence of a state in an episode is a called a visit to the state.

Toy Example: Monte Carlo Method

Input Policy &

Assume:y=1

Observed Episodes (Training)

_

_

Episode 2

Episode 1
B, east, C, -1 A
C, east, D, -1
D, exit, x, +10
J
Episode 3
4 E, north, C, -1 A
C,east, D, -1
D, exit, x, +10
J

_

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

_

4 E, north, C, -1

C, east, A, -1
A, exit, x,-10

Value/utility of state c
V*(C) = ((9 +9 + 9 +(-11))/4)
=4

Toy Example: Monte Carlo Method

Input Policy & Observed Episodes (Training)
Episode 1 Episode p) Value/utility of state c
N N V*(C) = ((9 +9 + 9 +(-11))/4)
B, east, C, -1 B, east, C, -1 =4
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10 Output Values
\§ J J
Episode 3 Episode 4
4 E, north, C, -1 N (E, north, C, -1 h
C,east, D, -1 C, east, A, -1
Assume: y = 1 D, exit, x, +10 A, exit, x,-10

_ O\ J

Monte Carlo Methods

* Advantage
* Do not require the MDP dynamics or rewards

* Disadvantage

* Can only be applied to episodic MDPs

* Averaging over the returns from a complete episode
* Requires each episode to terminate

First-Visit Monte Carlo (FVMC) Policy
Evaluation

First-visit MC prediction, for estimating V' ~ v,

Input: a policy 7 to be evaluated

Initialize the value function arbitrarily. » Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) « an empty list, for all s € §

Loop over the episode from the end » Loop forever (for each episode):
till the start. Generate an episode following m: Sy, Ao, R1. 51, A1, Ra2, ..., Sr-1,Ar_1. Ry
G+« 0
Account for the discounting of the reward . Loop for each step of episode, t =T—-1,T-2,..., 0:
\ (;(—‘(;4-11):;]
_ . Unless S; appears in Sp, S1,...,S51-1:

Except- if (unlgss) the state has been visited . Append G to Returns(S:)
from time 0 till (t-1) append and average out — V(S,) « average(Returns(S;))

the results.
l.e., only update the value estimate if this is
the first visit to the state.

Pseudo-code from Sutton and Barto (Reinforcement Learning) Ch 5 (Sec. 5.1)

First-Visit Monte Carlo (FVMC)

* First-Visit Monte Carlo (FVMC)

* Averages the returns following the first visit to a state s in the episode.

* Every-visit Monte Carlo (EVMC)

* Averages returns following all the visits to s.

* Convergence
 FVMC — error falls as 1/N(s). Needs lots of data
 EVMC - error falls quadratically, slightly better data efficiency.

So, now we know how to evaluate a policy.
What about improving the policy now?

10

Policy Improvement

Two problems in the last pseudo-code in doing policy improvement.

1. How to obtain the policy?

* Note: we only stored the state value function. In the absence of a model, we
cannot compute the policy.

e Solution: Store the state-action values.

2. How to ensure the coverage of states?

» Solution: Use epsilon-greedy policies

 Most of the time select an action that has maximal estimated action value.
* But with probability epsilon, instead, select an action at random.

Policy Improvement (Monte Carlo Control)

Algorithm parameter: small £ > ()
Initialize:
T +— an arbitrary s-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) + empty list, for all s € 8, a € A(s)
Repeat forever (for each episode):
Estimate the Q-function. Generate an episode following m: Sy, Ag, R1, ..., St—1.Ar_1. Ry
Derive the policy from there. G0
Loop for each step of episode, t =T—-1,T-2,..., 0:
\ (;(—‘,(;+Rg+1
Unless the pair S;, A; appears in Sy, Ag, S1. A;...,S8_1. A _1:
) Append G to Returns(S, A,)
All non-greedy actions have a small Q(S., A) « average(Returns(S,, A;))
probability of being selected. The A* « argmax, Q(S;,a) (with ties broken arbitrarily)
bulk of the likelihood is given to the | oralla € AGE N
i , —&+¢ S;)| ifa= 4
greedy action. [T m(alSt) { e /|A(S,)| if a £ A"

In literature, a policy is called soft if m(a|s) > O forall s € S and all a € A(s).

An € — soft policy is one for which 7 (als) > Gy for all states and actions
for some €

12
Pseudo-code from Sutton and Barto (Reinforcement Learning) Ch 5 (Sec. 5.4)

Problem with Monte Carlo

* Limitations

* Each state must be learned separately, loses the state connection information.
* Estimate of one state is not taking advantage of the estimates of the other states.
* Note: Bellman equations tell us that value function for states has a recursive relationship.

* Could only be used in an episodic setting.

13

Recall our example

Observed Episodes (Training)

Input Policy &

Assume:y =1

Episode 1

_

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

_

4 E, north, C, -1

C,east, D, -1
D, exit, x, +10

Episode 2

J

_

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

_

4 E, north, C, -1

C, east, A, -1
A, exit, x,-10

Output Values

Problem: we have lost the
connection between states.
We go through state C, 4 times.
We use only 2 estimates for E.

But, C and E are adjacent!
14

Temporal Difference (TD) Learning

* Model-Free combination of
* Monte Carlo (learning from sample trajectories/experience) and
* Dynamic programming (via Bellman Equations)

* Incorporate Bootstrapping

e Update value function estimates of a state based on others

* Adjust the value function estimate using the Bellman Equation relationship between the value function
of successor states.

* More data-efficient than a Monte Carlo method (discussed previously)

* Setting

* Can be used in an episodic or infinite-horizon non-episodic settings
* Immediately updates the estimate of V(s) after each (s, a, s/, r) tuple.

“If one had to identify one idea that is central and novel to reinforcement learning,
it would undoubtedly be temporal-difference (TD) learning”, Sutton and Barto 2017

15

TD Learning

m Aim: estimate Vr(s) given episodes generated under policy
Gy =71 by 4 a2 4 e + o in MDP M under policy @
m V7(s)= E;|G]

m Bellman Operator (if we know MDP models)

BTV (s) =r(s,w(s)) + 7> _ pl(s'|s. w(s))V(s)

m In incremental every-visit MC, update estimate using 1 sample of return (for the current i'"" episode)

Vi) = V7T(s)+ oG — VT(s))
m Insight: have an estimate of V'™, use to estimate expected return

V(s0) = V7(s0) +a ([r + 1V (s000)] =V 7(s0))

TD target

m Can immediately update the value estimate after each (s, a.r, s") tuple. Do not need the episodic
setting.

TD Methods

m The updates are based on the difference in value functions at each time step, the T'D error,
VNS & & & UL
Op = 1y YV S41) — V7(s¢)

hence the name temporal difference learning.
m « is the learning rate.
m I'D can be generalised to n-step returns:

(n) . L A2 . L Ny
Ry =req1 +y1e42 + Y143 + 0+ Vi(St4n)

Note: earlier we used the 1-step VT(sg) = VT(se) + al[ry + 9V (s040)] =V 7 (s1))
return in the TD update. Now, we can ~ —~— v
arge

generalize to how many steps in the
future to update from.

17

TD Methods

TD can be generalised to n-step returns:

(n) 2 nys \
1": =Tt4+1 TYTt42 Y Tt43 T+ T 9 \'!(-'“(+n)

TD Learning (intuitively)

Nudge our prior estimate of the value function for a
state using the given experience.

Shift the estimate based on the error in what we are
experiencing and what estimate we had before
Weighted by the learning rate.

1-step TD
and TD(0)

T
!

O

2-step TD

[
!
T
5

3-step TD

T

OO0

o-step TD
n-step TD and Monte Carlo

T
I

o—O—o—70
o0 —0—0+——20

O—e

18

Temporal Difference Learning: Example

States Observed Transitions
[B, east, C, -2] [C, east, D, -2]

| o) lofofe] [afo]e] [afc]

Assume:y=1,a=1/2
VT (s) = (1= a)V7™(s) + o |R(s,7(s),8") + vV (s))

SARSA

m The TD algorithm describes how to evaluate a policy, but does not
describe how to improve the policy.

m Can be done very easily with SARSA.

@ Rather than learning the value function V(s), we will learn the
state-action value Q(s, a), learning from the tuple {s¢, a¢, re, S¢41, 0041},
hence the name SARSA or “state action reward state action”. Update using state, action, reward, state, action.

® If we generalize the TD rule to state-action functions, such that

Q(st,ar) = Q(se ar) + a[(re41 + 1Q(st41, ars1)) — Q(s¢,ae)],

can then choose a new policy by maximizing over the next action we
might take, as in

7(s) = maaxQ(s,a)
s We modify this policy slightly, using a policy 7, (s) such that

7e(s) = max, Q(s,a) with probability(1 — ¢)
o RAND(A) otherwise

in order to ensure that we visit all state-action pairs sufficiently often.
@ The parameters € can be lowered as ¢, = 1/f so that the agent
eventually stops exploring and converges to the optimal policy. 20

SARSA

Sarsa (on-policy TD control) for estimating () =~ ¢,

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @) (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A" from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A)« Q(S,A)+ a [1? +vQ(S’', A") — Q(S, A)]
S« 8 A« A
until S is terminal

State-action values
updated using the SARSA
Learning Rule

v

41l

Example: Windy Grid World

* Setup
* Standard grid world with start and goal state.
* Crosswind running upward through the middle of the grid. ' ' /

* Actions: Up, down, left, right - | .
e Wind strength varies from column to column (written below) S - / G |
in number of grid cells shifted upwards. , ! | - |

* E.g., if you are one cell to the right of the goal, then the action
left takes you to the cell just above the goal. ' ' ' Actions

* Undiscounted episodic task with constant rewards of -1 till the
goal state is reached.

: : . O 0 01 1 1 2 2 1 0
* SARSA with epsilon-greedy does well on this control task.

* Can learn that the blue path is good.

* Monte Carlo methods cannot easily be used for this task
because termination is not guaranteed for all policies.

* If a policy was found that caused the agent to stay in the same
state, then the next episode would never end.

» Step-by-step learning methods such as SARSA do not
have this problem because they quickly learn during the
episode. 22
Sutton and Barto Ch 6.5 Example 6.5

Q-Learning

s One disadvantage to SARSA is that it is an on-policy algorithm
@ That is, we only get an estimate of the Q function for tuples that
are directly experienced by executing the policy
® What if our initial policy is really poor?
® In that case could take a long time to find the optimal policy.
® The update rule can be modified to improve the best state-action
tuple, rather than the experienced tuple by putting the max
operator directly inside the update rule, as in

Qs ar) = Qsp,ap) + o [(re + 9 max Q(st+1.a")) — Q(se. ar)] .

m (Q-LEARNING is one of the core algorithms of reinforcement
learning.

m It is an off-policy algorithm, in that the) function can be shown
to converge, regardless of the underlving policy, so long as the
underlying policy is guaranteed to visit all state-action pairs
infinitely often.

23

Q-Learning

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)

Q-Learning update rule Take action A, observe R, S’

that uses the max of the Q(S,A) « Q(S, A) + a| R+ ymax, Q(S',a) — Q(S, A)|
next state-action tuples to S« S

update. until S is terminal

24

Example: Cliff Walking

The agent does not know the rewards a-priori.
- Learns the effect of the east action over time.
- Only the actions taken by the agent
contribute to updates.

Occasionally falls in the cliff and gets the
negative reward.

Note that the max of the Q values is
propagated (green values) to other states as it
is approximating the optimal Q value.

Cliff at the bottom,

negative reward here.

DPPS
XD

CURRENT Q-VALUES

e
XD

Exit with
+10 reward

The Off-Policy Nature of Q-Learning

e Off-policy methods

* Learns the optimal state-action value function, independent of the policy being
followed.

* Q-learning converges to optimal policy
* Even if the agent is acting sub-optimally.
* Under conditions: Exploration is enough. The learning rate becomes small enough

* The algorithm learns about the value of the optimal policy without
knowing or using the optimal policy.

 Example: sporadic falls in the cliff does not affect the knowledge that going right
leads to high reward.

* Note that SARSA was an on-policy algorithm

26

Example: Another Cliff Walking

Safer path

Optimal path

S The Cliff

Task: Undiscounted, episodic task with start and goal
states.

Sum of <

rewards
during
episode

Sarsa

254

50 -

Q-learning
-75 4
-100 l T l l]
0 100 200 300 400 500

Episodes

Online performance of Q-learning is worse
than of SARSA

SARSA learns the blue path.

Q-learning learns the red path occasionally
falling into the cliff due to epsilon greedy

action selection and gets lower rewards.
27

Sutton and Barto Ch 6.5 Example 6.6

Expected SARSA

e Expected SARSA just like Q-learning except

takes and expectation instead of the max.
* Considers how likely the action is under the

current policy. — Q(5:. A) +a [1{,*l +4 3 7(alSe+1)Q(St+1,a) — Q(St, ..1,)].

O(S:. Ay) Q(Sh, Ay) +|a [HM + Y Ea[Q(Sts1, Ars1) | Sex1] — Q(St, .-1,)]

e Expected SARSA is more complex
computationally but eliminates the variance
due to the random selection of actions.

-40

Sum of rewards

* Expected SARSA performs better than both sbionk
SARSA and Q-learning on the cliff walking task. 80

Asymptotic Performanc

Q-learning

v

vV
v
v DDD
o
V o
v DO

9 |nterim Performance

o .

\4
o)

Expected Sarsa

v
=]

oo 4

0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

28
Sutton and Barto Ch 6.5 Example 6.6

