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Today’s lecture

* Last Class
* Physical Agent Representation

e This Class

* Sample-based Motion Planning



How to describe a planning problem?

* What is planning?

. . . An example of a planning model.
* Determining the sequence of actions

that will attain a goal state. m Set of states s € S that the world might be in.
o P|anning Model m Set of actions a € A that we might take.

* Planning problems require a model of = Transition function 7': S x A+ S

the world. How the current state of the world will change
° Sometimes the term ”mode|” means as a result of taking an action.

the parameters of T where the states

and actions are fixed.



Search applied to a planning model

* Note
* There are only search algorithms, not
planning algorithms.
* Various search algorithms
* no cost function,
* have a cost function but no heuristic,
 cost function and heuristics etc.

Figure: The A* Tree from Russell & Norvig.



Planning Notions

* Planning problem
* Tuple: start state sy, goal state s8and a planning {50,579, M)
model M. i
 Satisficing (feasibility)
* Any plan that gets from the start state to the goal

state.
e Optimality

. ring multiple plans from th r h _ . : .

gg;?pa g multiple plans from the start to the [f a plan 7 is specified as a sequence of states and actions
. . . T T ToGT ) \ » best pl: \

o NOtIOﬂ of COS_tS C or rewards R (assouat_ed with { 0:Ag s QST 1 then the best plan might be
taking an action a in a state s and reaching state s’)

e Optimal plans minimize the total cost or maximize - — urgnmxz R(s.,al, s, )
the total reward. : ,

Completeness such that s; = sp and s, = s/

* If an optimal plan exists (connecting the start to the
goal state) then the search algorithm will find it.



Grid representation

Planning Model S

* Constructing an appropriate model is
often the most important part of
planning. 7

* Example

 Different discretizations lead to different
models with different state and action e 6P
spaces, even though the underlying Poo®. S o

problem hasn’t changed. |
— i ,, Topological representation

ki

=

=



Plan Execution

* Once we have a plan, it is to be
executed.

* There could still be failures in plan
execution due to uncertainty.

e Aleatoric uncertainty

* The uncertainty in action outcome because
the real world is stochastic.

* Epistemic uncertainty

* The uncertainty because there is something
that we do not know (the topology changes,
new things added in the map).
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Maps can change over time.




Plan Execution

* Re-planning
* A form of execution monitoring.

* Action monitoring
* Is the current action optimal/feasible from the current state?

* Plan monitoring
* |s the current plan still optimal or feasible?

* Goal monitoring
* Is the current goal still feasible/desirable?



Motion Planning

Motion planning for vehicles

* Motion Planning

* Given a start and and a goal state

* Determine a sequence of actions

(control inputs) that leads from the start
to the goal state.

* A certain kind of planning

* Challenge
* Need to avoid obstacles.

* The agent may not be able to move to
any coordinate at will.

 Example: car, helicopter, airplane, but
also robot manipulator hitting joint
limits Benchmark problem — pulling bars
apart (J. Kuffner)

Re-arrangement planning



Planning Motions in Continuous Spaces

* Task space

e Actual cartesian space in which the agent
moves.

* Configuration space
e Space of possible configurations of the
agent.

* Continuous spaces

e Space in which we are looking for a plan is
continuous.

* We do not have access to a grid or a graph
a-priori.
* Naive discretization leads to a prohibitively

large set of states when the configuration
space is high-dimensional.

10



Sample-based Motion Planning

e Monte Carlo methods

* Tackling continuous spaces (or when the space is too
large), cannot exhaustively explore all possibilities.

* Randomly explore a smaller subset of possibilities while
keeping track of progress.

* Tradeoff

* Between solution quality and runtime performance.
* More sampling leads to a better solution.

* Sample-based Planning

e Search for a path (collision-free) only by sampling paths.

* Probabilistic Roadmaps (PRMs)
« Rapidly exploring random trees (RRTs)

RRT sampling based motion planner.
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Probabilistic Roadmaps

 Central Idea

* Sample and find collision-free
configurations

* Connect the configurations (create a
graph)
e Search the graph for solution

* Phases
* Learning phase

* Query phase. Inherently, a multi-query
planner.
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Probabilistic Roadmap (PRM)

Space i"  forbidden space Free/feasible space
Z \\

* Configuration space
* Forbidden and free space 4

13



Probabilistic Roadmap (PRM)

e Configurations are
sampled by picking
coordinates at random.
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Probabilistic Roadmap (PRM)

e Configurations are
sampled by picking
coordinates at random.
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Probabilistic Roadmap (PRM)

e Sampled configurations
are tested for collisions.
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Probabilistic Roadmap (PRM)

* Feasible configurations
(collision free) are
retained as “milestones”.
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Probabilistic Roadmap (PRM)

* Each milestone is linked
by straight paths to its
nearest neighbours.
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Probabilistic Roadmap (PRM)

* Each milestone is linked
by straight paths to its
nearest neighbours.

e Retain only feasible
connections.
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Probabilistic Roadmap (PRM)

* The collision-free links
are retained as local
paths. This is the output
of the learning phase.

* The graph structure is the
roadmap. The sampling is
probabilistic, hence called
PRM.

20



Probabilistic Roadmap: Query Phase

* Query phase.
* The start and the goal

configurations are
included as milestones.
S
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Probabilistic Roadmap: Query Phase

).

* The graph is searched for
a path from s to g.

P
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Probabilistic Roadmap

* Key Steps
* Initialize set of points with X and X;
* Randomly sample points in the configuration space
* Connect nearby points if they can be reached from each other
* Find a path from X to X; in the graph.

* Probabilistically completeness

* |f the algorithm is run infinitely often then by probability one it will contain a
solution path if one exists.



Rapidly Exploring Random Tree (RRT)

* Central Idea
* Build up a tree in the search space
through generating “next states”.

* Select a random point and expand the
nearest vertex in the tree towards the
sampled point.
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RRT Extension

EXT END( T’ qrand)

In the presence of an
obstacle.

[ Kuffner & LaValle , ICRA00]

e 9rand
@
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Rapidly Exploring Random Tree (RRT)

GENERATE_RRT (zinit, K, At)

1
2
3

1
D
6
7
8
9

T .init(zinit );
for k=1 to K do
Trand ¢ RANDOM_STATE();

Tnear ¢ NEAREST NEIGHBOR(z, 404, 7 ):

u ¢ SELECTINPUT(Z;and, Tnear);
Znew — NEW_STATE(Z,00r, u, At):
T .add_vertex(z,,ew );
T.ad(l.e(lge(;r,",a,., Tnews U);

Return 7
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Rapidly Exploring Random Tree (RRT)

http://msl.cs.uiuc.edu/rrt/gallery;html



Biases

GENERATERRT (z;,it, K, At)

* Biases towards larger spaces. 1 T init(zis):
: : 2 fork=1toKd
» Creating a bias towards the goal. 3 2+ RANDOM.STATE():

* When generating a random sample, 4 Znear + NEAREST NEIGHBOR(rand, T);
with some probability pick the goal ) u ¢ SELECTINPUT(2rand, Znear );
instead of a random node when 0 Znew & NEW STATE(Znear, u, At);

din 1 T .add_vertex(z,,ew):
€Xpan 8- 8 T .add-edge(Zpears Tnew, U);
9 Return T

RANDOM_ STATE(): often unfformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
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Growing an RRT

L tterat. ons 390 teratons

An animation of an RRT starting from

A visualization of an RRT graph after 45 and 390 iteration O to 10000

iterations

https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
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Bi-directional RRT

Volume swept out by unidirectional RRT:

Volume swept out by bi-directional RRT:
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RRT*

* Asymptotically optimal
* In the limit, will find the optimal path.
* Performs re-wiring of the tree.

e Karaman and Frazolli

* https://dspace.mit.edu/handle/1721.1
/63170

e https://www.youtube.com/watch?v=6F

ngam882hM

* https://www.youtube.com/watch?v=2
WOBMswcCAS
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https://dspace.mit.edu/handle/1721.1/63170
https://www.youtube.com/watch?v=6Pngam882hM
https://www.youtube.com/watch?v=2WOBMswcCA8

RRT Applications

Robotics Applications
mobile robotics
manipulation
humanoids
Other Applications
biology (drug design)
manufacturing and virtual prototyping (assembly analysis)
verification and validation
computer animation and real-time graphics
aerospace
RRT extensions
discrete planning (STRIPS and Rubik's cube)
real-time RRTs
anytime RRTs
dynamic domain RRTs
deterministic RRTs
parallel RRTs
hybrid RRTs
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Other approaches: Potential Fields

At any point X we can write the total potential Uy, as a sum of the potential induced U,
by k obstacles and the potential induced by the goal U,:

Us(x) = ) Usi(x) + Uy(x) (2.7)

=1k

Now we know that the force F(x) exerted on a particle in a potential field Uy(x) can be

written as :
F(x) = -VUg(x) (2.8)
=Y VU,ix) - VU,(x) (2.9)
=1k
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Other approaches: Potential Fields

p(x) Shortest distance between the obstacle and
~ vehicle at x.

P limit on the region of space affected by the
potential field

Two typical potential functions - inverse quadratic
for obstacle and quadratic for the goal.

p(x) < po

otherwise

p(x) < po

otherwise
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Limitation: Local Minima

Only acts locally. There is no global path planning.

<3
The vehicle simply reacts to local obstacles,

<
always moving in a direction of decreasing
potential. -
Example: the vehicle will descend into a local g o

minima in front of the two features and will stop.
Any other motion will increase its potential. PR
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