#### COL864: Special Topics in AI Semester II, 2020-21

**Planning Motions** 

**Rohan Paul** 

## Today's lecture

- Last Class
  - Physical Agent Representation
- This Class
  - Sample-based Motion Planning

### How to describe a planning problem?

- What is planning?
  - Determining the sequence of actions that will attain a goal state.
- Planning Model
  - Planning problems require a model of the world.
  - Sometimes the term "model" means the parameters of T where the states and actions are fixed.

An example of a planning model.

- Set of states  $s \in S$  that the world might be in.
- Set of actions  $a \in A$  that we might take.
- $\blacksquare$  Transition function  $T:S\times A\mapsto S$

How the current state of the world will change as a result of taking an action.

# Search applied to a planning model

#### • Note

- There are only search algorithms, not planning algorithms.
- Various search algorithms
  - no cost function,
  - have a cost function but no heuristic,
  - cost function and heuristics etc.





Figure: The A\* Tree from Russell & Norvig.

### **Planning Notions**

- Planning problem
  - Tuple: start state s<sub>0</sub>, goal state s<sup>g</sup> and a planning model M.
- Satisficing (feasibility)
  - Any plan that gets from the start state to the goal state.
- Optimality
  - Comparing multiple plans from the start to the goal.
  - Notion of costs C or rewards R (associated with taking an action a in a state s and reaching state s')
  - Optimal plans minimize the total cost or maximize the total reward.
- Completeness
  - If an optimal plan exists (connecting the start to the goal state) then the search algorithm will find it.

If a plan  $\tau$  is specified as a sequence of states and actions  $\{s_0^{\tau}, a_0^{\tau}, \ldots, a_T^{\tau}, s_{T+1}^{\tau}\}$ , then the best plan might be

$$\tau^* = \underset{\tau}{\operatorname{argmax}} \sum_{t} R(s_t^{\tau}, a_t^{\tau}, s_{t+1}^{\tau})$$
  
such that  $s_0^{\tau} = s_0$  and  $s_{T+1}^{\tau} = s^g$ 

$$\{s_0, s^g, M\}$$

# **Planning Model**

- Constructing an appropriate model is often the most important part of planning.
- Example
  - Different discretizations lead to different models with different state and action spaces, even though the underlying problem hasn't changed.





Topological representation

### **Plan Execution**

- Once we have a plan, it is to be executed.
- There could still be failures in plan execution due to uncertainty.
  - Aleatoric uncertainty
    - The uncertainty in action outcome because the real world is stochastic.
  - Epistemic uncertainty
    - The uncertainty because there is something that we do not know (the topology changes, new things added in the map).



Maps can change over time.

# **Plan Execution**

- Re-planning
  - A form of execution monitoring.
- Action monitoring
  - Is the *current action optimal/feasible* from the current state?
- Plan monitoring
  - Is the *current plan* still *optimal or feasible*?
- Goal monitoring
  - Is the *current goal* still *feasible/desirable*?

# **Motion Planning**

- Motion Planning
  - Given a start and and a goal state
  - Determine a sequence of actions (control inputs) that leads from the start to the goal state.
  - A certain kind of planning

#### Challenge

- Need to avoid obstacles.
- The agent may not be able to move to any coordinate at will.
- Example: car, helicopter, airplane, but also robot manipulator hitting joint limits











Benchmark problem – pulling bars apart (J. Kuffner)

Re-arrangement planning

# **Planning Motions in Continuous Spaces**

#### Task space

- Actual cartesian space in which the agent moves.
- Configuration space
  - Space of possible configurations of the agent.
- Continuous spaces
  - Space in which we are looking for a plan is **continuous**.
  - We do not have access to a **grid** or a graph a-priori.
  - Naïve discretization leads to a prohibitively large set of states when the configuration space is high-dimensional.





### Sample-based Motion Planning

#### Monte Carlo methods

- Tackling continuous spaces (or when the space is too large), cannot exhaustively explore all possibilities.
- Randomly explore a smaller subset of possibilities while keeping track of progress.

#### • Tradeoff

- Between solution quality and runtime performance.
- More sampling leads to a better solution.

#### Sample-based Planning

- Search for a path (collision-free) only by sampling paths.
- Probabilistic Roadmaps (PRMs)
- Rapidly exploring random trees (RRTs)

RRT sampling based motion planner.

# **Probabilistic Roadmaps**

#### Central Idea

- Sample and find collision-free configurations
- Connect the configurations (create a graph)
- Search the graph for solution

#### • Phases

- Learning phase
- Query phase. Inherently, a multi-query planner.



- Configuration space
  - Forbidden and free space



 Configurations are sampled by picking coordinates at random.



 Configurations are sampled by picking coordinates at random.



• Sampled configurations are tested for collisions.



• Feasible configurations (collision free) are retained as "milestones".



• Each milestone is linked by straight paths to its nearest neighbours.



- Each milestone is linked by straight paths to its nearest neighbours.
- Retain only feasible connections.



- The collision-free links are retained as local paths. This is the output of the learning phase.
- The graph structure is the roadmap. The sampling is probabilistic, hence called PRM.



#### Probabilistic Roadmap: Query Phase

- Query phase.
- The start and the goal configurations are included as milestones.



#### Probabilistic Roadmap: Query Phase

• The graph is searched for a path from s to g.



#### Probabilistic Roadmap

#### • Key Steps

- Initialize set of points with  $X_s$  and  $X_G$
- Randomly sample points in the configuration space
- Connect nearby points if they can be reached from each other
- Find a path from  $X_s$  to  $X_G$  in the graph.

#### Probabilistically completeness

• If the algorithm is run infinitely often then by probability one it will contain a solution path if one exists.

# Rapidly Exploring Random Tree (RRT)

#### Central Idea

- Build up a tree in the search space through generating "next states".
- Select a random point and expand the nearest vertex in the tree towards the sampled point.



#### **RRT Extension**



#### Rapidly Exploring Random Tree (RRT)

GENERATE\_RRT( $x_{init}, K, \Delta t$ )  $\mathcal{T}.init(x_{init});$ 1 for k = 1 to K do  $\mathbf{2}$  $\mathbf{3}$  $x_{rand} \leftarrow \text{RANDOM\_STATE}();$ 4 $x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T});$  $\mathbf{5}$  $u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near});$  $\mathbf{6}$  $x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);$  $\overline{7}$  $\mathcal{T}.\mathrm{add\_vertex}(x_{new});$  $\mathcal{T}.add\_edge(x_{near}, x_{new}, u);$ 8 Return  $\mathcal{T}$ 9

#### Rapidly Exploring Random Tree (RRT)



http://msl.cs.uiuc.edu/rrt/gallery,html

#### Biases

- Biases towards larger spaces.
- Creating a bias towards the goal.
  - When generating a random sample, with some probability pick the goal instead of a random node when expanding.

RANDOM\_STATE(): often uniformly at random over space with probability 99%, and the goal state with probability 1%, this ensures it attempts to connect to goal semi-regularly

#### GENERATE\_RRT $(x_{init}, K, \Delta t)$ $\mathcal{T}.init(x_{init});$ for k = 1 to K do $x_{rand} \leftarrow \text{RANDOM\_STATE}();$ 3 $x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, \mathcal{T});$ 4 $u \leftarrow \text{SELECT\_INPUT}(x_{rand}, x_{near});$ 5 $x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);$ 6 $\mathcal{T}.add\_vertex(x_{new});$ $\mathcal{T}$ .add\_edge( $x_{near}, x_{new}, u$ ); 8 Return $\mathcal{T}$ 9

#### Growing an RRT



A visualization of an RRT graph after 45 and 390 iterations

An animation of an RRT starting from iteration 0 to 10000

https://en.wikipedia.org/wiki/Rapidly-exploring\_random\_tree

#### **Bi-directional RRT**

Volume swept out by unidirectional RRT:



Volume swept out by bi-directional RRT:



#### RRT\*

- Asymptotically optimal
  - In the limit, will find the optimal path.
  - Performs re-wiring of the tree.
- Karaman and Frazolli
  - <u>https://dspace.mit.edu/handle/1721.1</u> /63170
  - <u>https://www.youtube.com/watch?v=6F</u> <u>ngam882hM</u>
  - <u>https://www.youtube.com/watch?v=2</u> <u>WOBMswcCA8</u>



#### **RRT** Applications

Robotics Applications mobile robotics manipulation humanoids Other Applications biology (drug design) manufacturing and virtual prototyping (assembly analysis) verification and validation computer animation and real-time graphics aerospace RRT extensions discrete planning (STRIPS and Rubik's cube) real-time RRTs anytime RRTs dynamic domain RRTs deterministic RRTs parallel RRTs hybrid RRTs

#### **Other approaches: Potential Fields**

At any point  $\mathbf{x}$  we can write the total potential  $\mathbf{U}_{\Sigma}$  as a sum of the potential induced  $\mathbf{U}_{o}$ by k obstacles and the potential induced by the goal  $\mathbf{U}_{q}$ :

$$\mathbf{U}_{\Sigma}(\mathbf{x}) = \sum_{i=1:k} \mathbf{U}_{o,i}(\mathbf{x}) + \mathbf{U}_g(\mathbf{x})$$
(2.7)

Now we know that the force F(x) exerted on a particle in a potential field  $U_{\Sigma}(x)$  can be written as :

$$\mathbf{F}(\mathbf{x}) = -\nabla \mathbf{U}_{\Sigma}(\mathbf{x}) \tag{2.8}$$

$$= -\sum_{i=1:k} \nabla \mathbf{U}_{o,i}(\mathbf{x}) - \nabla \mathbf{U}_g(\mathbf{x})$$
(2.9)

#### **Other approaches: Potential Fields**

- $\rho(\mathbf{x})$  Shortest distance between the obstacle and vehicle at x.
- Po limit on the region of space affected by the potential field

$$\begin{split} \mathbf{U}_{o,i}(\mathbf{x}) &= \eta \begin{cases} \frac{1}{2} \left( \frac{1}{\rho(\mathbf{x})} - \frac{1}{\rho_0} \right)^2 & \forall \quad \rho(\mathbf{x}) \leq \rho_0 \\ 0 & \text{otherwise} \end{cases} \\ \mathbf{U}_g(\mathbf{x}) &= \frac{1}{2} (\mathbf{x} - \mathbf{x}_g)^2 \end{split}$$

$$\mathbf{F}_{o,i} = \begin{cases} \eta \left( \frac{1}{\rho(\mathbf{x})} - \frac{1}{\rho_0} \right) \frac{1}{\rho(\mathbf{x})^2} \frac{\partial \rho(\mathbf{x})}{\partial \mathbf{x}} & \forall \rho(\mathbf{x}) \le \rho_0 \\ 0 & \text{otherwise} \end{cases}$$

Two typical potential functions - inverse quadratic for obstacle and quadratic for the goal.



#### Limitation: Local Minima

Only acts locally. There is no global path planning.

The vehicle simply reacts to local obstacles, always moving in a direction of decreasing potential.

Example: the vehicle will descend into a local minima in front of the two features and will stop. Any other motion will increase its potential.

