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Iterative Approaches to Solving CSPs

* Local search methods
* Keep track of “complete” states, i.e., all variables assigned.
 |If there are conflicts, then try to improve the assignment iteratively till a solution is obtained.

* Local search for CSPs: ”: ”
* Take an assignment with unsatisfied constraints H ' H

* Reassign variable values Keep track of complete assignments and
* Repeat: Till the CSP does not have a solution, explore at local changes.
» Variable selection: randomly select any conflicted variable
* Value selection: min-conflicts heuristic:
* Choose a value for the variable that violates the fewest constraints
* lLe., “hill climb” with h(x) = total number of violated constraints
* Hill climbing (a general technique for search)
* Start at a state
* Repeat: move to the best neighboring state
* If no neighbors better than current, quit

Hill climbing



Example: 4 Queens

74 N-Queens Iterative Improvement m_@g

o

States: 4 queens in 4 columns (4% = 256
states)

Operators: move queen in column
Goal test: no attacks

Evaluation: h(x) = number of attacks
(number of violated binary constraints)

Slide adapted from from Dan Klein and Anca Dragan



Optimization Problems: Generic Setup

* There is (discrete) combinatorial
structure to the problem (maybe with

constraints). Eval(X)

e Cost function, which we want to
optimize.

e Searching all possible solutions is likely to
be infeasible.

* At least, we want a “good” solution.
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Simulated Annealing

* Allows some apparently bad moves - to escape local maxima.
* Decrease the size and the frequency of bad moves over time.

e Algorithm sketch

1. Start at initial configuration X of value E (high is good)
2. Repeat:
(a) Let X; be a random neighbor of X and E; be its value
(b) If E < E; then let X + X; and E + E;
(c) Else, with some probability p, still accept the move: X + X; and

e Best solution ever found is always remembered

A form of Monte-Carlo Search. Move around the environment to explore it instead of systematically

sweeping. Powerful technique for large domains. .



Simulated Annealing: How to decide p?

e Considering a move from state of value E to a E = E(X)
lower valued state of E.

e If (E-FE’)is large: E’= E(X)
* Likely to be close to a promising maximum.
* Less inclined to to go downhill.

e If (E-E’)is small:

* The closest maximum may be shallow - £

* More inclined to go downhill is not as bad. /\
E’= E(X))




Simulated Annealing: Selecting Moves

* If the new value E; is better than the old value E, move to X

* If the new value is worse (E; < E) then move to the exp [ —
neighboring solution as per Boltzmann distribution.

E — E;

T

)

* Temperature (T>0)
* Tis high, exp is ~0, acceptance probability is ~1, high probability
of acceptance of a worse solution.

* Tis low, the probability of moving to a worse solution is ~ 0, low
probability of acceptance of a worse solution.

e Schedule T to reduce over time.
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Simulated Annealing: Properties

* Tis high
* The algorithm is in an exploratory phase
* Even bad moves have a high chance of
being picked)
*Tis low
* The algorithm is in an exploitation phase
* The “bad” moves have very low
probability
* If Tis decreased slowly enough

e Simulated annealing is guaranteed to
reach the best solution in the limit.
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Note that larger
deviations from
uphill search are
allowed at high
temperature

Iterations
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Local Beam Search

 Look for solutions from multiple points in parallel.

* Algorithm
e Track k states (rather than 1).
* Begin with k randomly sampled states.
* Loop
* Generate successors of each of the k-states
* If anyone has the goal, the algorithm halts
e Otherwise, select only the k-best successors from the list and repeat.

* Note:
* Each runis not independent, information is passed between parallel search threads.
* Promising states are propagated. Less promising states are not propagated.
* Problem: states become concentrated in a small region of space.




Stochastic Beam Search

* Local beam search
* Problem: states become concentrated in a small region of space
* Search degenerates to hill climbing

* Stochastic beam search
* Instead of taking the best k states
* Sample k states from a distribution
* Probability of selecting a state increases as the value of the state.
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