COL333/671: Introduction to Al

Semester I, 2021

Local Search Algorithms

Rohan Paul

Outline

e Last Class
e Constraint Satisfaction Problems

* This Class

* Local Search Algorithms

 Reference Material
 AIMA Ch. 4.1

Acknowledgement

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina

Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

Iterative Approaches to Solving CSPs

* Local search methods
* Keep track of “complete” states, i.e., all variables assigned.
 |If there are conflicts, then try to improve the assignment iteratively till a solution is obtained.

* Local search for CSPs: ”: ”
* Take an assignment with unsatisfied constraints H ' H

* Reassign variable values Keep track of complete assignments and
* Repeat: Till the CSP does not have a solution, explore at local changes.
» Variable selection: randomly select any conflicted variable
* Value selection: min-conflicts heuristic:
* Choose a value for the variable that violates the fewest constraints
* lLe., “hill climb” with h(x) = total number of violated constraints
* Hill climbing (a general technique for search)
* Start at a state
* Repeat: move to the best neighboring state
* If no neighbors better than current, quit

Hill climbing

Example: 4 Queens

74 N-Queens Iterative Improvement m_@g

o

States: 4 queens in 4 columns (4% = 256
states)

Operators: move queen in column
Goal test: no attacks

Evaluation: h(x) = number of attacks
(number of violated binary constraints)

Slide adapted from from Dan Klein and Anca Dragan

Optimization Problems: Generic Setup

* There is (discrete) combinatorial
structure to the problem (maybe with

constraints). Eval(X)

e Cost function, which we want to
optimize.

e Searching all possible solutions is likely to
be infeasible.

* At least, we want a “good” solution.

Optimization Landscape

objectixe function lobal maximum

shoulder

N

local maximum

"flat” local maximum

»state space
current

state

Simulated Annealing

* Allows some apparently bad moves - to escape local maxima.
* Decrease the size and the frequency of bad moves over time.

e Algorithm sketch

1. Start at initial configuration X of value E (high is good)
2. Repeat:
(a) Let X; be a random neighbor of X and E; be its value
(b) If E < E; then let X + X; and E + E;
(c) Else, with some probability p, still accept the move: X + X; and

e Best solution ever found is always remembered

A form of Monte-Carlo Search. Move around the environment to explore it instead of systematically

sweeping. Powerful technique for large domains. .

Simulated Annealing: How to decide p?

e Considering a move from state of value E to a E = E(X)
lower valued state of E.

e If (E-FE’)is large: E’= E(X)
* Likely to be close to a promising maximum.
* Less inclined to to go downhill.

e If (E-E’)is small:

* The closest maximum may be shallow - £

* More inclined to go downhill is not as bad. /\
E’= E(X))

Simulated Annealing: Selecting Moves

* If the new value E; is better than the old value E, move to X

* If the new value is worse (E; < E) then move to the exp [—
neighboring solution as per Boltzmann distribution.

E — E;

T

)

* Temperature (T>0)
* Tis high, exp is ~0, acceptance probability is ~1, high probability
of acceptance of a worse solution.

* Tis low, the probability of moving to a worse solution is ~ 0, low
probability of acceptance of a worse solution.

e Schedule T to reduce over time.

10

Simulated Annealing: Properties

* Tis high
* The algorithm is in an exploratory phase
* Even bad moves have a high chance of
being picked)
*Tis low
* The algorithm is in an exploitation phase
* The “bad” moves have very low
probability
* If Tis decreased slowly enough

e Simulated annealing is guaranteed to
reach the best solution in the limit.

i
0
o 100 200 300 400 200

Temperature

Note that larger
deviations from
uphill search are
allowed at high
temperature

Iterations

11

Local Beam Search

 Look for solutions from multiple points in parallel.

* Algorithm
e Track k states (rather than 1).
* Begin with k randomly sampled states.
* Loop
* Generate successors of each of the k-states
* If anyone has the goal, the algorithm halts
e Otherwise, select only the k-best successors from the list and repeat.

* Note:
* Each runis not independent, information is passed between parallel search threads.
* Promising states are propagated. Less promising states are not propagated.
* Problem: states become concentrated in a small region of space.

Stochastic Beam Search

* Local beam search
* Problem: states become concentrated in a small region of space
* Search degenerates to hill climbing

* Stochastic beam search
* Instead of taking the best k states
* Sample k states from a distribution
* Probability of selecting a state increases as the value of the state.

13

