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Clustering

o Clustering is the task of partitioning a given set of objects into
clusters such that similar objects are in the same group
(cluster) and dissimilar objects are in different groups.
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Correlation Clustering

@ Correlation clustering: Objects are represented as vertices in a
complete graph with £ labeled edges. Edges labeled + denote
similarity and those labeled — denote dissimilarity. The goal is
to find a clustering of vertices that maximises agreements
(MaxAgree) or minimise disagreements (MinDisAgree).
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Correlation Clustering

MaxAgree

Given a complete graph with + labeled edges, find a clustering of the
vertices such that objective function ® is maximized, where

®= sum of + edges within clusters and — edges across clusters.

| \

MinDisAgree

Given a complete graph with + labeled edges, find a clustering of the
vertices such that objective function W is minimised, where

W= sum of — edges within clusters and + edges across clusters.

Figure: ® =12 and W = 3.
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Correlation Clustering

MaxAgree

Given a complete graph with + labeled edges, find a clustering of the
vertices such that objective function ® is maximized, where
®= sum of + edges within clusters and — edges across clusters.

e NP-hard [BBCO04]
@ There is a PTAS for the problem [BBC04]

MinDisAgree

Given a complete graph with + labeled edges, find a clustering of the
vertices such that objective function W is minimised, where
W= sum of — edges within clusters and + edges across clusters.

o APX-hard [CGWO05]
o Constant factor approximation algorithms [BBC04, CGWO05]
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Correlation Clustering

MaxAgree[k]

Given a complete graph with + labeled edges and k, find a clustering
of the vertices such that objective function ® is maximized, where
&= sum of + edges within clusters and — edges across clusters.

| \

MinDisAgree[k|

Given a complete graph with + labeled edges and k, find a clustering
of the vertices such that objective function W is minimised, where
V= sum of — edges within clusters and + edges across clusters.

Figure: ® =12 and W = 3 for k = 2.
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Correlation Clustering

MaxAgree[K]

Given a complete graph with + labeled edges and k, find a clustering
of the vertices such that objective function ® is maximized, where
®= sum of + edges within clusters and — edges across clusters.

o NP-hard for k > 2 [SSTO04].
@ PTAS for any k (since there is a PTAS for MaxAgree).

MinDisAgree[k]

Given a complete graph with + labeled edges and k, find a clustering
of the vertices such that objective function W is minimised, where
W= sum of — edges within clusters and + edges across clusters.

@ NP-hard for k > 2 [SSTO04].
o PTAS for constant k with running time n®©“/<*) log n [GGOG).
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k-means Clustering

Beyond worst case

@ “Beyond worst-case’

e Separating mixture of Gaussians.

o Clustering under separation in the context of k-means
clustering.

o Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries’ during its execution.
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Semi-Supervised Active Clustering (SSAC)

Same-cluster queries

e “Beyond worst-case’

o Mixture of Gaussians.

o Clustering under separation.

o Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries’ during its execution.

o Semi-Supervised Active Clustering (SSAC) [AKBD16]: In the
context of the k-means problem, the clustering algorithm is
given the dataset X C R and integer k (as in the classical
setting) and it can make same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)

Same-cluster queries

@ SSAC framework: Same-cluster queries for correlation
clustering.
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Semi-Supervised Active Clustering (SSAC)

Same-cluster queries

o SSAC framework: Same-cluster queries for correlation clustering.

No
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@ A limited number of such queries (or some weaker version) may
be feasible in certain settings.

@ So, understanding the power and limitations of this idea may
open interesting future directions.
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Semi-Supervised Active Clustering (SSAC)

Known results for k-means

o Clearly, we can output optimal clustering using O(n?)
same-cluster queries. Can we cluster using fewer queries?

@ The following result is already known for the SSAC setting in
the context of k-means problem.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(knlog n) and
makes O(k?log k 4 k log n) same-cluster queries and returns the
optimal k-means clustering for any dataset X C RY that satisfies
some separation guarantee.
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Semi-Supervised Active Clustering (SSAC)

Known results for k-means

@ The following result is already known for the SSAC setting in
the context of k-means problem.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(knlog n) and
makes O(k?log k + klog n) same-cluster queries and returns the
optimal k-means clustering for any dataset X C RY that satisfies
some separation guarantee.

o Ailon et al. [ABJK18] extend the above results to
approximation setting while removing the separation condition
with:

e Running time: O(nd - poly(k/¢))
o # same-cluster queries: poly(k/c)  (independent of n)

@ Question: Can we obtain similar results for correlation
clustering?
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MinDisAgree[k]| within SSAC

MinDisAgree|k|

Given a complete graph with =+ labeled edges and k, find a
clustering of the vertices such that objective function W is
minimised, where

W= sum of — edges within clusters and + edges across clusters.

@ (1 + e)-approximate algorithm with running time no(?) log n
[GGO6].

Theorem (Main result — upper bound)

There is a randomised query algorithm that runs in time
O(po/y(é) - nlog n) and makes O(poly(g) - log n) same-cluster
queries and outputs a (1 + €)-approximate solution for
MinDisAgree[k].

Ragesh Jaiswal Approximate Correlation Clustering using Same-Cluster Queries



MinDisAgree[k]| within SSAC

ok
@ (1 + &)-approximate algorithm with running time no(az) log n

[GGO6).

Theorem (Main result — upper bound)

There is a randomised query algorithm that runs in time
O(po/y(g) - nlog n) and makes O(po/y(f) - log n) same-cluster
queries and outputs a (1 + €)-approximate solution for
MinDisAgree[k].

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant 0 > 0 such that any (1 + 0)-approximation algorithm for

k
MinDisAgree[k] runs in time 2oy es%) time.
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MinDisAgree[k]| within SSAC

ok

o (1 + ¢)-approximate algorithm with running time no<82> log n
[GGOo6].

Theorem (Main result — upper bound)

There is a randomised query algorithm that runs in time
O(po/y(é) - nlog n) and makes O(po/y(é) - log n) same-cluster queries
and outputs a (1 + €)-approximate solution for MinDisAgree[k].

D

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant § > 0 such that any (1 + &)-approximation algorithm for

k
MinDisAgree[k] runs in time 2% eroer) -time.

Theorem (Main result - query lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant § > 0 such that any (1 + &)-approximation algorithm for
MinDisAgree[k] within the SSAC framework that runs in polynomial

time makes Q(Wklogk) same-cluster queries.
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MinDisAgree[k]| within SSAC

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a

constant § > 0 such that any (1 + &)-approximation algorithm for
k
MinDisAgree[k] runs in time 22 o ioe®) time.

Chain of reductions for lower bounds

ETH 2nur PP E3 gAT

E3-SAT — NAE6-SAT

NAE6-SAT — NAE3-SAT

NAE3-SAT — Monotone NAE3-SAT

Monotone NAE3-SAT — 2-colorability of 3-uniform bounded
degree hypergraph.

2-colorability of 3-uniform bounded degree hypergraph %

MinDisAgree[k]
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MinDisAgree[k]| within SSAC

Theorem (Main result — upper bound)

There is a randomised query algorithm that runs in time
O(po/y(é) - nlog n) and makes O(po/y(é) - log n) same-cluster queries
and outputs a (1 + €)-approximate solution for MinDisAgree[k].

Main ideas

- Through a simple observation about PTAS of Giotis and
Guruswami[GGO6].

Overall possible partition
of the sampled points

4
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MinDisAgree[k]| within SSAC

Theorem (Main result — upper bound)

There is a randomised query algorithm that runs in time

O(poly(%) - nlog n) and makes O(poly(X) - log n) same-cluster queries
and outputs a (1 + €)-approximate solution for MinDisAgree[k].

Main ideas
- Through a simple observation about PTAS of Giotis and
Guruswami[GG06].

Use same-cluster queries
for optimal partition
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Future Directions

@ Future directions:

e Gap in query upper and lower bounds.
o Faulty-query setting.
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