
Approximate Correlation Clustering using
Same-Cluster Queries

Ragesh Jaiswal

CSE, IIT Delhi

LATIN Talk, April 19, 2018

[Joint work with Nir Ailon (Technion) and Anup Bhattacharya (IITD)]

Ragesh Jaiswal Approximate Correlation Clustering using Same-Cluster Queries



Clustering

Clustering is the task of partitioning a given set of objects into
clusters such that similar objects are in the same group
(cluster) and dissimilar objects are in different groups.
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Correlation Clustering

Correlation clustering: Objects are represented as vertices in a
complete graph with ± labeled edges. Edges labeled + denote
similarity and those labeled − denote dissimilarity. The goal is
to find a clustering of vertices that maximises agreements
(MaxAgree) or minimise disagreements (MinDisAgree).
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Correlation Clustering

MaxAgree

Given a complete graph with ± labeled edges, find a clustering of the
vertices such that objective function Φ is maximized, where
Φ= sum of + edges within clusters and − edges across clusters.

MinDisAgree

Given a complete graph with ± labeled edges, find a clustering of the
vertices such that objective function Ψ is minimised, where
Ψ= sum of − edges within clusters and + edges across clusters.

Figure: Φ = 12 and Ψ = 3.
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Correlation Clustering

MaxAgree

Given a complete graph with ± labeled edges, find a clustering of the
vertices such that objective function Φ is maximized, where
Φ= sum of + edges within clusters and − edges across clusters.

NP-hard [BBC04]
There is a PTAS for the problem [BBC04]

MinDisAgree

Given a complete graph with ± labeled edges, find a clustering of the
vertices such that objective function Ψ is minimised, where
Ψ= sum of − edges within clusters and + edges across clusters.

APX-hard [CGW05]
Constant factor approximation algorithms [BBC04, CGW05]
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Correlation Clustering

MaxAgree[k]

Given a complete graph with ± labeled edges and k , find a clustering
of the vertices such that objective function Φ is maximized, where
Φ= sum of + edges within clusters and − edges across clusters.

MinDisAgree[k]

Given a complete graph with ± labeled edges and k , find a clustering
of the vertices such that objective function Ψ is minimised, where
Ψ= sum of − edges within clusters and + edges across clusters.

Figure: Φ = 12 and Ψ = 3 for k = 2.

Ragesh Jaiswal Approximate Correlation Clustering using Same-Cluster Queries



Correlation Clustering

MaxAgree[k]

Given a complete graph with ± labeled edges and k , find a clustering
of the vertices such that objective function Φ is maximized, where
Φ= sum of + edges within clusters and − edges across clusters.

NP-hard for k ≥ 2 [SST04].
PTAS for any k (since there is a PTAS for MaxAgree).

MinDisAgree[k]

Given a complete graph with ± labeled edges and k , find a clustering
of the vertices such that objective function Ψ is minimised, where
Ψ= sum of − edges within clusters and + edges across clusters.

NP-hard for k ≥ 2 [SST04].

PTAS for constant k with running time nO(9k/ε2) log n [GG06].
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k-means Clustering
Beyond worst case

“Beyond worst-case”

Separating mixture of Gaussians.
Clustering under separation in the context of k-means
clustering.
Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries” during its execution.
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Semi-Supervised Active Clustering (SSAC)
Same-cluster queries

“Beyond worst-case”
Mixture of Gaussians.
Clustering under separation.
Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries” during its execution.

Semi-Supervised Active Clustering (SSAC) [AKBD16]: In the
context of the k-means problem, the clustering algorithm is
given the dataset X ⊂ Rd and integer k (as in the classical
setting) and it can make same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)
Same-cluster queries

SSAC framework: Same-cluster queries for correlation
clustering.

Figure: SSAC framework: same-cluster queries
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Semi-Supervised Active Clustering (SSAC)
Same-cluster queries

SSAC framework: Same-cluster queries for correlation clustering.

Figure: SSAC framework: same-cluster queries

A limited number of such queries (or some weaker version) may
be feasible in certain settings.
So, understanding the power and limitations of this idea may
open interesting future directions.
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Semi-Supervised Active Clustering (SSAC)
Known results for k-means

Clearly, we can output optimal clustering using O(n2)
same-cluster queries. Can we cluster using fewer queries?

The following result is already known for the SSAC setting in
the context of k-means problem.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(kn log n) and
makes O(k2 log k + k log n) same-cluster queries and returns the
optimal k-means clustering for any dataset X ⊆ Rd that satisfies
some separation guarantee.
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Semi-Supervised Active Clustering (SSAC)
Known results for k-means

The following result is already known for the SSAC setting in
the context of k-means problem.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(kn log n) and
makes O(k2 log k + k log n) same-cluster queries and returns the
optimal k-means clustering for any dataset X ⊆ Rd that satisfies
some separation guarantee.

Ailon et al. [ABJK18] extend the above results to
approximation setting while removing the separation condition
with:

Running time: O(nd · poly(k/ε))
# same-cluster queries: poly(k/ε) (independent of n)

Question: Can we obtain similar results for correlation
clustering?
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MinDisAgree[k] within SSAC

MinDisAgree[k]

Given a complete graph with ± labeled edges and k , find a
clustering of the vertices such that objective function Ψ is
minimised, where
Ψ= sum of − edges within clusters and + edges across clusters.

(1 + ε)-approximate algorithm with running time n
O
(

9k

ε2

)
log n

[GG06].

Theorem (Main result – upper bound)

There is a randomised query algorithm that runs in time
O(poly(kε ) · n log n) and makes O(poly(kε ) · log n) same-cluster
queries and outputs a (1 + ε)-approximate solution for
MinDisAgree[k].
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MinDisAgree[k] within SSAC

(1 + ε)-approximate algorithm with running time n
O
(

9k

ε2

)
log n

[GG06].

Theorem (Main result – upper bound)

There is a randomised query algorithm that runs in time
O(poly(kε ) · n log n) and makes O(poly(kε ) · log n) same-cluster
queries and outputs a (1 + ε)-approximate solution for
MinDisAgree[k].

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant δ > 0 such that any (1 + δ)-approximation algorithm for

MinDisAgree[k] runs in time 2Ω( k
poly log k

)-time.
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MinDisAgree[k] within SSAC

(1 + ε)-approximate algorithm with running time n
O
(

9k

ε2

)
log n

[GG06].

Theorem (Main result – upper bound)

There is a randomised query algorithm that runs in time
O(poly(kε ) · n log n) and makes O(poly(kε ) · log n) same-cluster queries
and outputs a (1 + ε)-approximate solution for MinDisAgree[k].

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant δ > 0 such that any (1 + δ)-approximation algorithm for

MinDisAgree[k] runs in time 2Ω( k
poly log k

)-time.

Theorem (Main result - query lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant δ > 0 such that any (1 + δ)-approximation algorithm for
MinDisAgree[k] within the SSAC framework that runs in polynomial
time makes Ω( k

poly log k ) same-cluster queries.
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MinDisAgree[k] within SSAC

Theorem (Main result - running time lower bound)

If the Exponential Time Hypothesis (ETH) holds, then there is a
constant δ > 0 such that any (1 + δ)-approximation algorithm for

MinDisAgree[k] runs in time 2Ω( k
poly log k

)-time.

Chain of reductions for lower bounds

ETH
Dinur PCP−−−−−−−→ E3-SAT

E3-SAT → NAE6-SAT
NAE6-SAT → NAE3-SAT
NAE3-SAT → Monotone NAE3-SAT
Monotone NAE3-SAT → 2-colorability of 3-uniform bounded
degree hypergraph.

2-colorability of 3-uniform bounded degree hypergraph
[CGW05]−−−−−−→

MinDisAgree[k]
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MinDisAgree[k] within SSAC

Theorem (Main result – upper bound)

There is a randomised query algorithm that runs in time
O(poly(kε ) · n log n) and makes O(poly(kε ) · log n) same-cluster queries
and outputs a (1 + ε)-approximate solution for MinDisAgree[k].

Main ideas

- Through a simple observation about PTAS of Giotis and
Guruswami[GG06].
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MinDisAgree[k] within SSAC

Theorem (Main result – upper bound)

There is a randomised query algorithm that runs in time
O(poly(kε ) · n log n) and makes O(poly(kε ) · log n) same-cluster queries
and outputs a (1 + ε)-approximate solution for MinDisAgree[k].

Main ideas

- Through a simple observation about PTAS of Giotis and
Guruswami[GG06].
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Future Directions

Future directions:

Gap in query upper and lower bounds.
Faulty-query setting.
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Thank you
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