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The k-Median Problem

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



The k-Median Problem

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



The k-Median Problem

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



The k-Median Problem

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



The k-Median Problem

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Known results:
Poly-time FPT-time

Lower bound
(1 + 2

e − ε) ≈ 1.735− ε
Guha and Khuller (1999)

(1 + 2
e − ε)

Guha and Khuller (1999)

Upper bound
2.675 + ε

Byrka et al. (2017)

(1 + 2
e + ε)

Cohen-Addad et al. (2019)

FPT-time algorithms have running time of the form f (k) · nO(1), where
k is a parameter of interest (f (k) can be an exponential function).
FPT-time algorithms are poly-time for constant k.
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Clustering what matters in constrained settings

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Presence of outlier points may adversely impact the clustering.
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Clustering what matters in constrained settings

The k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

Presence of outlier points may adversely impact the k-median
clustering.
So, we must allow ignoring a few points to cluster what matters.
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Clustering what matters in constrained settings

The outlier k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , an integer k , and an integer m, find k points C ⊆ F
(called centers) such that the sum of distances of every point all but
m points in X to the nearest center in C is minimized.

So, we must allow ignoring a few points to cluster what matters.
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Clustering what matters in constrained settings

The outlier k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , an integer k , and an integer m, find k points C ⊆ F
(called centers) such that the sum of distances of every point all but
m points in X to the nearest center in C is minimized.

Known results:
Poly-time FPT-time

Lower bound
(1 + 2

e − ε) ≈ 1.735− ε
Guha and Khuller (1999)

(1 + 2
e − ε)

Cohen-Addad et al. (2019)

Upper bound
7 + ε

Krishnaswamy et al. (2018)

(1 + 2
e + ε)

Cohen-Addad et al. (2019)
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Clustering what matters in constrained settings

The outlier k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , an integer k , and an integer m, find k points C ⊆ F
(called centers) such that the sum of distances of every point all but
m points in X to the nearest center in C is minimized.

Known results for Outlier k-median:
Poly-time FPT-time

Lower bound
(1 + 2

e − ε) ≈ 1.735− ε
Guha and Khuller (1999)

(1 + 2
e − ε)

Cohen-Addad et al. (2019)

Upper bound
7 + ε

Krishnaswamy et al. (2018)

(1 + 2
e + ε)

Cohen-Addad et al. (2019)

Known results for Outlier-Free k-median:
Poly-time FPT-time

Lower bound
(1 + 2

e − ε) ≈ 1.735− ε
Guha and Khuller (1999)

(1 + 2
e − ε)

Guha and Khuller (1999)

Upper bound
2.675 + ε

Byrka et al. (2017)

(1 + 2
e + ε)

Cohen-Addad et al. (2017)

Ragesh Jaiswal Clustering What Matters in Constrained Settings



Clustering what matters in constrained settings

The constrained k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

Example:
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The constrained k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , and an integer k , find k points C ⊆ F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

The constraint may be on:

Centers: Restrictions on the number of points a center can service
(e.g., capacitated clustering),
Clusters: Restrictions on the size of clusters (e.g., balanced
clustering),
Label-based: Every point has an associated color (indicating
socio-economic groups), and there are fairness restrictions such as
proportional representation from each group in every cluster (e.g.,
fault-tolerant clustering),
or, a combination of the above (e.g., fair clustering).
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Clustering what matters in constrained settings

The outlier constrained k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , an integer k , and an integer m, find k points C ⊆ F
(called centers) such that the sum of distances of every point all but
m points in X to the nearest feasible center in C is minimized, where
constraints on centers/clusters determine feasibility.

General observation: Gap between developments in outlier versus
outlier-free versions of constrained clustering.
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Clustering what matters in constrained settings

The outlier constrained k-median problem

Let (X ,D) be any metric space. Given a facility set F ⊆ X , a client
set X ⊆ X , an integer k , and an integer m, find k points C ⊆ F
(called centers) such that the sum of distances of every point all but
m points in X to the nearest feasible center in C is minimized, where
constraints on centers/clusters determine feasibility.

General observation: Gap between developments in outlier versus
outlier-free versions of constrained clustering.
General goal: Bridge the gap using an approximation-preserving
reduction from outlier to outlier-free version.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



Clustering what matters in constrained settings

General goal: Bridge the gap using an approximation-preserving
reduction from outlier to outlier-free version.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



Clustering what matters in constrained settings

General goal: Bridge the gap using an approximation-preserving
reduction from outlier to outlier-free version.

Approximation-preserving: α-approximation gives (1 + ε) · α-approximation
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Clustering what matters in constrained settings

A trivial reduction: For outlier set X0 , try all combinations of m
points from X .

Issue: T = O(nm), where m is the number of outliers.
Ideally, we would want T to be independent of the problem size
and dependent only on the parameters k ,m, ε.
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Clustering what matters in constrained settings

Better reductions:
1 Bhattacharya et al. (2020): D2-sampling based reduction for

k-means in the Euclidean setting.
2 Agrawal et al. (2023): Coreset based reduction for metric spaces.

Coreset: Compressed dataset that mimics the k-median cost.

T =
(

(k+m) log n
ε

)O(m)

Issue: Constrained setting.
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Better reductions:
1 Bhattacharya et al. (2020): D2-sampling based reduction for

k-means in the Euclidean setting.
2 Agrawal et al. (2023): Coreset based reduction for metric spaces.

Coreset: Compressed dataset that mimics the k-median cost.

T =
(

(k+m)·log n
ε

)O(m)

Issue: Constrained setting.

3 This work: Dz -sampling based reduction for metric space in
constrained settings.

T =
(

(k+m)
ε

)O(m)
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The Reduction: Key Ideas

1 Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see in Figure)

Interesting observation: C gives constant approximation for the
outlier version.
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The Reduction: Key Ideas

1 Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see in Figure)

2 D-sample O(m logm) points S ⊆ X with respect to C . (see in
Figure)

D-sampling: The probability of a point being sampled is
proportional to its distance from the nearest center in C .
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1 Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see in Figure)

2 D-sample O(m logm) points S ⊆ X with respect to C . (see in
Figure)

Observation: Outliers that are far from C get sampled in S , which
can be located by trying out all subsets of S .
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The Reduction: Key Ideas

1 Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem.

2 D-sample O(m logm) points S ⊆ X with respect to C .

Observation: Outliers that are far from C get sampled in S , which
can be located by trying out all subsets of S .

3 For outliers close to C , locate appropriate replacement by
matching.
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1 Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem.

2 D-sample O(m logm) points S ⊆ X with respect to C .

Observation: Outliers that are far from C get sampled in S , which
can be located by trying out all subsets of S .

3 For outliers close to C , locate appropriate outlier replacement by
matching.
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The Reduction: Key Ideas

Algorithm sketch

1 Start with a (k + m) centers C that give constant approximation to
the unconstrained (k + m)-median problem.

2 D-sample O(m logm) points S ⊆ X with respect to C .

Observation: Outliers that are far from C get sampled in S ,
which can be located by trying out all subsets of S .

3 For outliers close to C , locate appropriate outlier replacement by
matching.

Our reduction generalizes to the k-means problem and a wide
range of center/size/label-based constrained settings.
Our reduction matches the best-known approximation bounds
for several constrained problems and gives the best results for
others (e.g., capacitated k-median.)

See paper for details...
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Thank you

Ragesh Jaiswal Clustering What Matters in Constrained Settings


