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The k-Median Problem

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X,
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The k-Median Problem

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
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The k-Median Problem

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest

center in C is minimized.
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The k-Median Problem

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

@ Known results:

Poly-time FPT-time
1+2-¢)~1735—¢ 1+2—
Lower bound (1+35—¢) e (1+25—¢)
Guha and Khuller (1999) Guha and Khuller (1999)
2.67 1+:2
Upper bound 675 +¢ (1+2+e)
Byrka et al. (2017) Cohen-Addad et al. (2019)

@ FPT-time algorithms have running time of the form f(k) - n®1), where
k is a parameter of interest (f(k) can be an exponential function).
FPT-time algorithms are poly-time for constant k.
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Clustering what matters

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

@ Presence of outlier points may adversely impact the clustering.
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Clustering what matters

The k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
center in C is minimized.

@ Presence of outlier points may adversely impact the k-median
clustering.
@ So, we must allow ignoring a few points to cluster what matters.
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Clustering what matters

The outlier k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, an integer k, and an integer m, find k points C C F
(called centers) such that the sum of distances of every-peint all but
m points in X to the nearest center in C is minimized.

@ So, we must allow ignoring a few points to cluster what matters.
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Clustering what matters

The outlier k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, an integer k, and an integer m, find k points C C F
(called centers) such that the sum of distances of every-peint all but
m points in X to the nearest center in C is minimized.

@ Known results:

Poly-time FPT-time

1+2-e)~1735—c| (I+Z-¢

Lower bound (1+3-¢) (1+3-¢)
Guha and Khuller (1999) Cohen-Addad et al. (2019)

T+e 1+2+¢

Upper bound ( e )
Krishnaswamy et al. (2018) Cohen-Addad et al. (2019)
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Clustering what matters

The outlier k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, an integer k, and an integer m, find k points C C F
(called centers) such that the sum of distances of everypeint all but
m points in X to the nearest center in C is minimized.

@ Known results for Outlier k-median:

Poly-time FPT-time

1+2-¢)~1735—¢ 1+2—¢

Lower bound 1+ € ) (1+ e )
Guha and Khuller (1999) Cohen-Addad et al. (2019)

7+e 1+2+¢

Upper bound ( e )
Krishnaswamy et al. (2018) Cohen-Addad et al. (2019)

@ Known results for Outlier-Free k-median:

Poly-time FPT-time
1+2—¢)~1735—¢ 1+2—
Lower bound 1+ e ) e 1+ € 9)
Guha and Khuller (1999) Guha and Khuller (1999)
2.675 1+2+¢
Upper bound e (1+5+e)
Byrka et al. (2017) Cohen-Addad et al. (2017)
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in constrained settings

The constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

o Example:
. .
ot0e ® oe’ A
ee ® o ®
] e
k-median Constrained k-median
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in constrained settings

The constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

@ The constraint may be on:
o Centers: Restrictions on the number of points a center can service
(e.g., capacitated clustering),
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in constrained settings

The constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

@ The constraint may be on:
o Centers: Restrictions on the number of points a center can service
(e.g., capacitated clustering),
o Clusters: Restrictions on the size of clusters (e.g., balanced

clustering),
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in constrained settings

The constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

@ The constraint may be on:

o Centers: Restrictions on the number of points a center can service
(e.g., capacitated clustering),

o Clusters: Restrictions on the size of clusters (e.g., balanced
clustering),

o Label-based: Every point has an associated color (indicating
socio-economic groups), and there are fairness restrictions such as
proportional representation from each group in every cluster (e.g.,
fault-tolerant clustering),
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in constrained settings

The constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, and an integer k, find k points C C F (called centers)
such that the sum of distances of every point in X to the nearest
feasible center in C is minimized, where constraints on
centers/clusters determine feasibility.

@ The constraint may be on:

o Centers: Restrictions on the number of points a center can service
(e.g., capacitated clustering),

o Clusters: Restrictions on the size of clusters (e.g., balanced
clustering),

o Label-based: Every point has an associated color (indicating
socio-economic groups), and there are fairness restrictions such as
proportional representation from each group in every cluster (e.g.,
fault-tolerant clustering),

e or, a combination of the above (e.g., fair clustering).
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in constrained settings

Problem Deseription
It (F.X,)
Outpats (X, Xi, s )
Unconstrained k-medinn Constraints: None, e, check(Xi, ., X, f, - fe) always equals 1.
(Constaint type: unconstruined) | Objective: Minimise 3, ¥y, Dl ).

Tee 2
(T includes s eons comsponingto e s sch 3
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Clustering what matters in constrained settings

The outlier constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, an integer k, and an integer m, find k points C C F
(called centers) such that the sum of distances of everypeoint all but
m points in X to the nearest feasible center in C is minimized, where
constraints on centers/clusters determine feasibility.

o General observation: Gap between developments in outlier versus
outlier-free versions of constrained clustering.
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Clustering what matters in constrained settings

Outlior version

Problem Outlier-free

2] 2| This work
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(iil) metrics induced by graphs that exclude a fixed (9+e)
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o
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Strongly private k-median 2]
Ldiversity k-median/means
Fair k-modian/means
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Clustering what matters in constrained settings

The outlier constrained k-median problem

Let (X, D) be any metric space. Given a facility set F C X, a client
set X C X, an integer k, and an integer m, find k points C C F
(called centers) such that the sum of distances of everypeoint all but
m points in X to the nearest feasible center in C is minimized, where
constraints on centers/clusters determine feasibility.

o General observation: Gap between developments in outlier versus
outlier-free versions of constrained clustering.
o General goal: Bridge the gap using an
from outlier to outlier-free version.
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Clustering what matters in constrained settings

o General goal: Bridge the gap using an
from outlier to outlier-free version.

Outlier constrained k-median algorithm

(X,F,k,m, check)

- Repeat T times and output best:
- Compute an outlier set X, /\ Outlier-free constrained
- Query (X \ X, F, k, check)

\/ k-median algorithm
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Clustering what matters in constrained settings

@ General goal: Bridge the gap using an
from outlier to outlier-free version.

o Approximation—preserving: ‘ a—approximation‘ giVeS ‘ (1 + &) - a-approximation

Qutlier constrained k-median algorithm

(X,F,k,m, check)

- Repeat T times and output best:
- Compute an outlier set X, /_\ Outlier-free constrained
- Query (X \ X, F, k, check)

&/ k-median algorithm

Ragesh Jaiswal Clustering What Matters in Constrained Settings



Clustering what matters in constrained settings

Outlier constrained k-median algorithm

(X,F,k,m, check)
—

- Repeat T times and output best:
- Compute an outlier set X, /~ A\ Qutlier-free constrained
- Query (X \ Xy, F, k, check)

\_/ k-median algorithm

@ A trivial reduction: For outlier set Xy , try all combinations of m
points from X.
o Issue: T = O(n™), where m is the number of outliers.
o Ideally, we would want T to be independent of the problem size
and dependent only on the parameters k, m, e.
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Clustering what matters in constrained settings

Outlier constrained k-median algorithm

(X,F,k,m, check)
=————————>|- Repeat T times and output best:
- Compute an outlier set X, /~ A Qutlier-free constrained
- Query (X \ Xy, F, k, check)

\_/ k-median algorithm

@ Better reductions:

© Bhattacharya et al. (2020): D2-sampling based reduction for
k-means in the Euclidean setting.
@ Agrawal et al. (2023): based reduction for metric spaces.

o Coreset: Compressed dataset that mimics the k-median cost.
o T = ((k+m5) Iogn)o(m)

o Issue: Constrained setting.

Ragesh Jaiswal Clustering What Matters in Constrained Settings



Clustering what matters in constrained settings

Outlier constrained k-median algorithm

(X,F, k,m, check)
—

- Repeat T times and output best:
- Compute an outlier set X, % Outlier-free constrained
- Query (X \ X,,F, k, Che'-'k)‘\/ k-median algorithm

o Better reductions:
@ Bhattacharya et al. (2020): D?-sampling based reduction for

k-means in the Euclidean setting.
@ Agrawal et al. (2023): based reduction for metric spaces.

o Coreset: Compressed dataset that mimics the k-median cost.
°o T= ((k+m)-logn>°(m)

€

o lIssue: Constrained setting.
© This work: D*-sampling based reduction for metric space in
constrained settings.

o T = ((kt:m))o(m)

Ragesh Jaiswal Clustering What Matters in Constrained Settings



The Reduction: Key Ideas
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@ Start with a (k 4+ m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see A in Figure)
o Interesting observation: C gives constant approximation for the
outlier version.
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The Reduction: Key Ideas
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@ Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see A in Figure)
@ D-sample O(mlog m) points S C X with respect to C. (see  in
Figure)
e D-sampling: The probability of a point being sampled is
proportional to its distance from the nearest center in C.
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The Reduction: Key Ideas
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@ Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem. (see A in Figure)
@ D-sample O(mlog m) points S C X with respect to C. (see  in
Figure)
o Observation: Outliers that are far from C get sampled in S, which
can be located by trying out all subsets of S.
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The Reduction: Key Ideas
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@ Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem.
@ D-sample O(mlog m) points S C X with respect to C.
o Observation: Outliers that are far from C get sampled in S, which
can be located by trying out all subsets of S.
© For outliers close to C, locate appropriate replacement by
matching.
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The Reduction: Key Ideas

..
. ° .
e o ®
X} . .
LY ° .
. oo o
° . oo °
° .
.
.
.
PCL
.
° 4 o
e o

@ Start with a (k + m) centers C that give constant approximation
to the unconstrained (k + m)-median problem.
@ D-sample O(mlog m) points S C X with respect to C.
o Observation: Outliers that are far from C get sampled in S, which
can be located by trying out all subsets of S.
© For outliers close to C, locate appropriate outlier replacement by
matching.
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The Reduction: Key Ideas

Algorithm sketch

@ Start with a (k + m) centers C that give constant approximation to
the unconstrained (k 4+ m)-median problem.

@ D-sample O(mlog m) points S C X with respect to C.

o Observation: Outliers that are far from C get sampled in S,
which can be located by trying out all subsets of S.

© For outliers close to C, locate appropriate outlier replacement by
matching.

@ Our reduction generalizes to the k-means problem and a wide
range of center/size/label-based constrained settings.

@ Our reduction matches the best-known approximation bounds
for several constrained problems and gives the best results for
others (e.g., capacitated k-median.)

See paper for details... |
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