Software Routing and Aggregation of Messages to Optimize the

Performance of HPCC Randomaccess Benchmark

Rahul Garg
IBM India Research Lab
Block-I, II'T Delhi, Hauz Khas-16
New Delhi, India
grahul@in.ibm.com

Abstract

The HPC Challenge (HPCC) benchmark suite
is increasingly being used to evaluate the per-
formance of supercomputers. It augments the
traditional LINPACK benchmark by adding six
more benchmarks, each designed to measure a
specific aspect of the system performance.

In this paper, we analyze the HPCC Rando-
maccess benchmark which is designed to measure
the performance of random memory updates.
We show that, on many systems, the bisection
bandwidth of the network may be the perfor-
mance bottleneck of this benchmark. We suggest
an aggregation and software routing based tech-
nique that may be used to optimize this bench-
mark. We report the performance results ob-
tained using this technique on the Blue Gene/L
supercomputer.

1 Introduction

Traditionally the Linpack benchmark [3] has
been used to evaluate the performance of su-
percomputers. This benchmark solves the linear
system of equations of the form Ax = b using LU
factorization. The algorithm operates on a ma-
trix of size n x n, requires O(n?) floating point
operations and has very high data locality. Thus,

Yogish Sabharwal
IBM India Research Lab
Block-I, II'T Delhi, Hauz Khas-16
New Delhi, India
ysabharwal@in.ibm.com

the reported performance is often very close to
the theoretical peak floating point performance
of the systems.

The HPC Challenge (HPCC) benchmark suite
attempts to augment this benchmark by mea-
suring additional aspects of system performance
involving memory and network. It consists of
seven benchmarks that include Linpack, matrix
multiply, streams, matrix transpose, randomac-
cess, FFT and communication latency and band-
width benchmarks.

The HPCC benchmark suite is gaining impor-
tance as more and more organizations are us-
ing HPCC performance figures to make costly
procurement decisions. It is therefore very im-
portant to understand the significance of perfor-
mance numbers reported by these benchmarks
and whether they may be used to estimate the
true application performance on supercomputing
systems.

In this paper, we present a detailed analysis of
bottlenecks in the HPCC Randomaccess bench-
mark, which measures the rate of integer updates
to random memory locations. We formally show
that on a variety of systems, the performance
of this benchmark is asymptotically limited by a
well-studied graph-theoretic property of the in-
terconnection network called the sparsest cut [1]
(which is also related to the bisection bandwidth
of the network).

We also suggest a technique based on aggre-
gation and software routing that may be used to
optimize this benchmark. This technique may
be applied to systems where the bisection band-
width of the communication network grows sub-
linearly with the system size.

We implemented our technique on the Blue
Gene/L supercomputer and obtained significant
performance gains. The performance on a 64-
rack Blue Gene/L system was 35.5 GUPs (giga
updates per second), the best known so far. This
performance is approximately factor of two bet-
ter than the optimized UPC-based implemen-
tation of the benchmark the same system and
factor 4.5 better than the best performance ob-
tained on any other system.

We also found that the performance of base-
line code supplied with this benchmark is very
sensitive to the specifics of its implementation.
In addition, the benchmark specifications allow
systems with small number of nodes to amor-
tize their fixed overheads more efficiently as com-
pared to large systems. We suggest some addi-
tional characteristics of remote memory perfor-
mance that might be of importance to applica-
tions on large parallel systems.

The rest of the paper is organized as follows.
In Section 2, we describe the HPCC Randomac-
cess benchmark in more detail. The bottlenecks
of this benchmark on are analyzed in Section 3.
Our aggregation and software routing technique
for improving the benchmark performance are
described in Section 4. In Section 5, we give a
brief overview of the Blue Gene/L architecture
and discuss the bottlenecks of this benchmarks
on this system. The performance results of the
baseline and optimized implementations of the
benchmark are presented in Section 6. Section 7
concludes with discussions and suggestions for
future work.

HPCC

Randomaccess Benchmark

2 Description of the

The Randomaccess benchmark is motivated by
the growing gap in the CPU and memory per-
formance. Several architectural enhancements
such as bigger caches, wider line sizes, complex
pre-fetch and cache replacement policies tend to
improve performance of applications with data
locality and sequential access. However, these
enhancements may impact the performance of
applications that access the memory in random
or unpredictable manner. This benchmark in-
tends to measure the peak capacity of the mem-
ory subsystem while performing random updates
to the system memory. The parallel version of
the Randomaccess benchmark, called MPIRan-
domaccess measures the performance of the sys-
tem while carrying out local as well as remote
updates to the total system memory in parallel.

The benchmark operates on a distributed ta-
ble T of size 2%, where k is largest integer such
that 2% is less than or equal to the size of to-
tal system memory. Each processor generates
a random sequence of 64 bit integers using the
primitive polynomial 2% + 22 +z +1 over GF(2).
For each random number (say a;), the most sig-
nificant bits are selected to index into the dis-
tributed table 7. The bit-wise zor of the ran-
dom number a; and the selected entry in the ta-
ble (which may also reside on a remote node)
is computed, and stored back at the same loca-
tion in the table. The number of such updates
performed by each node is dynamically deter-
mined at the beginning in a way that the bench-
mark terminates in a reasonable period of time.
The benchmark specifications allow each node to
look-ahead and store at most 1024 updates be-
fore they are applied to the table.

Some implementations of the benchmark are
provided by the committee [2]. This includes a
basic and a vector/multi-threaded implementa-
tion of sequential Randomaccess in C. The vec-
tor implementation “looks ahead” the sequence

of updates before actually carrying them out.
This allows the updates to be pipelined. A MPI-
based and a UPC based parallel implementation
of Randomaccess is also supplied with the bench-
mark. In the MPI implementation, each node
maintains a bucket containing pending updates
for every other destination. The local updates
are carried out immediately while the remote up-
dates are added to the buckets corresponding to
their destinations. As soon as the number of
pending updates hit the limit of 1024, the bucket
with largest number of updates is sent out to its
destination. Upon receiving a packet, a node up-
dates its local table using the random numbers
stored in the packet. The performance of the sys-
tem is measured by the number of giga updates
per second (GUPS) performed by the system.

Two types of performance numbers may be re-
ported. The baseline runs are obtained by com-
piling and running the supplied code as is. Suit-
able compiler options and vendor-supplied MPI
library may be used while compiling and linking
the benchmark.

An “optimized run” may be obtained by re-
placing the function that implements the bench-
mark with an optimized version that may make
use of system specific features. The optimized
implementation must adhere to the basic defini-
tion of the benchmark.

3 Bottleneck Analysis

MPIRandomaccess performs four basic opera-
tions at all the nodes: generate, send, receive
and update. The operation generate computes
the next random number in the series using the
specified generator polynomial. If the table up-
date is to be carried out on a remote memory,
then a send is performed (possibly after aggre-
gating a number of updates). The operation
receive copies packets from the network/system
buffer to application buffers. Operation update
performs the local table update. The bottle-
neck while running this benchmark could be ei-

ther due to the CPU and memory subsystem or
the communication network or a combination of
both. We examine these possibilities in more de-
tail.

3.1 CPU and Memory Subsystem

Bottleneck

The performance of sequential Randomaccess
benchmark depends on the time taken to per-
form generate and update operations. Let ¢, and
t,, respectively represent the average time to gen-
erate and perform an update. Let ¢; be the
overhead in executing these operations in a loop.
The performance of the sequential randomaccess
benchmark is given by GUPS = 1/(tg+t, +1t).

Since the local table should occupy approxi-
mately half the local memory, random updates
to the memory are likely to miss all the levels
of cache hierarchy. Thus, the time taken for the
update operation is likely to be dominated by the
main memory latency. In contrast, the operation
generate can be carried out of cache and is likely
to much faster.

Let 5 and ¢, represent the average time per
update to perform send and receive operations.
These times typically depend on the overheads
of the communication library used. Moreover, if
multiple updates are communicated using a sin-
gle call to send/recv functions, the corresponding
overheads get divided by the number of updates
transmitted.

Let N be the number of processors in the sys-
tem. In the case of MPIRandomaccess, the ex-
pected fraction of local and remote updates will
be 1/N and (N — 1)/N respectively. Each re-
mote update must be communicated to the re-
mote node using a send and a receive operation.
Therefore, the CPU bottleneck will restrict the
performance of MPIRandomaccess to

N

(N-1)

GUPS <
by + by + 15+ o - (ts + tr + 15)

where tP represents the additional overheads in
performing these operations.

3.2 Network Bottleneck

The zor operation is associative, therefore the
order in which the updates are performed has no
impact on the final result. A node may pipeline
and hide the network latency by asynchronously
sending the remote update request over the net-
work.

For analyzing the impact of network band-
width on the benchmark performance, we model
the communication network as a directed graph
G = (V, E) with capacities on the edges equal to
the capacity of the corresponding link in the sys-
tem. Let S be a subset of vertices in this graph
and S represent V — S. Let C(S,S) represent
the sum of the capacity of edges from S to S.
Let U represent the average number of updates
generated by a node and b represent the aver-
age number of bytes sent per update (including
the amortized header overheads) by the source
nodes.

Now consider a vertex in S. The expected
number of updates from the vertex to other ver-
tices in S in given by U|S|/N. Therefore the
expected total number of updates from S to S
is given by U|S||S|/N. Let t(S) represent the
time taken by updates in S to reach S. The
time ¢(.5) is bounded by the number of updates
crossing the cut (S,S) and the capacity of the
cut C(S,S) as

1) > 2UISISL

NC(S,S)

The total number of updates performed by the
system is given by NU. Thus the MPIRando-
maccess performance is bounded by

N2C(8,S)

b|5]|S]

The above expression is true for each set S of V.
Thus

GUPS <

N2C(8S,S)

bS|[S]
The right hand side of above expression is very
closely related to a well-studied problem in graph

GUPS < min
SCV

thoery called the sparsest cut [1]. Formally, the
smallest edge expansion «a(G) of a graph G is
defined as

. C(S,9)
= min e
scvisi<vi/z - |S|

The cut that achieves the smallest edge expan-
sion is called the sparsest cut. The smallest edge
expansion is also related to the bisection band-
width of the network. If B is the bisection band-
width, it is easy to see that
GuPs < 2Va(G) < 4B/b @)
From (1) it is apparent that the CPU bottle-
neck for MPIRandomaccess scales linearly with
the number of nodes. However, the network
bottleneck depends on the smallest edge expan-
sion of the underlying communications network.
If the smallest edge expansion diminishes with
the number of nodes then the network is ex-
pected to become the bottleneck for assymptoti-
cally large number of nodes. For a d-dimensional
grid, the smallest edge expansion is given by
a(G) = O(N~'/4), for a hypercube network, it
is given by a(G) = O(1).

4 Optimizing the Benchmark

In this section we describe a software routing
and aggregation technique that may be used to
optimize this benchmark. This technique is di-
rectly applicable to systems having an underly-
ing grid/torus communication network. More-
over, this technique may be extended to other
systems by arranging the processors into a log-
ical grid topology and efficiently mapping this
grid to the underlying interconnection network.

In the following discussion, we illustrate our
technique for a 3-dimensional torus interconnec-
tion network. It is easy to see how this technique
may be extended to networks with higher dimen-
sions.

4.1 Bucketing

The HPCC rules allow each processor to store
upto 1024 updates. This allows for more updates
to be packed in the messages that are commu-
nicated between the nodes, therefore increasing
the performance due to the following reasons:

e The packet send and receive overheads are
divided over more updates, thereby reduc-
ing the processing time per update. This
results in increased performance when CPU
processing is the bottleneck.

e The packet header/trailer overheads are dis-
tributed over more updates. Moreover, on
some systems there is a minimum packet
size, that is generally large compared to the
size of the update. This improves band-
width utilization of the communication net-
work and therefore results in increased per-
formance when the network bandwidth is
the bottleneck.

Recall that the baseline code maintains one
bucket for every destination node. As soon as
the limit of 1024 pending updates is reached, the
largest bucket is dispatched to its destination.
We wrote a simple simulator to estimate the av-
erage bucket size for different number of nodes.
The results are presented in Table 3. As the
number of processing nodes increase, the aver-
age number of updates that are packed in a mes-
sage decreases. This indicates that only systems
with small number of nodes can take advantage
of the bucketing. On large systems, bucketing
only adds to the processing overheads.

4.2 Software Routing

In order to retain the advantages of bucketing
updates when the number of processing nodes
is large, we route the updates via intermediate
nodes. We club together updates for a group
of destination nodes and send them to an in-
termediate processing node, called the routing

node. Thus, each node, in addition to generat-
ing and processing updates, is also responsible
for routing updates received from other nodes.
This limits the number of communicating node
pairs, therefore reducing the number of buckets
and hence allowing more updates to be packed
in each message.

Consider a 3-dimensional torus interconnec-
tion network. Let the triplet (z;,y;,2;) denote
the co-ordinates of a processing node 7 on the 3-
d torus. An update from processing node i to j is
routed along a fixed path in a dimension ordered
manner. It is first routed along the z-dimension,
then along the y-dimension and finally along the
z-dimension to its destination. Let i = (z;, y;, z;)
be the source node and j = (zj,y;,%;) be the
destination node. Suppose that z; # z;, v; # v;
and z; # z;. Then the first and second software
routers in the path of the update from % to j are
(xj,vi,2z;) and (z;,y;,2;) respectively. If a co-
ordinate of the source and destination nodes is
same, the software routing hop corresponding to
that dimension is not required. Therefore any
update is routed in the software at most twice.
As can be observed, a processing node only sends
updates to another processing node if it lies along
its z, y or z dimension on the torus. We call these
routers the z-routers, y-routers and z-routers of
the node respectively. Let X0z, Yinar and Zaq
denote the size of the torus dimension along the
z, y and z dimensions respectively. Thus any
node communicates with X, — 1 nodes along
its £ dimension, Y;,4; — 1 nodes along its y di-
mension and Z,,,; — 1 nodes along its z dimen-
sion. The total number of routing nodes for a
processing node is X0z + Yinazr + Zmaz — 3-

4.3 The Algorithm

The algorithm maintains a bucket for each of
its routing nodes. It has X,,4; — 1 buckets for
x-routers, Y. — 1 buckets for y-routers and
Zimaz — 1 buckets for z-routers. In addition,
it has three buckets that are used for receiv-
ing updates (one from each dimension). Thus,

there are a total of X400 + Yinaz + Zmaz buck-
ets at every node. Every bucket has a capacity
of 1024/(Xmaz + Yimaz + Zmaz)- Each update is
accumulated in the bucket corresponding to its
next hop software router. When a bucket be-
comes full, it is sent to the corresponding soft-
ware routing node.

Each packet is received into the receive bucket
corresponding to the dimension from which it ar-
rives. The next packet from that dimension is re-
ceived only when the algorithm finishes process-
ing all the previous updates in the corresponding
receive bucket. This ensures that the total num-
ber of updates pending in all the buckets put to-
gether on a processing node never exceeds 1024.

Note that this approach allows for packing
more updates even when the number of process-
ing nodes is very large. The reason for maintain-
ing separate receive buckets for each dimension
is to avoid deadlocks. For a more detailed dis-
cussion on the deadlock situations that arise and
how this strategy prevents deadlocks, see [5].

The pseudo-code for the algorithm is pre-
sented in Figures 1 and 2. The main loop is
executed until all the updates have been formed
and sent.

In the main loop, the algorithm first sends
packets that are ready to be sent (correspond-
ing to a full bucket) along each dimension. The
algorithm maintains the invariant that there is
only at most one full bucket for the routers along
a given dimension. This allows a single variable
to maintain which bucket is full (if any) along
each dimension, avoiding an exhaustive search to
determine which buckets need to be sent. Note
that the algorithm does not explicitly maintain a
pending updates counter, as the sum of the sizes
of the buckets is guaranteed not to exceed the
limit of 1024 by our choice of bucket capacities.

The algorithm then tries to receive and pro-
cess available packets. Available packets are re-
ceived into the receive buffer, corresponding to
the dimension from which they arrive. The rou-
teUpdates sub-routine is called to process the up-
dates in the receive buffer. If the update is local,

it updates the local table, otherwise it inserts the
update in the bucket corresponding to the next-
hop software router, if possible. The algorithm
tries to repeatedly receive packets from the net-
work and process the updates untill either no
more packets are available or a received update
cannot be inserted into its corresponding bucket.

Finally, the algorithm forms new updates and
routes them towards the destination. The up-
date is only formed if no bucket if full. This
ensures that the routeUpdates subroutine does
not fail; it necessarily either updates the table in
the local memory or inserts the update in some
bucket.

The algorithm uses a lookup table to quickly
determine the next-hop router given the des-
tination node for an update. The size of the
lookup table is V bytes, where N is the number
of processing nodes in the system. Each entry
stores a 1 byte index of the corresponding rout-
ing node. Additionally, 32 bytes of information
(packet header, etc.) are maintained for each
destination router. 1K is taken up by the buck-
ets to store updates. Therefore, on a 16K system
in a 32 x 32 x 16 configuration, the algorithm re-
quires 16KB for the routing table, less than 3KB
for the routing nodes information and 8 KB for
the updates. This sums up to 27K, which fits
into a 32 KB L1 cache, leaving enough for other
temporary storage variables.

Note that even if a processing node has fin-
ished forming its updates, other nodes may still
be generating updates. Therefore, the node has
to continue performing the software routing and
local updates. Thus, a termination detection
mechanism is required so that the nodes can de-
termine when they are not required to perform
any more software routing and can therefore ter-
minate. For a more detailed discussion, see [5].

Algorithm OptimizedRandomAccess

bktsize = 1024/ (X maz + Ymaz + Zmaz)
/* Main loop */
While (more updates are to be formed)
/* Send logic */
For dim =1 to 3 do
If (some bucket is full in dim
and can send a packet on dim)
send the bucket along dim
to its destination
free bucket
pendingUpdates — = bktsize
End-If
End-For
/* Receive logic */
For dim =1 to 3 do
While (packet available on dim)
If (recvbuf[dim] is empty)
recv packet from dim
into recvbu f[dim)
pendingUpdates + = bktsize
End-If
routeUpdates(recvbu f[dim])
If (recvbuf[dim] is not empty)
break out of While-loop
End-If
End-While
End-For
/* Form new updates logic */
If (no bucket is full)
z = nextUpdate()
pendingUpdates + +
routeUpdates(z)
End-If
End-While
FinishLogic()

Subroutine routeUpdates(updateList)

For each update in updateList
If (update is for this node)
Update corresponding table entry
in local memory
Else
Determine next hop router for this update
If (no bucket is full corresponding to
the dimension of the router)
Insert update in the bucket of the router
Remove update from the receive buffer
Else
Return
End-If
End-If-Else
End-For

Figure 1: The Optimized Randomaccess Algo-

rithm

Figure 2: The RouteUpdates sub-routine

5 Bottleneck the Blue

Gene/L Supercomputer

on

In this section, we start by giving a brief overview
of the Blue Gene/L Supercomputer. We then
describe our experiments for estimating various
parameters used in inequalities (1) and (2) to
determine the performance bottleneck.

5.1 Blue Gene/L Overview

The Blue Gene/L is a massively parallel super-
computer that scales upto 65,536 dual-processor
nodes [4]. The nodes themselves are physically
small, allowing for very high packaging density in
order to realize optimum cost-performance ratio.

Each node has two embedded 770 MHz PPC440
processor cores, allowing the system to run in
two different modes. In the coprocessor mode
one of the processors is dedicated to messaging
and one is available for application computation.
In the wirtual node mode each node is logically
separated into two nodes, each of which has a
processor and half of the physical memory. Each
processor is responsible for its own messaging.
In this mode, the node runs two application pro-
cesses, one on each processor.

Each node has 32-KB L1 instruction and data
caches and a 4-MB embedded DRAM L3 cache.
The latencies for an L1 cache, L3 cache and main
memory access are 3 cycles, 28-40 cycles and 86
cycles respectively. Each node has 512 MB of
physical memory which is shared by its two pro-
Cessors.

The Blue Gene/L uses five interconnect net-
works for I/0O, debug, and various types of in-
terprocessor communication. The most signif-
icant of these interconnection networks is the
64 x 32 x 32 three-dimensional torus that has
the highest aggregate bandwidth and handles the
bulk of all communication. Each node supports
six independent 1.4 Gbps bidirectional nearest
neighbor links, with an aggregate bandwidth of
2.1 GB/s. The torus network uses both dynamic
(adaptive) and deterministic routing with vir-

tual buffering and cut-through capability. The
messaging is based on variable size packets, each
n X 32 bytes, where n = 1 to 8 “chunks”. The
first eight bytes of each packet contain link-level
information, routing information and a byte-
wide cyclic redundancy check (CRC) that de-
tects header data corruption during transmis-
sion. In addition, a 32-bit trailer is appended
to each packet that includes a 24-bit CRC.

5.2 Measuring Blue Gene/L Specific
Parameters

On the Blue Gene/L system, the latency to ac-
cess main memory is 86 cycles [8]. The ob-
served performance of sequential Randomaccess
on Blue Gene/L is 0.0067 GUPS which translates
into an average value of 104 cycles for ¢4+, + 1}
(see (1)). Thus t, + ¢ is only 18 cycles.

Since the network in Blue Gene/L is a 3-
dimensional torus, it is expected to limit the per-
formance of MPIRandomaccess when the num-
ber of nodes is very large (see inequalities (1) and
(2)). However, to determine the bottlenecks, we
needs to estimate the values of the parameters
tg, tu,t,ts, tr, 18, b, a(G) used in these equations.

With the bucketing technique of the baseline
code, the average number of updates per packet
approaches 1 as the system size increases. There-
fore, we estimate the above parameters assuming
each packet carries a single update.

Our measurements on Blue Gene/L indicated
MPI function call latencies between 1270 and
12,000 cycles for payload sizes between 8 and
1024 bytes. This was unacceptably high for this
benchmark. We therefore decided to use the raw
device interface for communication.

Performance of the raw device interface is pre-
sented in Table 1. On the send side there is a
base overhead of 6 cycles in addition to 0.25 cy-
cles per byte for copying the data. On the receive
side, the fixed overhead is 34 cycles and the vari-
able overhead is 0.625 cycles per byte for copying
data.

If the raw network device interface is used,

Payload Send Recv

Size mean | variance | mean | variance
32 14 0 54 0.32
64 22 0 98 0.16
96 28 0 118 0.18
128 36 0 120 0.34
160 50 0 140 0.27
192 64 0 160 0.30
224 70 0 172 0.15
256 70 0 192 0.43

Table 1: Mean and variance of number of cycles
taken by send and receive calls using raw network

device

there is no need for software and MPI headers.
Therefore an 8-byte update can easily be packed
in a 32-byte packet. This gives b = 32+ 14 = 44.

In order to compute the network bottleneck,
we need to know its sparsest cut. Finding
the sparsest cut for general graphs is a NP-
hard problem [9]. However, for Blue Gene/L 3-
dimensional torus network, sparsest cut can be
computed by examining the face with smallest
area. Table 2 lists the smallest edge expansion
(in units of link capacity C) for Blue Gene/L
partition of different sizes and shapes.

It may also be observed that the bound
obtained in (2) is tight for any regular d-
dimensional torus network (including the Blue
Gene/L torus network). Thus, if the network
becomes the bottleneck, the performance of
(2N/b) - a(QG) is theoretically achievable (assum-
ing 100% link utilization) by dynamic shortest
path routing of Blue Gene/L.

Table 2 also lists the CPU and network bot-
tlenecks (in units of GUPS) for the Blue Gene/L
system assuming send/recv latencies of Table 1
and b = 44 bytes. With these assumptions, it
is apparent that the network bandwidth is the
bottleneck for Blue Gene/L systems of all sizes.

Fundamentally, for each update only 8 bytes

'Note that upto 256 nodes, the network configuration
is a 3D-Mesh and not a 3D-Torus. The edge expansions

N Dimension | a(G) Bottleneck

(XxYxZ) | /C' | CPU | N/W

32 4x4x2 1/2 0.13 0.12
64 8x4x2 1/4 0.25 0.12
128 8x4x4 1/4 0.51 0.24
256 8x4x8 1/4 1.03 0.48
512 8x8x8 1/2 | 206 | 1.95
1024 8x8x16 1/4 4.11 1.95
2048 16x8x16 1/4 8.23 3.89
4096 8x32x16 1/8 16.47 3.89
8192 16x32x16 1/8 32.94 7.79
16384 | 32x32x16 1/8 65.88 | 15.58
32768 | 32x32x32 1/8 | 131.77 | 31.16
65536 | 64x32x32 | 1/16 | 263.53 | 31.16

Table 2: CPU and network bottleneck GUPS for

Blue Gene/L using raw network device

need to be communicated while an average of
44 bytes per update are communicated if we
send only one update per packet. Therefore
our aggregation and software routing technique
should lead to significant performance improve-
ments. Since the primary communication net-
work in Blue Gene/L is a 3-dimensional torus,
the logical grid topology in our algorithm can be
the same as the physical topology.

The 64K node Blue Gene/L system has a 64 x
32 x 32 configuration. Thus, using our technique,
the number of unique destinations for updates
from each node is 125, allowing upto 8 updates
to be packed in a single packet.

In the next section, we describe the perfor-
mance results of the baseline code and our opti-
mized implementation on Blue Gene/L.

6 Performance Results

6.1 Baseline Code

Table 3 shows the performance of baseline code
for different number of nodes. For 32 nodes, the

are calculated accordingly.

N GUPs | Cycles / | Mean Bu- SBF
Update | cket Size

32 0.022 1018 62.88 0.00085

64 0.041 1093 32.42 0.00212
128 0.071 1262 16.83 0.00234
256 0.122 1469 8.93 0.00027
512 0.190 1886 4.97 0.00070
1024 | 0.290 2472 2.97 -
2048 | 0.450 3186 1.98 -
4096 | 0.680 4216 1.33 -
8192 | 1.080 5310 1.14 -
16384 | 1.274 9002 1.07 -
65536 | 0.065 705772 1.02 -

Table 3: MPIRandomaccess performance results

on Blue Gene/L for the baseline code

performance of 0.022 GUPS translates into an
average of 1018 cycles per update. The corre-
sponding figure for sequential Randomaccess is
104. Therefore, the overhead introduced by MPI
calls and bucketing code amounts to 914 cycles
per update. This overhead increases to 8900 cy-
cles for N = 16382.

The implementation uses asynchronous MPI
calls (MPI_Isend, MPI Irecv, MPI Test) for
communication. A call to MPI_Isend is made
only if MPI_Test returns success, indicating that
the earlier MPI_Isend has completed successfully.
Our calculations indicate that the baseline code
is limited by the processing required for each up-
date, not by the network bandwidth. Define the
send blocking factor (SBF) as the ratio of num-
ber of times MPI_Test reports that the earlier
send request has not finished to the number of
times it is called. A blocking factor of 0 indicates
that a packet sent earlier never blocks the way of
subsequent packets. A blocking factor close to 1
indicates a high network congestion.

To verify our hypothesis, we instrumented the
code to measure the send blocking factor. Table
3 reconfirms our calculations that the network
is not the bottleneck on Blue Gene/L for the
baseline version of MPIRandomaccess. We were

unable to run the instrumented code on large
Blue Gene/L systems as the time available for
experimentation on large system was limited.

We profiled the code using gprof [6]. After
the analysis of the code and profiling data, we
identified the following factors contributing to
the overheads and its growth as the number of
nodes increase.

Frequent calls to MPI_Test: The code ends up
performing at least one MPI_Test for each update
which adds a significant overhead. When the
base code is modified to invoke MPI _Test 1 in 60
times (corresponding to the average bucket size),
then the performance on 32 node Blue Gene/L
system improves to 0.0515 GUPS — more than a
factor 2 improvement.

Heap Operations: Every remote update is in-
serted into a heap, which is an expensive opera-
tion even if implemented efficiently. The size of
the heap is equal to the number of destinations
N — 1. The time taken for each heap operation
is O(log N') which increases with the number of
nodes.

Average Bucket Size: The limit on 1024
pending updates gets divided into N buckets on
a system with N nodes. Therefore, the aver-
age bucket size (i.e. the number of updates sent
per packet) decreases with number of nodes. We
wrote a simple simulator to measure this for dif-
ferent number of nodes. The results are pre-
sented in Table 3. The MPI function call over-
heads and the packet header overheads get di-
vided by the average number of updates sent
in a single MPI call. Therefore, as the num-
ber of nodes increase, the overheads per update
increase.

Cache Miss Rate: The data structure main-
tained by the baseline code requires 20 bytes per
destination and 16 bytes per update. In addition
the MPI data structures also maintain state for
each destination. On a 32KB L1 cache of Blue
Gene/L, 16K is taken up by the 1024 pending
updates. Thus, L1 miss rate starts impacting
performance of systems with size N > 512. As

10

N increases, the L1 miss rate increases thereby
adding to the average overhead per update.
Observe from Table 3 that for N = 65536, the
performance of the baseline code becomes sig-
nificantly worse than that for N = 16384. We
suspect that this might be due to the working
set of the program exceeding the size of the L3
cache. We were unable to carry out any experi-
mentation on the system to analyze this further.

6.2 Optimized Code

N GUPs | Bytes/ | Cycles/ | Bottleneck
Update | Update | CPU | N/W

32 0.06 9.31 360 0.06 | 0.60
128 0.22 9.31 360 0.21 1.20
512 0.84 9.31 425 0.81 9.62
1024 1.78 9.31 403 1.60 | 9.62
2048 3.30 9.52 434 3.14 | 18.82
4096 5.83 10.24 492 6.23 | 17.50
8192 10.99 10.92 522 12.25 | 32.81
16384 | 18.03 12.22 636 24.30 | 58.64
65536 | 35.47 15.6 1293 95.97 | 91.89
Table 4: MPIRandomaccess performance results

on Blue Gene/L for optimized code

Table 4 lists the performance of optimized
MPIRandomaccess implementation described in
Section 4.3. Unlike the baseline code, the opti-
mized code scales very well for N < 16384. Fig-
ure 3 shows a log-log plot of the GUPS perfor-
mance as a function of the number of nodes.

The software routing logic adds significant
overheads to each update. For a 32-node system,
the average number of cycles taken by an update
is 360. Out of this 104 cycles can be attributed
to the generate and update operation (see Sec-
tion 5.2). As a first order approximation, we
attribute the rest to the software routing. On
a 4x4x2 configuration, the expected fraction of
updates that need to be routed along the X, Y
and Z dimension will respectively be 3/4,3/4 and
1/2. Since the routing decision along each of

100

%) " Optimized —— "
5 Baseline -—=—
[0) CPU bottleneck --x--
° Network bottleneck =
Q 10 E B &
c
©
E
L
o
o 1
2
[0
Q
o
£
S 0.1 | \
e %
c
3] X
o« e
o X
E 0.01 1 1 1
10 100 1000 10000 100000

Number of Nodes

Figure 3: Log-log plot of CPU and network bot-
tlenecks along with the performance of baseline
and optimal implementations of MPIRandomac-

Cess.

dimensions are independent, the expected num-
ber of software routing hops an update needs to
travel is 2(= 3/4+4 3/4+ 1/2). Thus the average
per-hop routing overhead on an update may be
approximated as 128 cycles on a 32 node system.

Assuming that average per-hop routing cost
does not increase with the number of nodes,
we compute the CPU bottleneck for systems of
larger sizes. The results are listed in Table 4.
The same data is plotted on a log-log scale in Fig-
ure 3. The CPU bottleneck projections match
very well with the observed performance of opti-
mized code for N < 16384. The projected CPU
bottleneck is within 15% of the observed perfor-
mance numbers? for n < 8192. For N = 16384,
this gap is about 35% and for N = 65536 the
projected performance is a factor 2.7 of the ob-
served performance.

In the same table, we also list the theoreti-
cal network bottleneck (assuming 100% network

2Note that for some entries, the observed performance
is better than the projected bottleneck. This is not an
anomaly because the bottleneck is computed by a first
order approximation using the observed performance fig-
ures at N = 32.

11

utilization) calculated using (2). The network
bottleneck is also significantly larger than the
observed performance at N = 65536. To re-
solve this, we used the virtual-node mode of Blue
Gene/L on the 16K node system.

Recall that, in virtual-node mode both the
processors of a node are available for computa-
tions. In this mode, the number of processors
available on a 16-rack system is 32768. Our opti-
mized implementation also works in the virtual-
node mode. For supporting this, an additional
software routing hop was added after the X, Y
and Z routing hops. This adds extra routing
overhead, but also doubles the number of pro-
cessors carrying out routing and updates.

We observed about 70% performance improve-
ment in virtual node mode over co-processor
mode for N < 8192, confirming the hypothesis
that the benchmark was CPU bound. However,
at N = 16384, switching to virtual node gave us
only a 10% improvement in performance. More-
over the send blocking factor observed was close
to 0.01 in co-processor mode and 0.42 in virtual
node mode suggesting that the network bottle-
neck has been hit at system of this size.

For N = 65536, the send blocking factor was
0.9, but it is difficult to pinpoint the causes of
this performance gap on 64K node Blue Gene/L
system primarily due to the limited availability
of the system. We suspect that a combination
of instantaneous congestion in the network and
blocking at individual nodes is the cause of the
observed performance gap. However, it will re-
quire more experimentation and analysis to ver-
ify this.

7 Discussions, Conclusions and
Future Work

We analyzed fundamental bottlenecks in the
HPCC Randomaccess benchmark and suggested
a novel aggregation and software routing tech-
nique that leads to significant performance im-

provements. On the Blue Gene/L supercom-

12

puter, this technique gave the best-known per-
formance of 35.5 GUPs. In the process of analy-
sis of this benchmark and its implementation on
the Blue Gene/L supercomputer, we gained the
following insight.

e The sequential Randomaccess benchmark
measures the random memory access per-
formance reasonably well.

e The performance of any optimized im-
plementation of this benchmark on sys-
tems with sub-linear bisection bandwidth
is asymptotically limited by the smallest
edge expansion of the underlying communi-
cation network. This limit may actually be
achieved on systems such as Blue Gene/L.

e The fixed 1024 pending updates limit spec-
ified in the benchmark rules allows sys-
tems with small number of nodes to amor-
tize their fixed overheads (in packet head-
ers/MPI function calls) more effectively
than large systems, giving an illusion of bet-
ter normalized system performance.

e The baseline performance numbers for MPI-
Randomaccess are very sensitive to the
specifics of the supplied implementation. A
single line change in the code can result in
more than a factor 2 change in its perfor-
mance. Heap operations and MPI function
calls are significant factors influencing its
performance. It is hard to characterize the
impact of memory subsystem on the perfor-
mance of the beseline benchmark code.

This benchmark can be improved in the follow-
ing ways. Currently, it only measures the perfor-
mance of asynchronous random writes to remote
memory. It is desirable to include other charac-
teristic of distributed memory performance, such
as random read, synchronous random write, la-
tency and bandwidth of sequential and strided
accesses patterns.

Since the baseline perfomance number of this
benchmark is very sensitive to the details of its

implementation, it is desirable to use a well-
defined set of remote memory access primitives
(such as ARMCI get/put [7]) in the benchmark
code. The system vendors could be requested to
supply optimized implementation of these prim-
itives (similar to the way vendor supplied BLAS
and MPI libraries may be linked). This would
lead to a more objective assessment of system
performance and encourage vendors to supply
optimized communication library that may also
be used by real applications.

8 Acknowledgements

We would like to thank several people who
helped us with this work in many ways. With-
out their valuable help, this work could not have
been accomplished. We thank John A. Gunnels,
who closely worked with us on this and other
HPC Challenge benchmarks, Tom Spelce, who
got us time on the 64 rack Blue Gene/L system
and carried out many runs for us on this system,
Gheorghe Almasi and Charles Archer, for shar-
ing their knowledge and experience of MPI on
Blue Gene/L, Phil Heidelberg, for help with the
raw device interface on Blue Gene/L and Man-
ish Gupta, for providing over all support for this
activity.

References

[1] S. Arora, S. Rao, and U. Vazirani. Expander
flows, geometric embeddings and graph par-
titioning. In STOC ’04: Proceedings of the
thirty-sizth annual ACM symposium on The-
ory of computing, pages 222-231, New York,
NY, USA, 2004. ACM Press.

[2] J. Dongarra and P. Luszczek. Introduction to

the hpc challenge benchmark suite. Technical

Report ICL-UT-05-01, ICL, 2005.

[3] J. J. Dongarra, P. Luszczek, and A. Petitet.

The LINPACK benchmark: Past, present,

13

[6]

and future. Concurrency and Computation:
Practice and Ezperience, 15:1-18, 2003.

A. Gara, M. A. Blumrich, D. Chen, G. L.-
T. Chiu, P. Coteus, M. E. Giampapa,
R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and
P. Vranas. Overview of the blue gene/l sys-
tem architecture. IBM Journal of Research
and Development, 49:195-212, 2005.

R. Garg and Y. Sabharwal. Analysis and op-
timization of the hpcc randomaccess bench-
mark on bluegene/l supercomputer : Ex-
tended version. Technical Report RI-05-010,
1BM, 2006.

S. L. Graham, P. B. Kessler, and M. K.
Mckusick. Gprof: A call graph execution
profiler. In SIGPLAN ’82: Proceedings of
the 1982 SIGPLAN symposium on Compiler
construction, pages 120-126, New York, NY,
USA, 1982. ACM Press.

J. Nieplocha and B. Carpenter. ARMCI:
A portable remote memory copy library for
distributed array libraries and compiler run-
time systems. Lecture Notes in Computer
Science, 1586, 1999.

M. Ohmacht, R. A. Bergamaschi, S. Bhat-
tacharya, A. Gara, M. E. Giampapa,
B. Gopalsamy, R. A. Haring, D. Hoenicke,
D. J. Krolak, J. A. Marcella, B. J.
Nathanson, V. Salapura, and M. E. Wa-
zlowski. Blue gene/l compute chip: Memory
and ethernet subsystem. IBM Journal of Re-
search and Development, 49:255-264, 2005.

D. Shmoys. Cut problems and their applica-
tions to divide-andconquer. in d. hochbaum,
editor, approximation algorithms for np-hard
problems, pages 192-235. pws publishing,
1996., 1996.

