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Abstract

In this paper we study the problem of market equilibrium. Firstly we consider the
model (Fischer model) where there is a supply of money associated with each buyer and
a quantity associated with each item. The market equilibrium problem is to compute a
price vector which ensures market clearing, i.e. the demand of a good equals its supply,
and subject to his endowment, each buyer maximizes his utility. Each item has a utility
for a given buyer. We assume that the utility function is an increasing, differentiable,
concave function. We show that under the assumptions of gross substitutibility, an
auction algorithm can determine approximate market clearing.

Not only does this algorithm extends the class of utility functions for which market
equilibrium can be determined polynomially, the auction algorithm is efficient and in
this model O(n) faster than the auction algorithm for the case of linear utilities in the
Arrow-Debreu model.

We outline an extension of our method to the Arrow-Debreu method.

1 Introduction

In this paper we study algorithms for computing market equilibrium in markets with utility
functions satisfying the property of gross-substitutibility. The mathematical modeling of
market equilibrium was first proposed in 1891 by Fisher [4] where markets were modeled by
linear functions. Independently, Walras (1894) proposed the notion of general equilibirum.
Walras proposed that a general equilibrium could be achieved by a price-adjustment process
called tatonnement [15]. The existence of equilibrium prices in a general setting has been
established by Arrow and Debreu [1]. The proof is non-constructive and of considerable im-
portance is an effecient computation process which establishes equilibrium. The importance
of designing polynomial time schemes has been highlighted in a computer science context
by Papadimitriou [14]. Special cases have been dealt with along with related complexity
issues in [6]. However, as discussed in Devanur et al. [7], computationally efficient time
algorithms had evaded researchers. A polynomial time algorithm for the specific case of
linear functions and when the portfolio of the buyer comprises only money, was proposed in
Devanur et al. [7] using a primal-dual mechanism. The mechanism used is similar to Kuhn’s
methodology for bipartite matching [13]. Improvements and generalization of this method-
ology led to a solution in the general (Arrow-Debreu) case with linear utilities[11, 9]. A
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different mechanism based on an auction schema was proposed in [10]. An exact algorithm
for the linear case using the ellipsoid method has been proposed in [12].

In this paper we consider a generalized class of utility functions for the market model.
In the market model, defined first by Fischer, there is a supply of money associated withe
each buyer and a quantity associated with each item. Each buyer has an associated utility
function. In this paper this function is assumed to be increasing differentiable concave
unction, linearly separable (w.r.t. the items) and satisfying gross substitutibility. Further
the items are divisible. The market equilibrium problem is to compute a price and feasible
assignment of goods such that no buyer is induced to change his assignments and market
clearing is achieved, i.e. no quantity of goods are left.

Extending the class of utility functions for the Fischer model is important. The linear
model is weak for an exact modeling of utility as most demand functions are required to
represent satiation of demands. A step in this direction has been taken in [8] where they
design a primal-dual algorithm for the spending constraint model, where a step function
defines the rate of utility change. The rate of utility change per unit money spent as a
function of the money spent defines the utility function.

Our algorithm is based on the auction schema introduced in [10]. While [7] describe a
primal dual schema for the equilibrium problem by identifying a primal and dual process
which updates item or goods and prices, their proof is based on a characterization of ”tight”
sets etc., concepts which are very similar to those used in primal-dual methods for matching
and flows in bipartite graphs. However matching has a linear programming formulation and
a primal-dual mechanism follows naturally from that formulation. The market equilibrium
problem is a non-linear problem and has not yet been modeled by a LP. In the paper [10] a
parameterized family of linear programs is defined to characterize the problem. The paper
uses this formulation to define conditions under which market equilibrium prices achieves
market clearing. These conditions arise naturally from complementary slackness conditions.
The paper then defines an auction mechanism which approximates the market equilibrium
prices to within a tolerance level defined by a parameter e. This provides an efficient
methodology for approximating the market equilibrium prices.

We use the auction methodology to achieve approximate clearing for the class of sep-
arable functions which are increasing, concave and satisfy gross-substitutibility. Our al-
gorithm achieves a complexity of O((E/e)log(1/€)log((€vmaz)/(€minVmin))logm) where
€min = min; e; and e = Y1 ¢; and Vpmaz/Umin, the ratio of the largest slope to the least
slope. We assume that this ratio is bounded. This algorithm is faster by a factor of O(n)
as compared to the auction algorithm for the Arrow-Debreu model( [10]) and also extends
the class of utility functions for which approximate market clearing can be achieved.

Interestingly, while the algorithm’s framework remains as simple as in [10], the proof
of correctness and convergence are complicated by the general nature of the utility func-
tions. We are able to, in this paper, resolve the convergence to the equilibrium prices via
a monotone change in prices for separable increasing functions satisfying gross-substitution
and concavity. Gross-substitution has been shown to be a requirement for the convergence
of tattonment processes by economists. The problem of equilibrium in the more general
class of increasing concave functions (not separable) which satisfy gross-substitutibility is a
more challenging problem.

In Section 2 we define the market model and provide a characaterization of gross sub-
stitutible functions. In Section 3 we outline our algorithm and prove correctness and the
complexity bounds. Finally, we outline (Section 4) an extension to the Arrow-debreu model.



2 Market Model

Consider a market consisting of a set B of n buyers and a set A of m divisible goods.
Buyer ¢ has an amount of money equal to e;. The amount of good j available in the market
is b;. Buyer 4 has a utility function, U;(X). where X = (1,242 ...2;) represents the
current allocation vector of goods. We assume that U; is non-negative, strictly increasing,
differentiable, and concave in the range [0, a;]. Let v;; represent the first derivative of Uj;
w.r.t. ;; (which is well defined). Assume that the buyers have no utility for money, however
they use their money to purchase the goods.

Given prices p1,p2,...,Pm of these m goods, a buyer uses its money to purchase goods
that maximize its total utility subject to its budget constraint. Thus a buyer ¢ will choose
an allocation X; = {z;; : j € [1..m]} that solves the following buyer program B;(P):

Maximize : Z wij(i5) (1)
je[l.m]
Subject to: Z ziip; < € (2)
Jje[l.m]
Vi x>0 (3)

This defines a parameterized family of programs, each program defined for a fixed price
vector. Since u;; is concave for all 4 and j, the theory of duality can be used to give the
following necessary and sufficient conditions for optimality for a given price P:

. mgpi=e (4)

je[Lm]

Vi aipy > vij(wi) (5)

Vi x> 0= apj = vij(xij) (6)
a; >0,Vj 25 >0 (7)

We say that the pair (X, P) € R*™ x R forms a market equilibrium if (a) the vector
X; € R} solves the problem B;(P) for user i and (b) there is neither a surplus or a deficiency
of any good i.e.,

Vj : in]’ = aj (8)
i=1

The prices P are called market clearing prices and the allocation X is called the equi-
librium allocation at price P.

The equations (8) and (4) imply that all the goods are sold and all the buyers have
exhausted their budget. Equations (5) and (6) imply that (a) that every buyer has the
same marginal utility per unit price on the goods it gets and (b) every good that a buyer
doesn’t get gives less marginal utility per unit price.

2.1 Gross Substitutes

Gross substitutes is a well-studied property that has useful economic interpretations. Goods
are said to be gross substitutes for a buyer iff increasing the price of a good does not decrease
the buyer’s demand for other goods. Similarly, goods in an economy are said to be gross
substitutes iff increasing the price of a good does not decrease the total demand of other



goods. Clearly, if the goods are gross substitute for every buyer, they are gross substitutes
in an economy.

We now give a formal definition of gross substitute in our model. Consider the buyer
maximization problem B;(P) where u;; are the utility functions and e; is the initial endow-
ment of buyer i. Let X(P) C R be the set of optimal solutions of the program B;(P).
Consider another price vector P’ > P. Goods are gross substitutes for buyer ¢ if and only
if for all x; € X;(P) there exists j € X;(P’) such that p; = pj; = z;; < ;.

Assume that u;; is continuous, concave and differentiable for all i and j. Let v;j(x) =
%uij(x). Since u;j is concave, v;; is a non-increasing function. The following result char-
acterizes the class of separable concave gross substitute utility functions.

Lemma 1 Goods are gross substitutes for buyer i if and only if for all j, yvij(y) is a
non-decreasing function of the scalar y.

Proof: Consider an optimal solution x; € X;(P). The dual of the program B;(P) gives
the following necessary and sufficient conditions for the optimality of x;.

injpj = €& 9)
j=1
Vi Tij > 0= vij(xij) = o4pj (10)
Vi:aip; = vij(wig) (11)
a; > 0,25 20

Equation (10) gives z;jp; = xi;vij/c;. Consider P’ > P. If v;;(0) < al-p;» then set z;;
to zero, else choose x;; such that v;;(z};) = a;pj. By definition, the solution z; satisfies
the complementary slackness conditions (10). Since P’ > P, x; also satisfies (11). v;; is a
non-increasing function. Therefore p; > p; = x;; < ;5. Now,

l“gjp;' = x;jvij(x;j)/ai

< wijuig(wig)/ i

The above equations give
m m
’ .
DT < D wip; = e
j=1 j=1

Note that u;; is concave for all j. Therefore, there is an optimal solution z/ of the program
B;(P') such that x; > zj. From the definition of zj if p; = p} then x; = x;;. Therefore
pj = P = x; > x;; where x; is an optimal solution of B;(P) and w7 is a corresponding
optimal solution of B;(P").

To prove the converse part, assume that there are scalars y and ¢y’ such that 3’ < y and
y'vi;(y’) > yvij(y). Choose a price P and an optimal solution z; of B;(P) such that z;; =y
for some j. Let «; be the optimal dual solution of B;(P). Construct a corresponding P’
and z;j such that z}; = x, pj, = py for all k # j, x;; = y' and p); = pjvi;(a7;)/vij(wi5). Now,

x;jp; = x;jpjvij(x;j)/vij(ajij)
> pwijvig(wif) [vi(Tif)

= Zijp;

4



So, the solution =} satisfies (11) and (10) for price P', but 3" z},p; > 30 wip; = ei.
Therefore, the optimal dual solution o, of B;(P’) will satisfy o > «;. Therefore, the optimal
solution x of B;(P) will have x7; < ;; for all k # j, such that x;; > 0. Hence the goods
will not be gross substitute for buyer . O

3 An Auction Algorithm for Market Clearing

We now present an ascending price algorithm for discovering the market clearing prices
approximately. The algorithm starts with a low price and an initial allocation x; for all
buyers i, such that all the goods are completely allocated and optimal allocation of buyers
dominate their current allocation. Now the prices of overdemanded items are raised slowly
and the current allocation is recomputed, until no item is overdemanded. This approach
has a similarity with the Hungarian method of Kuhn [13] for the assignment problem.
Unlike the Hungarian method which raises the price of all the goods in a minimal over-
demanded set by a specific amount, our algorithm raises the price of one good at a time by
a fixed multiplicative factor (1 + €), where € > 0 is a small quantity suitably chosen at the
beginning of the algorithm. This algorithm has an auction interpretation, where traders
outbid each other to acquire goods of their choice by submitting a bid that is a factor
(1+ €) of the current winning bid. Prior to this auction algorithms have been proposed for
maximum weight matching in bipartite graphs, network flow problems and market clearing
with linear utilities [5, 3, 2, 10].

In the intialize procedure (Figure 1) all the items are allocated to the first buyer. Prices
are initialized such that (a) the buyer’s money is exhausted and (b) the buyer’s allocation
is optimal at the initial prices. An intitial assignment of dual variables «; is also required.
Instead of a; we maintain «;;, a separate dual variable for each item, for computational
ease. Finally we will relate o; to av;.

It is easy to verify that the prices set in procedure initialize exhausts the budget of
the first buyer. Since v1;(a;) is assumed to be strictly positivel, p; > 0 for all j. Therefore
the initial value of o;; is well-defined for all ¢ and j.

Also note that vi;(xi;)/p; = a1; = aq for all j. Hence the initial allocation maximizes
the utility of the first buyer.

Define surplus of a buyer i as r; = >0 (hijpj + yijp; /(1 + €)). Define the total surplus
in the system as r = >_1* | 7.

The auction algorithm main (Figure 1) begins with a buyer ¢ having significant surplus
(more than ee;) who tries to acquire items, with utility per unit price more than the current
utility per unit price. It outbids other buyers by acquiring items at a higher prices. It
raises the prices by a factor (1 + €) if needed. This process continues till total surplus in
the economy becomes sufficiently small.

The algorithm maintains the invariants (I1) items are fully sold, (I2) buyers do not
exceed their budget, (I3, I4) after completely exhausting its surplus a buyer’s utility is
close to its optimal utility at the current prices, (I5) prices do not fall and (I6) total surplus
money in the economy does not increase. Figure 2 lists these invariants formally.

LThis is not a necessary assumption. It is made for simplicity of the presentation. A weaker assumption
would be that every item j has a buyer ¢ such that v;j(a;) > 0. The initial allocation may still be found
that satisfies the desired properties.



It is easy to check that all the invariants (I1 through 16) are satisfied after the initial-
ization (i.e. after procedure initialize has been called.

x;j is modified only in procedure outbid. However, the modifications leave the sum
>_; zij unchanged. Therefore the invariant I1 is satisfied throughout the algorithm.

For invariant I2, it is sufficient to show that r; > 0 for all 4. r; is reduced only in
procedure outbid. In this procedure, the variable 9 is chosen such that r; does not become
negative and hence I2 remains satisfied. Hence the invariant 12 is satisfied.

For invariant 16, note that the only steps that change r are in procedure outbid. In
these steps, r is reduced by et. Hence 16 is satisfied in the algorithm. The invariant I5 is
trivially satisfied

We now show that invariants I3 and I4 are satisfied by the algorithm.

Lemma 2 During the approximate auction algorithm the invariants 13 and 14 are always
satisfied.

Proof: The invariants are true initially for all the buyers. We first show invariant 13. Note
that when «;; is modified in algorithm main after calling outbid, the invariant is satisfied.
Since p; never decreases, the invariant remains satisfied whenever p; changes. When z;; is
reduced, v;j(z;;) increases causing a potential violation of the invariant. In this case, the
inner while loop of the algorithm will be executed. We argue that when the inner loop ends
Q;iiPj > vij(xij) for all ’L,j

To prove this, consider the time instant z when good j was acquired by buyer ¢ at price
pj. Let a be the quantity of good j acquired by buyer i. Now, a;jp; = v;j(a). Assume that
the amount of good j currently acquired by buyer ¢ is b < a. Let the current price of j be p;».
Choose ¢ such that v;;(c)/p; = vij(a)/p;. It is always possible to do so since a;;p); < v;;(b)
and oy;p; = vi;(a). Since p;» > pj, ¢ < a. Now, cp;- = cp;vij(c)/vij(a). From the assumption
that goods are gross substitutes and using Lemma 1 we have cv;;(c) < avj;j(a). Therefore
cp;- < apj. Therefore the amount of money needed to be spent on j to ensure v;; (c)p;- = j
is p;-c which is no more than p;a; the amount of money spent on j before z;; was reduced.
Hence, when the inner loop ends aijp;» > v;j(x;5) for all 4 and j.

The invariant I4 is satisfied after initialization. Whenever «;; is changed in main
vij(xij) = ayjpj. Therefore, if x;; is reduced, 14 remains satisfied. x;; may be increased by
a call to outbid in the inner loop. However, the parameter «;; ensures that o;;p; < vi;(zi;).
Moreover, if x;; > 0 at the exit of the inner loop, then «;;p; = v;;(xi;). So, if p; is raised
by a factor (1+4€), 14 will still be satisfied. If p; rises by more than the factor 1+e€, z;; will
be set to zero and when z;; is increased again «;jp; = v;;(x;;). So, I4 will remain satisfied
in the algorithm.

O

The algorithm ends when the surplus with each buyer is small, i.e. ee;.

Lemma 3 When the algorithm terminates, approrimate optimality is achieved for each
buyer, i.e. the allocations and prices give an approximate optimal solution to B;(P).

Proof: Consider the time/iteration ¢ after which buyer ¢ has remainder surplus < ee; till
the end of the algorithm. Suppose the optimal allocation of item j is azgj and the allocation
at t is x;;. Since the surplus is bounded

uij(wi5) — wij(wij) = Aij < eeqjuig (i) /pj < eeija



procedure initialize

VZ,V] : hU =0
Vi#l,leyij =0
leyu = aj

Vion; = (32, avii(as))/ei
Vi pj = wij(ag)/an
Vi 7& 1: o; = Uij(())/pj; T = €5
Vi # 1,V aij = vij(2i5)/p;
T = 0

end procedure initialize

algorithm main
initialize
while i :7r; > ce;
while (r; > 0) and (3] tagip; < vij(xij))
if 3k :yg; > 0 then outbid(i, k, j, ayj)
else raise_price(y)
end while
J = argmax; o
if 3k :yr; >0
outbid(i, k, j, a;;/(1+¢€)
aij = vij(xij)/p;
else raise_price(y)
end while
end algorithm main

procedure raise_price(j)
Vi:yi; = hijshiy = 0;
pj = (1+€)p;

end procedure raise_price

procedure outbid(i, k, 7, )
t1 = Yk
ta =1i/pj
if (vii(aj) > ap;) then t3=aq;
else t3 =mind : Vij (J)ij + 5) = apj
t= min(tl, tQ, tg)

hij = hij +1
r, =7T; —tpj
Ykj = Yrj — L

ri =1k +tp;/(1+€)
end procedure outbid

Figure 1: The auction algorithm



I1: forall j: Y i Tij = aj

12: forall i: Ej TijPj < €;

13: forall i: ri=0= QiP;j > vij(xij)

I4: forall ¢, j: Tij > 0= (1 + E)Uij (l‘zj) > Q;5Pj
15:  forall j: pj does not fall

16: r does not increase

Figure 2: The invariants in the auction algorithm

where e;; is the portion of the surplus allocated to item j. Summing over all items we get
that 3;A;; < ee;cy, where a; = max; ;5. Note that o > «;/(14¢€),Vj. o for the current
prices defines a feasible dual solution. O

3.1 Covergence of the algorithm

The algorithm proceeds in rounds, where in each round each buyer attempts to reduce his
surplus.

Lemma 4 In every round the total unspent money r = Y ;' | r; decreases by a factor of

(I+¢).
Proof -

The value of r is decreased in procedure outbid by tep;. Buyer ¢ bids until r; = 0.
WLOG assume that these bids are of amounts tq,ts,...,{; on items 1,2,...,k at prices
P1,P2, ., Pr. Now we have:

k
dot(l+ep=ri
=1

Reduction in r is given by

€
1+

T
€

k
Ar = Ztlepl:
=1

Bidding by buyer ¢ can only increase r; for another buyer k. Therefore the total reduction
in 7 in one round is given by:

€ €
Ar > S
"= ;1+er T+e

The new value of unspent money r’ after every round is related to its old value r as: r’ = Tre

a

Let emin = min;e; and e = Y 7' e. If r < €epi, then no buyer has signifi-
cant money left. Therefore the algorithm is guaranteed to terminate in k& rounds where
k = log(—%)log(2)/log(1 +e).

€min



The price of any item is bounded by:
vijla;) el
=~ <p; <
> vik(ar) aj a;

At every step, the price is raised by a factor (1 4 €), therefore the total number of price
raises for any item is bounded by:

llog(L)
€ EminUmin
where v = Z?Ll v1ji(ak), emin = min; e; and vy, = ming; vig(ag) . We will assume that
the ratio of v and v,,in is bounded. If not, i.e. if vy, is zero then we can perturb the
utility function w;j(z;;) by addition of the term ex;; such that the derivative is at least e.
Furthermore, the derivative is bounded above by v (a).
Thus:

Theorem 1 The auction algorithm terminates m

O((E/e)log(1/e)log((ev)/(eminvmin)) logm) steps.

where E is the number of non-zero utilities.

4 Conclusions

The auction mechanism above can be extended to the market model proposed by Arrow and
Debreu for the class of utilitiy functions we have considered in this paper. The endowment
of each buyer is an initial allocation of items. The prices are intitalized to 1 for each item.
Starting with an initial surplus the buyers bid for goods, rasing prices when unable to
acquire a particular good. Details are similar to that in [10].

It would be of interest to extend the class of utility functions for which the market
equilibrium problem is solvable via the primal-dual auction method.
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