
Energy Efficient Scheduling of Wireless
Sensor Networks

A Thesis submitted in

partial fulfillment of the requirements for the degree

of

Bachelor of Technology

in

Computer Science and Engineering

Gurinder Raju, 2001111

Rajpal, 2001130

Under the guidance of

Prof. Bijendra N. Jain

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

July, 2005

Abstract

Wireless Sensor Networks are an emerging technology with potential application in areas

as wide ranging as habitat monitoring and industrial applications. Sensors monitor the

changes in a physical attribute of the surroundings, say temperature, and observed data

is collected and analyzed. These sensors are mostly unattended, and their limited battery

life makes energy a precious resource that must be utilised wisely.

In this thesis we present a distributed scheduling protocol for energy-efficient media

access in many to one data collection applications, where the destination of all the data

packets in the network is a central data collector, denoted as the Access Point. Energy

efficiency is achieved by avoiding retransmissions, idle listening and overhearing. The

system implemented over this scheduling protocol uses no notion of global time and

works in three phases. The first phase is the topology learning phase, where each node

gets to know about its parent and each parent about its children. The second phase is

the schedule formation phase. The Third phase is the data collection and routing phase,

that continues to re-use the schedules calculated in the previous phase.

We analyse the protocol through simulations in TOSSIM, a simulator for TinyOS

applications. The results show significant improvements in energy consumption over the

contention based access scheme.

ii

Certificate

This is to certify that the thesis titled “Energy Efficient Scheduling of Wireless Sensor

Networks” being submitted by Gurinder Raju & Rajpal is a record of bona-fide work

carried out by them under my supervision.

The matter and results presented in this thesis are original and have not been submitted

elsewhere, wholly or in part, for the award of any degree or diploma.

Prof. Bijendra N. Jain

(Project Supervisor)

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

iii

Acknowledgements

We are grateful to our project supervisor Prof. Bijendra N. Jain for providing us con-

tinuous support throughout the year. His inputs, suggestions, criticisms, and undying

patience go great lengths in helping us realize this project. We are also grateful to Prof.

Huzur Saran, for his encouragement and suggestions during the presentations.

We thank Mr. Surendra Negi for helping us out in acquiring systems in the Ernet Lab

and also all the fellow networking group members who gave us their full co-operation

during the project.

Gurinder Raju

2001111

Rajpal

2001130

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Objectives . 1

1.2 Organisation of the Report . 2

2 Previous Work 3

2.1 Berkeley Motes . 3

2.2 Previous Systems . 4

2.2.1 Centralised Systems . 4

2.2.2 Distributed Systems . 6

3 Design Approach 9

3.1 The Initiation Phase . 9

3.1.1 Parent Selection Phase . 9

3.1.2 Child Count Phase . 10

3.2 The Schedule Formation Phase . 10

3.2.1 The Scheduling Algorithm . 11

3.2.2 Example . 14

3.2.3 DeadLock Handling . 15

3.2.4 Phase Change Notification . 16

3.3 Data Routing Phase . 16

4 Simulation Results and Analysis 17

4.1 TOSSIM . 17

4.2 PowerTOSSIM . 17

4.3 Simulation Results . 18

5 Implementation 25

5.1 TinyOS and nesC . 25

5.2 Implementation Details . 25

v

Contents

6 Conclusions and Future Work 30

6.1 Scope Of Improvement . 30

6.1.1 Proposed Solution . 30

Bibliography 31

vi

List of Tables

2.1 Infrastructure Constraints in mica2 mote 3

2.2 Power Consumption in mica motes . 4

4.1 Various time values used in simulation 18

vii

List of Figures

3.1 State Transition Table For Received and Sent Packets 11

3.2 State Transition Table For Lost Packets 11

3.3 A Parent Scheduling its two children . 14

3.4 The Hidden Node Problem in Scheduling Phase 15

4.1 The Topolgy used for simulations . 19

4.2 The Radio Energy Consumption With Time 20

4.3 The Radio Energy Consumption With Time 20

4.4 Comparison of Power Savings among nodes 21

4.5 Radio Power Consumed in the two schemes 21

4.6 Total Power Consumed in the two schemes 22

4.7 Percentage Retransmissions Done . 22

4.8 Latency Comparison in the two schemes 23

4.9 Throughput Comparison in the two schemes 24

5.1 Implementation details of the application. 26

5.2 Configuration ScheduleSetup implementation 27

5.3 Configuration MultiHopRouter.nc implementation 28

5.4 Configuration SchQueuedSend implementation 29

viii

1 Introduction

A Wireless Sensor Network consists of group of nodes called sensor nodes. Each one of

these has an embedded processor, a radio and one or more sensors. These nodes operate

together in the area being monitored and collect physical attributes of the surroundings,

say temperature or humidity. Data gathered by these sensor nodes can be utilised by var-

ious top level applications such as habitat monitoring, surveillance systems and systems

monitoring various natural phenomenon.

Sensor nodes have limited battery life. In some applications the sensors are placed

in difficult-to-reach locations, expecting manual intervention for renewal of battery is

impractical. In fact, with advances in technology we can expect that in near future these

sensor nodes will be disposable and will only last until their energy drains away. The

node has to sustain itself on its battery’s limited energy resources and without power

management it can last only for a short period of time.

All these power limitations in the sensor networks require the application to have

adhoc power saving mechanism to extend the life of the node. The packet transmission

and packet receive over the radio consume the maximum power in sensor nodes. In

a contention based system, nodes waste energy in retransmitting the packets due to

collisions. The nodes also waste energy in overhearing conversations not meant for them

and in listening to the idle network by being awake, i.e., keeping the radio ON, all the

time.

A media access scheduling mechanism is required for creating sleep/wake schedule for

the radio of each node, informing the nodes when to sleep, wake up, sense and transmit

their own data and when to relay the data of the other nodes.

1.1 Objectives

Our objective is to design a monitoring application that uses the temperature sensor

on each node to monitor the temperature of the surroundings and report it to the Access

Point. The application makes use of the scheduling protocol incorporated above the MAC

layer in conjuction with the network layer protocol designed to decide on the routes to the

Access Point, to highlight the power gains achievable by using this scheduling protocol

and its successful use in an application.

1

1.2 Organisation of the Report

We will also ensure that the application dynamically ensures new nodes to become

part of the network and adapts routes to the Access Point in case of some nodes dying

due to harsh physical conditions or power drainage. In addition to that, we will ensure

that requirement of tight time synchronisation is not there. We will also ensure that the

scheduling protocol is scalable to a large number of nodes.

1.2 Organisation of the Report

The rest of the report is organised as follows. In Chapter 2 we describe the previous work

done in this field and describe how various design issues have been handled. Chapter 3

describes the design approach of the scheduling protocol and the application. In Chapter 4

we present and analyse the simulation results. In Chapter 5 we discuss the implementation

details. In Chapter 6 we conclude the thesis and give directions for future work.

2

2 Previous Work

In this chapter we discuss the previous work done in this field and various approaches to

make the MAC in wireless sensor networks energy-efficient. Prior to that, we discuss the

hardware platform all these protocols have been deployed on or simulated for, i.e., the

Berkeley motes.

2.1 Berkeley Motes

Berkeley motes are popular in the sensor network research community for their open

source software development and commercial availability. Majority of the work being

done in this area uses these motes and TinyOS as the application development platform.

TinyOS is an open-source operating system designed especially for wireless embedded

sensor networks. We will see more about it in Chapter 5. There are a range of motes

available in the Berkeley family and in Table 2.1 we look at the infrastructural constraints

in the one of the latest members of this family, the mica2 mote.

MCU ATmega128L

Processor 8MHz

Program Memory 128 KB

RAM 4 KB

Battery 2xAA

RF Channel 916 MHz

Transmission Speed 38.4 KBps

Table 2.1: Infrastructure Constraints in mica2 mote

The Table 2.2 shows the energy consumption of various components on a mica mote.

The radio receive mode in comparison to transmit mode comsumes much lesser power,

but in a setting where the radio receiver is ON all the time listening to incoming packets,

the energy spent in this state will be much more. Transmitting a radio packet of 20

bytes would take 4ms and the same energy spent in sending this packet can keep the

radio receiver ON for 27 ms. Going by the numbers, in a typical setting of a monitoring

system, where the duty cycle can be as low as 1%, the energy spent in the receive mode will

be an order greater than that spent in transmissions. Thus the radio must be supsended,

whenever possible.

3

2.2 Previous Systems

Component Rate Startup Time Current Consumption

MCU active 4 MHz N/A 5.5 mA

MCU idle 4 MHz 1µA 1.6mA

MCU suspend 4 MHz 4 ms < 20µA

Radio transmit 40 KHz 30 ms 12 mA

Radio receive 40 KHz 30 ms 1.8 mA

Photoresister 2000 Hz 10 ms 1.235mA

Accelerometer 100 Hz 10 ms 5mA/axis

Temperature 2 Hz 500 ms .150 mA

Table 2.2: Power Consumption in mica motes

2.2 Previous Systems

Energy efficiency in wireless sensor networks has been an area of intense research in the

recent past. Achieving energy efficiency at the hardware level has its own fundamental

physical limitations. As such, most of the research of late has focussed on MAC and

network layer protocols. In each system, the design decisions are specific to the appli-

cation in mind, as the network stack for sensor networks is not generic and customised

according to the application. Apart from the systems that target similar application and

media access scheduling, we also review other energy-aware systems and approaches. The

following points help us analyse all the designs and their suitability to the application

and the scheduling protocol that we target.

• Whether the scheduling algorithm is centralised or distributed.

• What is the level of time synchronisation needed in the network.

• How much and what kind of information does one node store about its neighbours.

In general the per-node memory requirements.

• What is the extent to which the control packets are required.

• What is the latency in reporting the variable being monitored.

• How robust is the design in adapting to the changes in topology.

• What trade-off decisions have been made in the above parameters.

2.2.1 Centralised Systems

Time Synchronisation

Nodes’ local times may differ from each other due to phase differences or the clock

drifts over time. For time synchronisation they must communicate to each other their

4

2.2 Previous Systems

local times, but the following delays make tight time synchronisation difficult.

1. Send Time - The time spent at the sender to construct the message.

2. Access Time - The delay in getting hold of the channel to transmit the message.

3. Propagation Time - Time needed by the message to transit from the sender to the

receiver via the media.

4. Receive Time - Time required in processing the message and knowing the contents.

In centralised systems, where the nodes synchronise with the time of the AP as reference

[3], the send time and access time is specific to the AP only, and propagation time and

receive time is same for all the nodes, as AP can reach all the nodes in one hop. As such,

when the nodes synchronise their time with the AP, all of them get almost the same time

stamp.

But tight time synchronisation is difficult when attempted over multi-hop. Over the

hops, the time differences increase and thus in a situation where the notion of global time

is needed to calculate the schedules, the transmission slots for individual nodes could

overlap leading to collisions. Also the sleep slots would go out of sync leading to chaos

in the network.

Time synchronisation has been achieved up to the level of µs [14], but it involves lot of

packet transmissions meant just for time synchronisation and it doesn’t serve well with

the aim of minimising control packets.

TDMA based systems

In [3] and [4], TDMA(Time Division Multiple Access) based MAC protocols have

been suggested. In [3], the Access Point itself synchronises the nodes and schedules

their transmissions. In this system, the AP communicates with each of the nodes in

one hop. Based on the topology information collected by the nodes and provided to

the AP over multi-hop, it computes the sleep/wakeup schedule for the whole network

and communicates it to all the nodes directly, and also its local time for the nodes to

synchronise, together with the time when it will transmit the next packet because the

nodes should leave transmission or come out of their sleep and listen to it at that time.

Any scheduling algorithm can be utilised even if it is computationally intensive.

The assumption of unlimited energy and transmission power with the AP is unrea-

sonable and maps more to a situation where the network is working in a friendly and

accessible location. Also in case of large networks, the assumption that the Access Point

will be able to reach even farthest nodes in one hop is unrealistic. Thus scalability is an

issue here.

In [4] also, a similar TDMA based system has been suggested. It recommends the for-

mation of clusters, where the gateway of each cluster is located within the communication

5

2.2 Previous Systems

range of each of its cluster sensors. These gateways use long-haul communication to send

data to further gateways and finally to a base station similar to the one mentioned in the

previous system.

The problem with the system is the overhead of formation of these clusters and also

the inter-cluster communication and interference.

PEDAMACS

PEDAMACS [12], is another centralised system similar to the first system with respect

to the high-powered AP. But it also targets the protocol to be delay-aware. This opti-

misation problem is NP-complete and the solution proposed is based on graph coloring.

We don’t have delay awareness as our goal and thus can achieve a much simpler protocol.

The kind of application that we target can tolerate latency. Instead, we fully target on

doing the power scheduling above the MAC layer for power conservation.

2.2.2 Distributed Systems

We so far discussed centralised systems that have the advantage that all the decisions are

shifted to the AP. As compared to the distributed systems, they carry the disadvantage

that for an effective schedule, the base station must know about O(n2) links, where n is

the number of nodes in the network. This requires a lot of link probing and thus energy.

TRAMA

TRAMA [11] is a distributed protocol and it assumes time to be slotted. It also tries

to achieve fairness in the system in addition to power conservation. It uses a distributed

election scheme based on traffic patterns on each node to determine that which nodes can

transmit in a particular time slot. Thus it avoids assigning time slots to nodes with no

data to send. Each node randomly decides on its schedule and then adapts the schedule

based on the traffic patterns of the neighbours.

The overhead of achieving fairness is that it has to keep record of its two-hop neighbours

and their traffic and it has to send special schedule packets regularly. We don’t target

fairness and thus can avoid that. We instead target a system where the schedules are

calculated in schedule formation phase and in the data routing phase, which is very large

as compared to it, no changes are required in the schedules.

PAMAS & S-MAC

PAMAS[13] and S-MAC[10] are contention based protocols using RTS(Request to

Send) and CTS(Clear to Send) packets to gain media access and transmit the data,

similar to IEEE 802.11. PAMAS[13] uses an entirely separate signalling channel for con-

trol packets. S-MAC [10] is inspired by PAMAS[13], but it doesn’t use any separate

signalling channel. It requires much looser time synchronisation among the neighbouring

6

2.2 Previous Systems

nodes as compared to the TDMA based schemes. In this protocol, the neighbouring

nodes can synchronise among themselves forming virtual clusters, sleeping and waking

up to listen at the same time, and there is no need of real clusters as mentioned in [4].

Here each node is free to choose its sleep/wakeup schedule and maintains a schedule table

that stores the schedule information of all its neighbours. Based on a randomly timed

broadcast, a node initiates by sending its schedule, i.e, the time after which it will go to

sleep. The receiver that has not formed its schedule yet, sets it schedule to be the same

and the receiver that has already set its schedule, follows both schedules. The updation

of the schedules is required due to clock drifts, and is done by special synchronisation

packets.

The problem with these protocols is the overhead of the RTS and CTS packets for each

data packet transmitted, resulting in significant overhead. Other control packets like the

synchronisation packet further add to the overhead. Also, as the protocols are contention

based, nodes spend long times listening idly to the network.

Ideally, the protocol should only use the contention approach during the schedule for-

mation phase and that schedule should be used in the data collection phase for media

access without contention.

Flexible Power Scheduling

Flexible Power Scheduling [17] is another distributed system and like TRAMA [11], it

also computes and adapts the schedules based on supply and demand. It also divides time

in to slots. The slot numbering is modulo m, where the big timer called the power schedule

cycle is m slots long. Each slot is big enough to accommodate one receive/transmit

exchange between the parent and the child node. The initiation is done by the AP, by

advertising in a random slot for a random slot among its idle slots. Initially, with each

node, all slots are idle slots and each node listens for advertisements for at least one cycle.

In the cycle after the one in which, say node A receives the advertisement from, say node

B for, say slot number n, node A requests for slot n for transmission to B by sending the

request to B in the slot n itself. In this case, node B is the parent of node A. A node

chooses its parent to be the one having minimum demand. After choosing the parent,

each node synchronises its current time slot and slot number with that of the parent

and this synchronisation is done periodically. Once a node acquires the required time

slots to meet its demands, it advertises itself and turns off the radio during idle slots.

Here the calculation of demand for each node is bottom-up and the schedule allocation

is top-down.

Cross Layer Scheduling

Cross Layer scheduling [18], on the other hand, takes the bottom-up approach for

schedule calculation. Each node here maintains a scheduling table that contains the

entries for Receive Time and Transmit Time for the nodes, whose route to the AP goes

7

2.2 Previous Systems

through this node and also the entries for its own Sense Time and Transmit Time. These

tables are formed on the basis of a special route-setup packet that is forwarded on the

node’s route to the AP. The routes are provided by a separate routing protocol. The

node sending the route-setup packet enters the steady phase only after it receives the

rack packet from the AP. It may turn out that a particular flow cannot be carried out

by the network.

This system suggests use of special time synchronisation protocols like [23] for improv-

ing on the synchronisation. Integrating a separate time synchronisation protocol has a

lot of overhead.

8

3 Design Approach

In this chapter, we describe the working of our system. Along with the routing protocol

implemented for enabling the whole application to work and for using the scheduling

protocol over it, our system works in three phases.

• The first phase is the initiation phase where the whole topolgy is built-up and

parent-child relationships are formed.

• The second phase is the schedule formation phase where the scheduling protocol

calculates the sleep/wakeup schedule for the whole network.

• The third phase is the steady phase, i.e, the data routing phase, where all the nodes

send data to the AP based on the schedules calculated in the previous phase.

3.1 The Initiation Phase

This phase is itself divided into two phases. The first phase is the parent selection

phase and the second phase is the child count phase.

3.1.1 Parent Selection Phase

The motes boot up at random times and the AP, waiting for a fixed time to ensure

all motes are booted up, initiates the spanning tree formation by broadcasting a packet

containing its id. A node on hearing this packet sets its parent to be the sender of

the packet, and re-broadcasts, incrementing the hop-count by one and with itself as the

sender. On hearing this packet again from a different sender, a node checks from the hop-

count if it results in a shorter path to the AP. If so, it updates its parent and rebroadcasts

after updating the hop-count and sender fields.

Alongwith its id and the hop-count, each node also includes its local time in the packet

it broadcasts. The child updates its own time, when it sets its parent. This is only

necessary for the application to make sense of the time stamps sent by the nodes along

with the sensed data. The scheduling protocol doesn’t need this as nodes are scheduled

in their local time only.

9

3.2 The Schedule Formation Phase

Only the clock drifts over time effect the computed schedules and that is handled

by periodically refreshing the topology and thus computing new schedules altogether.

Periodic refreshing of topology is anyway required to take care of nodes dying out or new

nodes joining.

In this phase, no Acks are included and once a node sets its parent, it broadcasts for

a fixed number of times, backing-off for random time in-between two transmissions. The

number of times each node broadcasts and the length of the phase are decided based on

the size of the network, and are common to all nodes. The transmissions are stopped and

random-backoffs terminated after the completion of this phase.

3.1.2 Child Count Phase

Here, the parents get to know of their children. The leaf nodes initiate by notifying their

parents of themselves. Here, Acks have been included and the length of the phase is not

based on the size of the network. The phase has to be long enough to handle collisions

as child keeps on resending till it receives the Ack from the parent. The child waits

between two transmissions based on a random timer which is terminated and transmission

cancelled, once it receives the Ack.

3.2 The Schedule Formation Phase

Here the actual scheduling takes place. The following terms are important.

• Cycle: This is one power schedule cycle and is a multiple of one time slot. Its

length is decided based on the number of nodes in the network. One cycle must be

long enough for all the nodes to send their data to the AP.

• Time Slot: This is the time in which the parent and the child can achieve a

Reply-Ack/Neg-Ack exchange.

• Slot Count: This is the the count for number of slots a child has to demand from

its parent.

• Child List: This is the list that the parent maintains, containing the ids of all its

children that have sent the Request.

• Request: This is the request from a child to its parent for number of slots equal

to its Slot Count.

• Reply: This is the reply from the parent to the child, assigning it a time to transmit.

• Ack: This is the acknowledegment in which it communicates to the parent accept-

ing the time assigned to transmit.

10

3.2 The Schedule Formation Phase

• Neg-Ack: This is the the negative-acknowledgement in which it communicates to

the parent its inability to accept the time assigned to transmit.

3.2.1 The Scheduling Algorithm

Figures 3.1 and 3.2 highlight the working of the scheduling algorithm.

Figure 3.1: State Transition Table For Received and Sent Packets

Figure 3.2: State Transition Table For Lost Packets

11

3.2 The Schedule Formation Phase

Initiation

The whole scheduling is initiated by each node checking its child count. If it is zero, it

sends a Request to its parent at a random time. Thus it is initiated by the leaf nodes,

unlike Flexible Power Scheduling [17], where the initiation is top-down. In this algorithm,

when a child and the parent interact for setting up of the schedule, only the time on the

parent’s side is slotted, unlike Flexible Power Scheduling [17]. And that too after the

first available Time Slot for reception, which is initially at the start of the Cycle. In a

Cycle, time prior to the first available Time Slot is already scheduled for reception.

Request From Child

In this algorithm, the time of sending the Request by the child is of no relevance to

the final sleep/wakeup schedule. It is the time at which the parent sends the Reply

that decides when the child has to transmit. Each time after sending the Request to

the parent, the child starts a timer that fires randomly between one Cycle time and two

cycle times from the time it was started at. This is to handle loss of packets. There has

sure been a loss if the child doesn’t receive the Reply within one Cycle.

Multiple requests from the child are needed, because the child’s own Request or the

parent’s Reply could be lost. In case the parent’s Reply is lost, the child sending the

Request again won’t make any difference beacause the parent has already enqueued it

in the Child List. This futile activity comes from the child’s ignorance of whether its

Request has reached the parent or not.

Reply From Parent

When the child receives Reply from the parent, its timer could be ON, because it could

be the first time it is receiving the Reply from the parent. In that case, the timer is

turned OFF and the child doesn’t need to send the Request again because it knows that

its Request has been enqueued by the parent. The timer could well be OFF, because of

two cases:

• The child had earlier received the Reply, but it has been sent again by the parent

because the corresponding Ack or Neg-Ack from the child got lost in the previous

Cycle.

• The Neg-Ack from the child was received by the parent in the last Time Slot in

the current Cycle itself, in which case the parent updated its first available Time

Slot by shifting it one slot ahead and sent the Request to the child again.

12

3.2 The Schedule Formation Phase

Neg-Ack From The Child

The child sends Neg-Ack to the parent, when the time at which it received the Reply

from the parent is not favourable for it to transmit during the steady phase. It could be

due to two reasons:

• It conflicts with its reception time from its own children. Remember that it sent

the first Request to its parent only after committing reception times to its own

children.

• The time left to the end of the Cycle from the time at which it received the Reply,

is lesser than what the child needs to transmit Slot Count number of packets, i.e.,

transmissions starting there would cross the Cycle boundary on the child’s side.

In the case where the parent receives a Neg-Ack from the child, a Time Slot is wasted.

Here arbitrations among different enqueued children can be employed. It could be done

that the parent tries to schedule a different child among the ones already enqueued in

the Child List in the same Time Slot in the next cycle and doesn’t update its first

available Time Slot. For sake of simplicity we don’t take that approach.

Ack From The Child

In the case where the child has no issues with the transmission time assigned by the

parent, it sends Ack to the parent. On reception of this Ack, the parent, that was moni-

toring this Time Slot for Ack or Neg-Ack by the child, updates its first available Time

Slot and shifts it forward by child’s Slot Count number of Time Slots. It updates

its reception time based on this. It also updates its own Slot Count by incrementing it

with the child’s Slot Count. The child finalises its sleep/wakeup schedule. In the steay

phase, it will sleep from the start of the Cycle to the start of the reception time, from

the end of the reception time to the start of the transmission time, and from the end of

the transmission time to the end of the Cycle. Based on the status of the Child List

the parent takes the following decisions:

• Incase this was the last child enqueued in the Child List, and the size of the list

is equal to the child count, it sends Request to its own parent.

• Incase this was the last child enqueued in the Child List, and the size of the list

is not equal to the child count, it waits for Request from its children, as it knows

some of them are yet to successfully send their first request.

• Incase this was not the last child enqueued in the Child List, it moves on to

catering the next child.

13

3.2 The Schedule Formation Phase

3.2.2 Example

Marks this time for transmission

Ack Received
by Parent

during steady phase.

Marks this time.

.Request for 2 slots.
Reply

by Parent.

Reply by Parent
Lost.

Request for 5 slots Lost.

Ack Received
by Parent

Ignores
Request

Request
sent again.

Parent

Child 2

Child 1

First available Time Slot.

Figure 3.3: A Parent Scheduling its two children

Figure 3.3, shows an example of the scheduling algorithm at work. The Cycle here

consists of 20 Time Slots.

Child 2 sends the first Request to the parent, which gets lost. It would send the

Request again when the timer started by it would fire. In the meanwhile, Child 1 sends

the Request for 2 slots and it is successfully received by the parent. The parent enqueues

it in the Child List and would send the Reply in the first available Time Slot in the

next Cycle, because the first available Time Slot in the current Cycle, which is at the

beginning of the Cycle, is already over. The timer with Child 2 fires and it sends again

the Request for 5 time slots, which is successfully received by the parent this time. The

parent enqueues it also. Now in the first available Time Slot in the next Cycle, the

parent sends the Reply to Child 1. Child 1 turns OFF its timer and accepts the time

assigned for transmission and sends back the Ack. As the parent gets back the Ack

within the Time Slot it was monitoring, it doesn’t schedule to send the Reply to Child

1 again. It updates the first available Time Slot by advancing it ahead by 2 slots.

Now Child 1 is successfully scheduled. Parent sends back the Reply in the first avail-

able Time Slot to Child 2, which gets lost. The parent doesn’t receive anything in the

monitored Time Slot and schedules to send the Reply again in the same Time Slot,

in the next Cycle. The timer with Child 2 fires again and it sends the Request again.

This is ignored by the parent as Child 2 is already enqueued. On trying again in the next

Cycle, the Reply by the parent is received by Child 2 and it turns OFF the timer. It

sends back the Ack and the parent further advances the first available Time Slot by 5

slots.

14

3.2 The Schedule Formation Phase

3.2.3 DeadLock Handling

In the case that parent doesn’t receive any Ack or Neg-Ack within the monitored

Time Slot, it tries again by sending the Reply at the start of the same Time Slot in

the next Cycle. This could be due to the loss of the parent’s own Reply or the child’s

Ack or Neg-Ack. Let’s call the parent in consideration as node A, and its child as node

B. Now another parent, say node C, could be trying to schedule one of its child, say node

D, in some Time Slot and these slots overlap with reference to the operation of the

network irrespective of where they are placed in their respective Cycle. It could be that:

• A parent in one of the parent-child pairs is in transmission range of the other parent.

• A child in one of the pairs is in transmission range of the other child.

• A parent in one of the pairs is in transmission range of the child of the other pair,

say node C is in transmission range of node B.

In the first case, collision will be there as Reply of both the parents will collide. In the

second case, the Ack or Neg-Ack of one child will collide with that of the other child.

Third case is a hidden node problem, and node C would not be able to receive the Reply

from node D due to interference from node B, as both B and D would be transmitting

their Ack or Neg-Ack at the same time. Figure 3.4 elaborates on this problem.

A

B

D

C

Transmission Range

Figure 3.4: The Hidden Node Problem in Scheduling Phase

This collision deadlock will continue in every Cycle, as each parent would send the

Reply again in the same Time Slot in the next Cycle and collisions will again follow.

To come out of this deadlock, each parent can maintain a counter of how many times the

Reply has been sent to the same child in the same Time Slot and based on that count

and a random toss, the parent can update the next available Time Slot by one slot and

send the Reply in that slot.

15

3.3 Data Routing Phase

3.2.4 Phase Change Notification

The length of this phase is variable, based on how the scheduling actually proceeds,

and is a multiple of the Cycle. After the AP also successfully schedules all its children,

this phase is compelete. The AP then broadcasts, notifying the whole network that the

scheduling phase is over. This broadcast is similar to the broadcast done in the topology

learning phase, except that no change to the packet is required while re-broadcasting.

This broadcast phase time is again decided based on the size of the network as in topology

learning phase and after this time the data routing phase starts.

3.3 Data Routing Phase

In this phase, the nodes follow their sleep/wakeup schedules and the data routing is done

to the AP.

The mechanism for adapting to changes in the topology is not event-driven as in [4].

It is achieved by re-initiation done by the AP. This re-initiation, important for handling

clock drifts also as discussed earlier, is done based on a timer that is common to all the

nodes in the network. Thus the whole topology is refreshed and all three phases repeated

based on this timer.

16

4 Simulation Results and Analysis

In this chapter we describe the simulations done on the system and we analyse and

explain the results. But prior to that we discuss the platform these simulations have

been performed at.

4.1 TOSSIM

We simulated our protocol using TOSSIM[1] and TinyOS 1.1[9]. TOSSIM[1] is a discrete

event simulator for TinyOS[9] and is based on its event-driven execution model. It is a

software-in-the-loop simulator and incorporates the actual node software in to the simu-

lation and as such the TOSSIM[1] simulation compiles directly from the TinyOS[9] code

used to implement the system. It uses powerful abstractions to model a sensor network.

A network is a directed graph, where each vertex is a sensor node and each directed edge

has a bit-error rate and by setting these, wireless channel characteristics such as lossy

and asymmetric links and hidden node problems can easily be modeled. The settings of

the network have been mentioned in the results.

4.2 PowerTOSSIM

In simulation based studies, the estimation of the power consumption of the network and

the motes individually has previously been done by ad hoc methods, as TOSSIM [1] in

itself provides no support for power consumption estimation. In [18], the network lifetime

results are based on the use of power consumption values similar to the ones available

for the Berkeley motes. Here they implement a new simulator that idealizes the physical

and MAC layers and no collisions occur and transmission time for each packet has been

assumed to be a constant. In case of [3], where the simulation platform is TOSSIM[1],

the estimate for the average lifetime is done based on network connectivity, similar to

the method adopted in [19], where power dissipation of a node depends on the number

of its children and the grouping techniques adopted. In some other systems, for power

calculations, changes are made to the GenericComm component of the mica radiostack

[6], to count transmit, receive, idle listening, and radio sleep time. These time values are

then use alongwith the corresponding current draw values as in [18].

For power consumption calculations, we use PowerTOSSIM [2], which is a power mod-

eling extension to TOSSIM [1]. It is based on the power model of mica2 mote. It adds

17

4.3 Simulation Results

power state tracking module to the TinyOS [9] architecture and makes modifications to

other modules to report transitions. The power profiling with it is much more accurate as

it also incorporates the energy consumed by sensors and leds and also estimates CPU en-

ergy usage recording the runtime basic block execution counts and mapping these blocks

to the cycles used on Atmel AVR microcontroller instructions. This way it also accounts

for the energy consumed in computational overheads incurred while trying to save the ra-

dio power by scheduling. The output format of PowerTOSSIM[2] for power consumption

of a mote is shown below in a trace taken from one of our results during power profiling.

It generates results for all the motes in the network in the similar format. All values are

in millijoules.

Mote 0, cpu total: 1217.637555

Mote 0, radio total: 2008.234210

Mote 0, adc total: 0.000000

Mote 0, leds total: 0.000000

Mote 0, sensor total: 203.430972

Mote 0, eeprom total: 0.000000

Mote 0, cpu cycle total: 0.000000

Mote 0, Total energy: 3429.302737

4.3 Simulation Results

We have done our simulations over various topologies, but for the results here we have

used the topology as shown in Figure 4.1, consisting of 20 nodes. The nodes with an

edge between them are in the transmission range of each other. All links are symmetric

and have BER(Bit Error Rate) of 0. The dark edges show the parent-child relationships

set-up by the Min-Hop distance based routing algorithm. The Table 4.1 summarizes the

important time values used in the simulation. Re-Initiation timer is dependent on how

Parent Selection Phase 10000 ms

Child Count Phase 1000 ms

Cycle Time 5000 ms

Time Slot Length 100 ms

Phase Change Notification 10000 ms

Re-Initiation 1000000 ms

Table 4.1: Various time values used in simulation

much clock skew can be accumulated over time. For mica motes the skew is of the order

of 1 ms in 50,000 ms. Assuming the parent only transmits in the middle of the time slot

and it takes 10 ms for the exchange to be over, we have a 45 ms cushion for clock skew.

As such, even a 30 minute Re-Initiation timer would be safe. The Re-Initiation timer

18

4.3 Simulation Results

Figure 4.1: The Topolgy used for simulations

could be larger if the time slot is larger. Apart from the time values in Table 4.1, the

sense time for a node has been kept 13 ms and is at the beginning of the cycle. Each

node turns on the radio for atleast one time slot, i.e., 10 ms, even if it is a leaf node.

And the transmission time can only start after one time slot from where the reception

time ends.

In Figure 4.2 and Figure 4.3 we see the radio power consumed by the nodes over a

particular path in the spanning tree during the steady phase, i.e, the data routing phase.

Zero values correspond to radio OFF, intermediate level corresponds to the receptions,

and the peaks correspond to the transmissions. The receive and transmit times have been

kept larger than required to allow for retransmissions in a lossy topology.

Figure 4.2 shows the results of radio energy consumption over time for the path con-

sisting of nodes 19, 17, 13, 9, 2 and 0 , i.e, the AP. Figure 4.2 shows the results for the a

different path consisting of nodes 16, 6, 4, 3, and the AP.

19

4.3 Simulation Results

 0
 2
 4
 6
 8

Radio Usage after Scheduling

"Mote 0"

 0
 2
 4
 6
 8 "Mote 2"

 0
 2
 4
 6
 8 "Mote 9"

 0
 2
 4
 6
 8

R
ad

io
 C

ur
re

nt
(m

A
)

"Mote 13"

 0
 2
 4
 6
 8 "Mote 17"

 0
 2
 4
 6
 8

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Time(sec)

"Mote 19"

Figure 4.2: The Radio Energy Consumption With Time

 0
 2
 4
 6
 8

Radio Usage after Scheduling

"Mote 0"

 0
 2
 4
 6
 8 "Mote 3"

 0
 2
 4
 6
 8

R
ad

io
 C

ur
re

nt
(m

A
)

"Mote 4"

 0
 2
 4
 6
 8 "Mote 6"

 0
 2
 4
 6
 8

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Time(sec)

"Mote 16"

Figure 4.3: The Radio Energy Consumption With Time

20

4.3 Simulation Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10

E
ne

rg
y(

m
J)

Subtree Size

Radio Usage after Scheduling

Subtree Size 1 : Mote 19
Subtree Size 3 : Mote 6
Subtree Size 4 : Mote 1
Subtree Size 6 : Mote 9
Subtree Size 8 : Mote 3

Figure 4.4: Comparison of Power Savings among nodes

In Figure 4.4, we compare the energy savings over the nodes. The results show that

leaf nodes are able to save maximum amount of energy as they sleep most of the times,

and with nodes nearer to the AP, as the wakeup times are more, the energy savings are

lesser. In Figure 4.5, we make a comparison of the contention based scheme and our

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 2.5 5 7.5 10 12.5 15

E
ne

rg
y(

m
J)

Time(min)

Radio Energy Consumption

Contention Based
Scheduled

Figure 4.5: Radio Power Consumed in the two schemes

algorithm with respect to the consumption of radio power. The results show that over

21

4.3 Simulation Results

time, our algorithm performs far better than the contention based scheme with an order

decrease in power consumption achieved within 15 minutes of operation of the network.

Figure 4.6 makes a comparison of the toal power consumed over time. With time, the

radio power consumed starts dominating and the gains made there reflect in total power

consumption also.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 2.5 5 7.5 10 12.5 15

E
ne

rg
y(

m
J)

Time(min)

Total Energy Consumption

Contention Based
Scheduled

Figure 4.6: Total Power Consumed in the two schemes

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6

P
ac

ke
t R

et
ra

ns
m

itt
ed

(%
)

Sensing Period(sec)

Retransmisions

ContentionBased
Scheduled

Figure 4.7: Percentage Retransmissions Done

22

4.3 Simulation Results

Figure 4.7 shows the packet retransmissions done in the contention scheme. In compar-

ison, there are no retransmissions in our implementation at all. As the sensing rate of the

nodes decreases, i.e, the length of one cycle is made smaller, the retransmissions in the

contention scheme increase. The scheduling ensures no retransmissions in our case but

the cycle length has to be enough for the scheduling algorithm to work. Our algorithm,

in case of the topology taken, can only schedule given the cycle is greater than 4 seconds.

The results here correspond to 300 seconds of operation of the network.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5

Ti
m

e(
m

s)

HopCount

Latency / packet

HopCount 1 : Mote 1,2,3
HopCount 2 : Mote 5,11
HopCount 3 : Mote 8,14
HopCount 4 : Mote 15,16
HopCount 5 : Mote 18,19

Scheduled
ContentionBased

Figure 4.8: Latency Comparison in the two schemes

Figure 4.8 shows the latency in reporting the data to the AP in the 2 schemes. The

behaviour of our algorithm is easily explainable from the topology and Figures 4.2 and

4.3. This is due to the store and forward nature of our algorithm. The upper limit on

the latency of data of a node in our algorithm is its hop-count times the Cycle length.

The simulation time for deriving this result has been 300 seconds.

23

4.3 Simulation Results

Figure 4.9: Throughput Comparison in the two schemes

In Figure 4.9, the throughput is reported as number of packets received by the AP

per second, against the sensing rate. The througput values in our case are lesser as the

latency is higher. The difference corresponds to the latency of the first cycle only and

fades away over time. Again this result is derived from 300 seconds of operation of the

network.

24

5 Implementation

5.1 TinyOS and nesC

We have implemented the system in nesC version 1.1 [7]. nesC [7] [8] is an extension of

C and was designed to support and evolve TinyOS’s programming model and to reim-

plement TinyOS in the language itself. TinyOS [9] is an event driven operating system

designed specifically for mica mote platform and provides minimal device and networking

abstractions. It has a component architecture and it provides a library as a set of reusable

system software components which are organised in to layers, with lower layers ”closer”

to hardware and higher layers ”closer” to the application. Thus a TinyOS [9] application

is implemented by wiring the reusable components and also the newer ones implemented

, together, as specified in a top level configuration file. As different OS services have been

decomposed in to separate components in the component library, only the necessary ones

are compiled with the application, keeping the footprint of the application code really

small. This is highly desirable keeping in view the memory constraints of the mica motes,

mentioned in Table 2.1. Again, to ensure the small size of the footprint, TinyOS has no

file system, its supports only static memory allocation, and has simple FIFO based task

model. All these constraints make coding up the system in nesC a real challenge.

5.2 Implementation Details

The building blocks of the implementation are TinyOS components. These can be of

two types, configurations and modules, and are represented as elliptical shapes in fig-

ures in this section. Interfaces among the components are represented as solid arrows.

Component at solid arrow’s tail uses the interface and the one at the head provides the

interface. Hashed arrow also shows an interface, but here the interface provided by the

tail component is ’equivalent to’ the implementation in the head component. The main

configuration file as shown in Figure 5.1, is Surge. It connects various ’used interfaces’ of

other configurations and modules to required ’provided interfaces’. Its ’interface StdCon-

trol’ is connected to different components to initialize and start them. ’Module BcastM’

and ’module ProcessMsg’ together create the routing tree based on Min-Hop distance. A

Timer is started in both modules, which on firing recreates the routing tree and reiniti-

ates various parameters. This parameter reinitiation is done using ’event startReconf()’

of ’interface reconf’. ’Module Processmsg’ after PARENT SELECTION TIME signals

25

5
.2

Im
p
le

m
e
n
ta

tio
n

D
e
ta

ils

Main

TimerC

StdControl

MultiHopRouter
StdControl

ScheduleSetup

StdControl

Photo

StdControl

ChildCntM

StdControl

SurgeMStdControl

getSchedule

GenericCommPromiscuous

ReceiveMsg

Timer

RouteControl

ChildNotify

BcastM

reconf

Timer

Timer
Notify

RouteControl

reconf

StdControl

SendMsg

ReceiveMsg

CommControl

RandomLFSR
Random

Timer

RouteControl

Send

getSchedule

ADC
reconf

F
igu

re
5.1:

Im
p
lem

en
tation

d
etails

of
th

e
ap

p
lication

.

26

tos.system.Main.nc.html
tos.system.TimerC.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.MultiHopRouter.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.ScheduleSetup.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.sensorboards.basicsb.Photo.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.ChildCntM.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.SurgeM.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
tos.system.GenericCommPromiscuous.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.ChildNotify.nc.html
apps.SimpleCmd.ChildNotify.nc.html
apps.SimpleCmd.ChildNotify.nc.html
apps.SimpleCmd.BcastM.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
tos.system.RandomLFSR.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.Send.nc.html
tos.interfaces.Send.nc.html
tos.interfaces.Send.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
tos.interfaces.ADC.nc.html
tos.interfaces.ADC.nc.html
tos.interfaces.ADC.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html

5.2 Implementation Details

’event IsParentSet()’ of ’interface Notify’.

’Module ChildCntM’ captures this event and starts child count phase, in which each

parent know about number of its immediate children. After CHILD COUNT TIME

’Module ProcessMsg’ signals ’event IsChildCnt()’ of ’interface ChildNotify’, which is cap-

tured by ’configuration ScheduleSetup’.

ScheduleSetup ScheduleSetupM

StdControl

getSchedule

RouteControl

ChildNotify

Timer

reconf

LogicalTime

TimeUtil

Timer

Timer

StdControl

Time

GenericCommPromiscuous

SendMsg

ReceiveMsg

StdControl

CommControl

RandomLFSR

Random

Figure 5.2: Configuration ScheduleSetup implementation

’Configuration ScheduleSetup’ in Figure 5.2 implements its ’interface ChildNotify’ han-

dler in ’module ScheduleSetupM’. ’Module ScheduleSetupM’ computes schedule using ’in-

terface RouteControl’ provided by ’configuration MultiHopRouter’. After computing the

schedule, it synchronizes its sensing timer cycle with the sensing timer cycle of ’module

SurgeM’ using ’event syncTime()’ of ’interface getSchedule’. When the whole network

is scheduled, AP broadcasts phase change packet, which is flooded in the network by

re-broadcasts from each node. Each node after PHASE CHANGE TIME, after receiv-

ing first phase change packet, signals ’event scheduleDone()’ of ’interface getSchedule’.

’Module SurgeM’ captures this event and starts taking sensor reading.

27

apps.SimpleCmd.ScheduleSetup.nc.html
apps.SimpleCmd.ScheduleSetupM.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.ChildNotify.nc.html
apps.SimpleCmd.ChildNotify.nc.html
apps.SimpleCmd.ChildNotify.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.system.LogicalTime.nc.html
tos.interfaces.TimeUtil.nc.html
tos.interfaces.TimeUtil.nc.html
tos.interfaces.TimeUtil.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.system.GenericCommPromiscuous.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
tos.system.RandomLFSR.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html

5
.2

Im
p
le

m
e
n
ta

tio
n

D
e
ta

ils

MultiHopRouter

MultiHopEngineM

StdControl

Receive

Send

RouteControl

Notify

ReceiveMsg

SchQueuedSend
StdControl

SendMsg

ProcessMsgNotify

StdControl

LogicalTime

StdControl

BcastM
RouteControl

reconf

StdControl

GenericCommPromiscuous

StdControl

CommControl

getSchedule

reconf

RadioCRCPacketStdControl

Time

TimeSet

Timer

Timer
ProcessCmd

RouteControl

reconf

Timer

Timer

Time
SendMsg

ReceiveMsg

RandomLFSR
Random

BareSendMsg

ReceiveMsg

F
igu

re
5.3:

C
on

fi
gu

ration
M

u
ltiH

op
R

ou
ter.n

c
im

p
lem

en
tation

28

apps.SimpleCmd.MultiHopRouter.nc.html
apps.SimpleCmd.MultiHopEngineM.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.Receive.nc.html
tos.interfaces.Receive.nc.html
tos.interfaces.Receive.nc.html
tos.interfaces.Send.nc.html
tos.interfaces.Send.nc.html
tos.interfaces.Send.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
apps.SimpleCmd.SchQueuedSend.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
apps.SimpleCmd.ProcessMsg.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
apps.SimpleCmd.Notify.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.system.LogicalTime.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.BcastM.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.system.GenericCommPromiscuous.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
tos.interfaces.CommControl.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.platform.mica.RadioCRCPacket.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.TimeSet.nc.html
tos.interfaces.TimeSet.nc.html
tos.interfaces.TimeSet.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
apps.SimpleCmd.ProcessCmd.nc.html
apps.SimpleCmd.ProcessCmd.nc.html
apps.SimpleCmd.ProcessCmd.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
tos.interfaces.RouteControl.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.Time.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.system.RandomLFSR.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.BareSendMsg.nc.html
tos.interfaces.BareSendMsg.nc.html
tos.interfaces.BareSendMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html
tos.interfaces.ReceiveMsg.nc.html

5.2 Implementation Details

SchQueuedSend SchQueuedSendM

StdControl

QueueControl

SendMsg

getSchedule

StdControl

reconf

GenericCommPromiscuous
SendMsg

TimerC

StdControl

Timer

Timer

RandomLFSR

Random

Figure 5.4: Configuration SchQueuedSend implementation

The sensor reading then is sent to its parent using ’interface Send’ implemented by

’configuration MultiHopRouter’ as shown in Figure 5.3. Packets are sent by ’module

MultiHopEngineM’ and ’configuration SchQueuedSend’, Figure 5.4, according to sched-

ule provided by ’configuration ScheduleSetup’. Radio power control is used in ’mod-

ule SchQueuedSendM’ and implemented by ’configuration RadioCRCPacket’. Transmis-

sion and reception of packets is implemented internally by ’configuration GenericComm-

Promiscuous’ and ’module AMPromiscuous’. Radio stack used is CC1000Radio stack

provided for simulation.

29

apps.SimpleCmd.SchQueuedSend.nc.html
apps.SimpleCmd.SchQueuedSendM.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.QueueControl.nc.html
apps.SimpleCmd.QueueControl.nc.html
apps.SimpleCmd.QueueControl.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
apps.SimpleCmd.getSchedule.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
apps.SimpleCmd.reconf.nc.html
tos.system.GenericCommPromiscuous.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.interfaces.SendMsg.nc.html
tos.system.TimerC.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.interfaces.Timer.nc.html
tos.system.RandomLFSR.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html
tos.interfaces.Random.nc.html

6 Conclusions and Future Work

In this thesis, we presented a distributed scheduling algorithm that efficiently computes

the sleep/wakeup cycles for each node in the wireless sensor network.

The schedule is calculated in a separate schedule formation phase and each node follows

its schedule to send the data to the AP over multi-hop. No control packets are required

during the steady-phase, which is the phase the network is in for the longest time.

Each node sets up its schedule according to its local time only to avoid overhead of

time-synchronisation. The periodic re-inititation of all the three phases effectively handles

the topology changes and the clock drifts.

The simulations over a random and elaborate topology of 20 nodes show that within

15 simulation minutes of running the application on TOSSIM, our algorithm achieves

almost an order reduction in the radio power consumed as compared to the contention

based scheme for media access.

6.1 Scope Of Improvement

In our algorithm, each parent is assumed to have enough slots to meet the requirements of

all its children, but it might be constrained from the buffer space it has as every node has

to store together packets equal to the size of the subtree rooted at itself, before relaying

them off to the parent.

6.1.1 Proposed Solution

Currently each node requests its parent only when all its children have been scheduled.

But if the request from one of its children exceeds its buffer space left, the parent can

partly schedule the child for number of slots equal to the buffer space left in terms of

packet size. In that case, it sets a flag in the request to its own parent. And that parent

node again sets this flag while requesting its own parent. This way each parent can keep

track of the route over which the scheduling is yet to be completed. Once the partial

scheduling is done with the AP also, it reinitiates the scheduling along the required routes

and the parents start with their child list to schedule the partly scheduled and yet to be

scheduled nodes.

30

Bibliography

[1] Phil Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim:Accurate and Scalable

Simulation of entire TinyOS Applications.In First ACM Conference on Embedded

Networked Sensor Systems (SenSys 2003), November 2003.

[2] Victor Shnayder, Mark Hempstead, Bor-rong Chen, and Matt Welsh, Harvard Uni-

versity. PowerTOSSIM:Efficient Power Simulation for TinyOS Applications.SenSys

2004, November 2004.

[3] Sinem Coleri, Anuj Puri, Pravin Varaiya. Power Efficient System for Sensor Net-

works. In Proceedings of the Eighth IEEE International Symposium on Computers

and Communication (ISCC 2003), July 2003.

[4] Khaled A. Arisha, Moustafa A. Youssef, Mohamed F. Younis. Energy-Aware TDMA-

Based MAC for Sensor Networks.

[5] Tian He, Bruce Krogh, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher,

Ligian Luo, Radu Storelu, Ting Yan,Lin Gu, Jonathan Hui. In Proceedings of the

2nd international conference on Mobile systems, applications, and services (MobiSys

2004), June 2004.

[6] Nelson Lee, Philip Levis, Jason Hill. Mica High Speed Radio Stack. September 2003.

[7] David Gay, Philip Levis, David Culler, Eric Brewer. nesC 1.1 Langage Reference

Manual. May 2003.

[8] The nesC Langugage: A Holistic Approach to Networked Embedded Systems. David

Gay, Philip Levis, David Culler, Eric Brewer, Matt Welsh, Robert von Behren.

http://nescc.sourceforge.net

[9] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer

Pister. System architecture directions for networks sensors, November 2000.

[10] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC Protocol

for Wireless Sensor Networks.In Proceedings of the 21st International Annual Joint

Conference of the IEEE Computer and Communication Societies (INFOCOM 2002),

June 2002.

31

BIBLIOGRAPHY

[11] V. Rajendran, K. Obraczka, and J.J Gracia-Luna-Aceves. Energy-efficient, colli-

sion free medium access control for wireless sensor networks.In ACM SenSys 2003,

November 2003.

[12] Simon Coleri. PEDAMACS:power efficient and delay aware medium access protocol

for sensor networks,2002.

[13] S. Singh and C. Raghvendra. Pamas: Power aware multi-access protocol with sig-

nalling for ad hoc networks, 1999.

[14] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for

sensor networks,2003. UCLA.

[15] Feng Zhao, Leonidas J. Guibas. Wireless Sensor Networks: An Information Process-

ing Approach. Morgan Kauffman Publishers.

[16] TinyOS tutorial. URL:http://www.tinyos.net/tinyos-1.x/doc/tutorial.

[17] Bar bara A. Holt, Lance R. Doherty, and Eric A. Brewer. Flexible Power Sceduling for

Sensor Networks. In Proceedings of Third International Symposium on Information

Processing In Sensor Networks (IPSN 2004), April 2004.

[18] Mihail L. Sichitiu. Cross-Layer Scheduling for Power Efficiency in Wireless Sensor

Networks. IEEE INFOCOM 2004, March 2004.

[19] Sinem Coleri, Mustafa Ergen, T. John Koo. Lifetime Analysis of a Sensor Network

with Hybrid Automata Modelling.In Proceedings of First ACM International Work-

shop on Wireless Sensor Networks and Applications (WSNA 2002), September 2002.

[20] Max-Min Fair Collision-Free Scheduling for Wireless Sensor Networks. Avinash Srid-

haran, and Bhaskar Krishnamachari. Department of Electrical Engineering, Univer-

sity of Southern California.

[21] A Coverage-Preserving Node Scheduling Scheme for Large Wireless Sensor Networks.

Di Tian, and Nicholas D. Georgonas, University of Ottawa.

[22] Taming the Underlying Challenges of Reliable Mulithop Routing in Sensor Networks.

Alec Woo, Terence Tong, David Culler.In Proceedings of SenSys 2003, November

2003.

[23] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronisation using

refernce broadcasts. UCLA, Feb 2002.

32

	List of Tables
	List of Figures
	Introduction
	Objectives
	Organisation of the Report

	Previous Work
	Berkeley Motes
	Previous Systems
	Centralised Systems
	Distributed Systems

	Design Approach
	The Initiation Phase
	Parent Selection Phase
	Child Count Phase

	The Schedule Formation Phase
	The Scheduling Algorithm
	Example
	DeadLock Handling
	Phase Change Notification

	Data Routing Phase

	Simulation Results and Analysis
	TOSSIM
	PowerTOSSIM
	Simulation Results

	Implementation
	TinyOS and nesC
	Implementation Details

	Conclusions and Future Work
	Scope Of Improvement
	Proposed Solution

	Bibliography

