

Dayalbagh Educational Institute (DEI) Dayalbagh Agra

CSM 802

Indian Institute of Technology Delhi (IITD) New Delhi

SIV 895

What is Machine Learning

- "Learning is any process by which a system improves performance from experience." Herbert Simon
- Definition by Tom Mitchell (1998):
- Machine Learning is the study of algorithms that
- improve their performance P
- at some task T
- with experience E.
- A well-defined learning task is given by <P, T, E>.

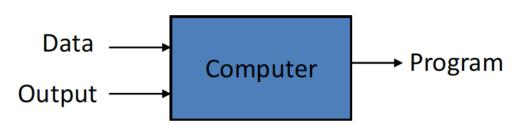
What is Machine Learning

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel (1959)

What is Machine Learning

Traditional Programming

Machine Learning

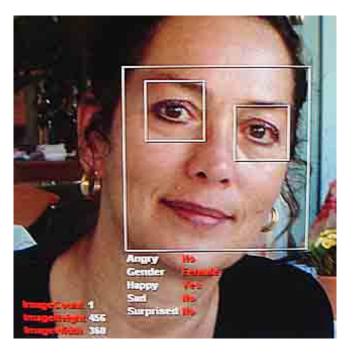


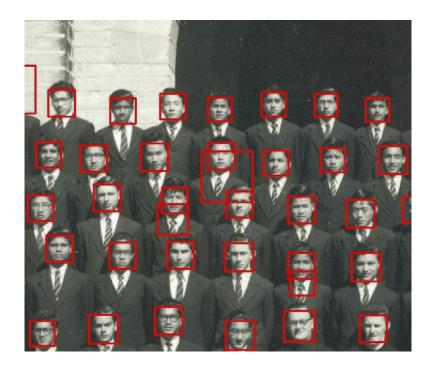
Where is it used

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

http://www.cse.iitd.ac.in/~pkalra/sil895

Face Detection/Recognition





http://www.cse.iitd.ac.in/~pkalra/sil895

Facial Expression Recognition

Surprise Happiness Sadness

http://www.cse.iitd.ac.in/~pkalra/sil895

Object Identification/Recognition

Fingerprint

Iris

Face

http://www.cse.iitd.ac.in/~pkalra/sil895

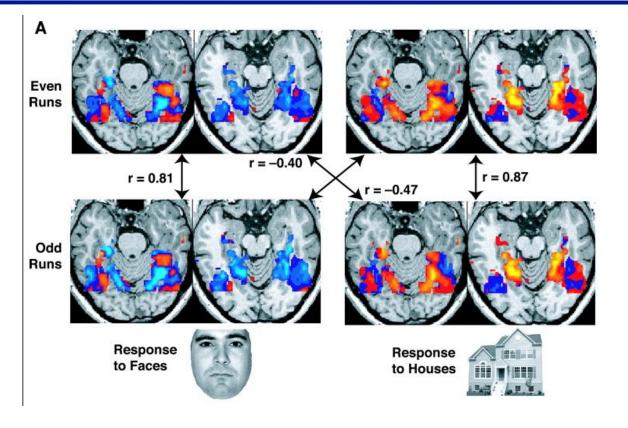
Autonomous/Assisted Cars

Note the vast amount of information the system can provide – free space (green carpet), vehicle and pedestrian detection, traffic sign recognition, lane markings – for the vehicle to understand and negotiate the driving scene.

< के श न ल

http://www.cse.iitd.ac.in/~pkalra/sil895

Medical Images



How are things learnt

- Memorization
 - Accumulation of individual facts
 - Limited by
 - Time to observe facts
 - Memory to store facts
- Generalization
 - Deduce new facts from old facts
 - Limited by accuracy of deduction process
 - Essentially a predictive activity
 - Assumes that the past predicts the future

Interested in extending to programs that can infer useful information from implicit patterns in data

Adapted from source:6-0002-Introduction to Machine Learning by Eric Grimson

Declarative knowledge

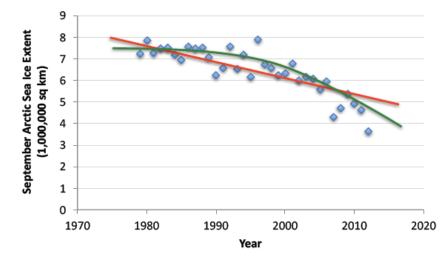
Imperative knowledge

Basic Paradigm

- Observe set of examples: training set
- Infer something about process that generated that data
- Use inference to make predictions about previously unseen data: test set
- Types of learning:
- Supervised: given a set of features/label pairs, find a rule that predicts the label association with unseen data
- Unsupervised: given a set of feature vectors (without labels), find natural groups or clusters (create labels for groups)

Supervised Learning: Regression

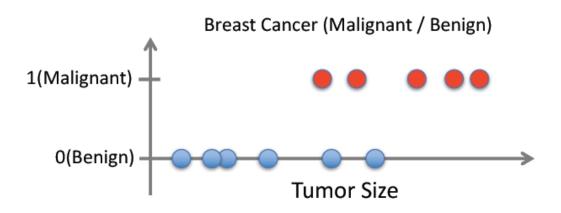
- Given (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression



Adapted from source:Introduction to Machine Learning by Eric Eaton

Supervised Learning: Classification

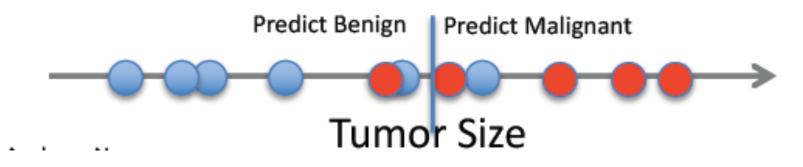
- Given ($x_{\rm 1}, y_{\rm 1}$), ($x_{\rm 2}, y_{\rm 2}$), ..., ($x_{\rm n}, y_{\rm n}$)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification



Supervised Learning: Classification

- Given (x_1 , y_1), (x_2 , y_2), ..., (x_n , y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

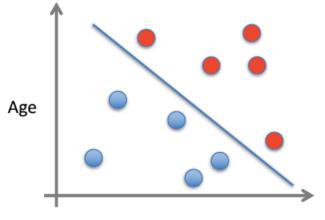
Breast Cancer (Malignant / Benign)



[®] Supervised Learning: Classification

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

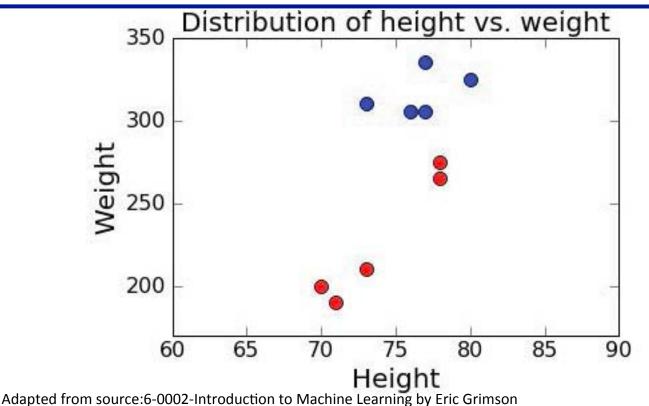
...



- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

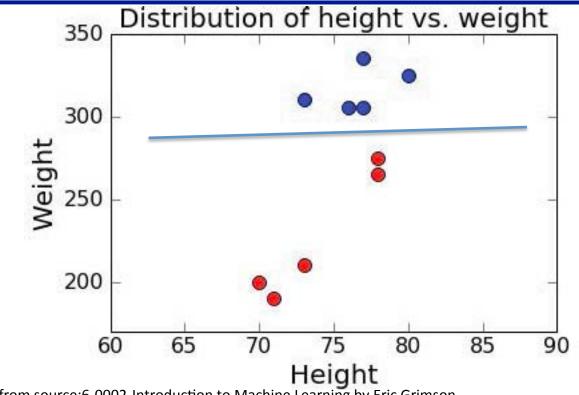
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



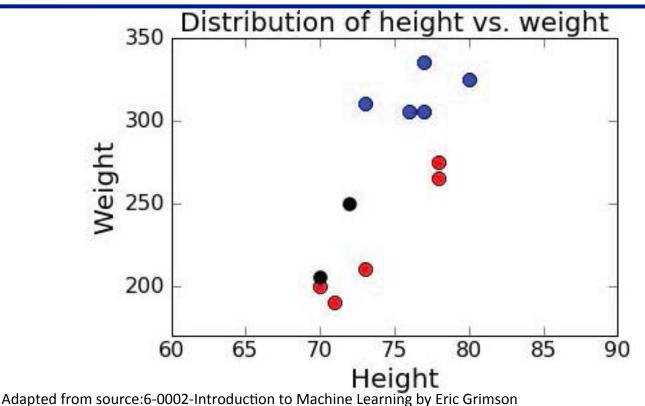
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



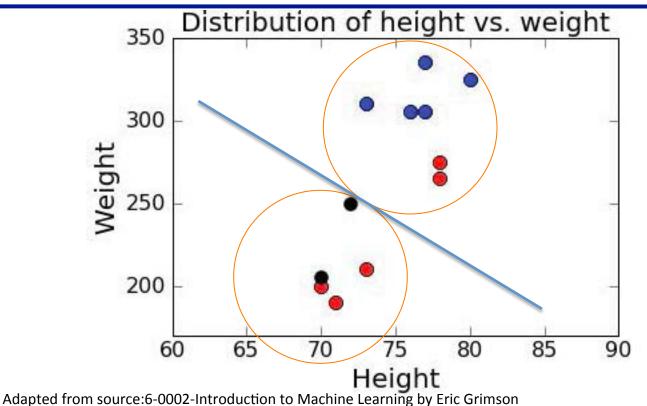
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



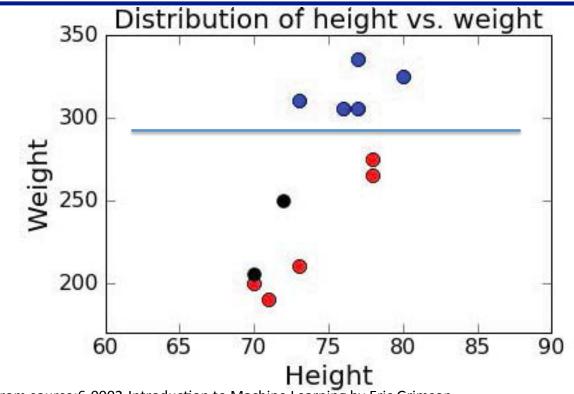
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



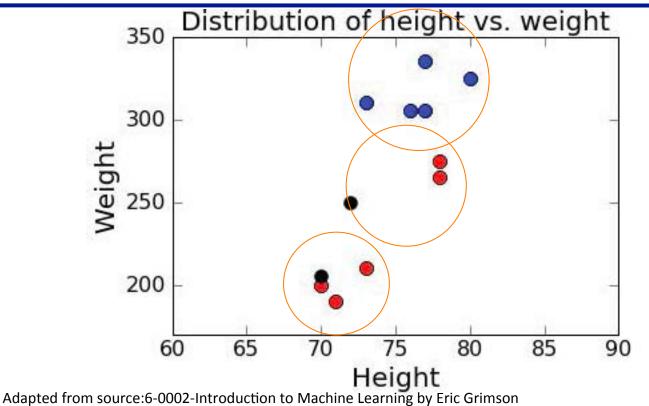
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



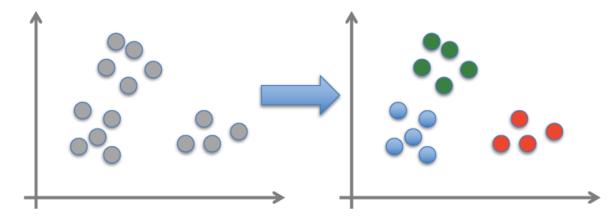
http://www.cse.iitd.ac.in/~pkalra/sil895

Supervised Learning: Classification



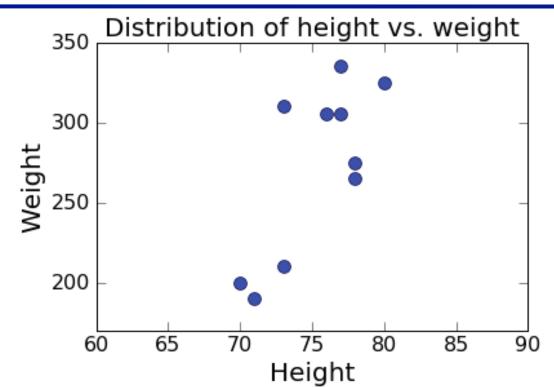
Unlabeled Data

- Given $x_{\rm 1}, x_{\rm 2},$..., $x_{\rm n}~~{\rm (without~labels)}$
- Output hidden structure behind the $x{\rm 's}$
 - E.g., clustering



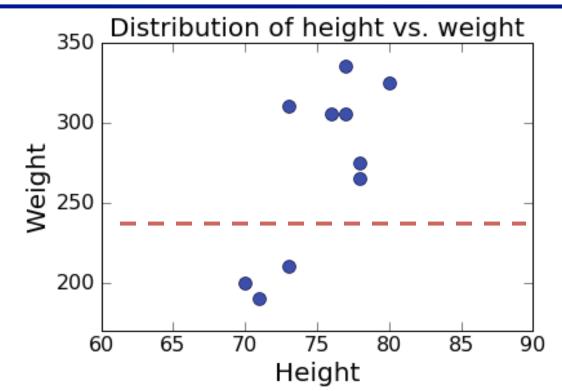
http://www.cse.iitd.ac.in/~pkalra/sil895

Unlabeled Data



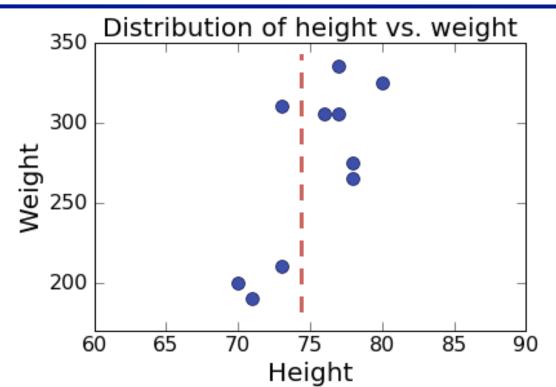
http://www.cse.iitd.ac.in/~pkalra/sil895

Unlabeled Data



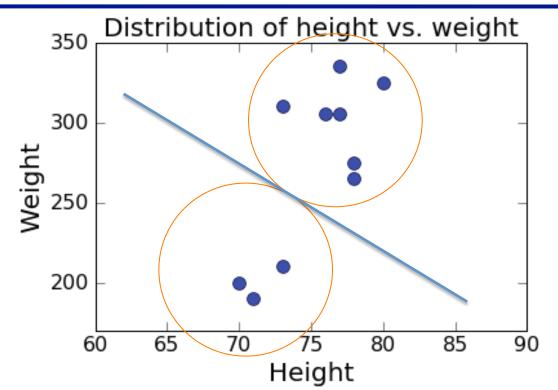
http://www.cse.iitd.ac.in/~pkalra/sil895

Unlabeled Data



http://www.cse.iitd.ac.in/~pkalra/sil895

Unlabeled Data



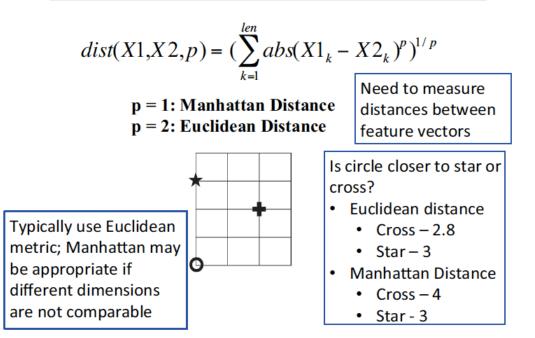
Feature engineering

- Represent examples by feature vectors that will facilitate generalization
- Suppose I want to use 100 examples from past to predict, at the start of the subject, which students will get an A
- Some features surely helpful, e.g., GPA, prior programming experience (not a perfect predictor)
- Others might cause me to overfit, e.g., birth month, eye color
- Want to maximize ratio of useful input to irrelevant input
 Signal-to-Noise Ratio (SNR)

- Feature engineering:
 - Deciding which features to include and which are merely adding noise to classifier
 - Defining how to measure distances between training examples (and ultimately between classifiers and new instances)
 - Deciding how to weight relative importance of different dimensions of feature vector, which impacts definition of distance

http://www.cse.iitd.ac.in/~pkalra/sil895

Minkowski Metric



Confusion Matrix

n= 1 65	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

- There are two possible predicted classes: "yes" and "no". If we were predicting the presence of a disease, for example, "yes" would mean they have the disease, and "no" would mean they don't have the disease.
- The classifier made a total of 165 predictions (e.g., 165 patients were being tested for the presence of that disease).
- Out of those 165 cases, the classifier predicted "yes" 110 times, and "no" 55 times.
- In reality, 105 patients in the sample have the disease, and 60 patients do not.

Adapted from source: https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

http://www.cse.iitd.ac.in/~pkalra/sil895

Confusion Matrix

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

- true positives (TP): These are cases in which we predicted yes (they have the disease), and they do have the disease.
- true negatives (TN): We predicted no, and they don't have the disease.
- false positives (FP): We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- false negatives (FN): We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

Adapted from source: https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

http://www.cse.iitd.ac.in/~pkalra/sil895

true positive + true negative

accuracy

true positive + true negative + false positive + false negative

http://www.cse.iitd.ac.in/~pkalra/sil895

$sensitivity = \frac{true \ positive}{true \ positive + false \ negative}$ $specificity = \frac{true \ negative}{true \ negative + false \ positive}$

Minimum Distance Classifier

A Decision Theoretic Approach

Let
$$x = (x_1, x_2, ..., x_n)^T$$
 for W pattern classes $\omega_1, \omega_2, ..., \omega_W$
 $d_i(x) > d_j(x)$ $j = 1, 2, ..., W; j \neq i$

 In other words, an unknown pattern x is said to belong to the *i*th pattern class if, upon substitution of x into all decision functions, d_i(x) yields the largest numerical value.

Minimum Distance Classifier

- Suppose that we define the prototype of each pattern class to be the mean vector of the patterns of that class: $m_j = \frac{1}{N_j} \sum_{x \in \omega_i} x_j$ j = 1, 2, ..., W
- We then assign **x** to class ω_i if $D_i(\mathbf{x})$ is the smallest distance. $D_j(x) = ||x m_j||$

केशनले

http://www.cse.iitd.ac.in/~pkalra/sil895

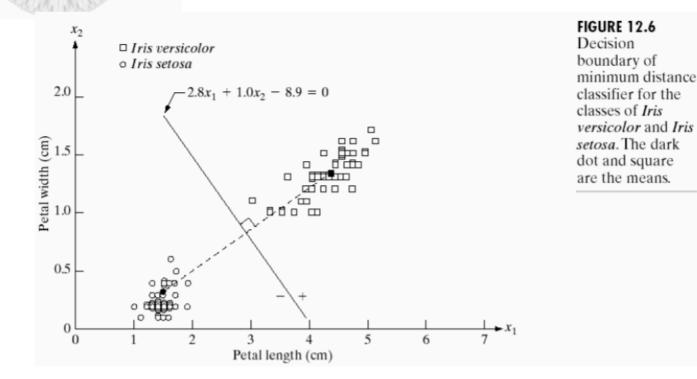
Minimum Distance Classifier

$$d_j(x) = x^T m_j - \frac{1}{2} m_j^T m_j$$
 $j = 1, 2, ..., W$
assign **x** to class ω_i if $d_i(\mathbf{x})$ is the largest
numerical value.

Adapted from source: Digital Image Processing Gonzalez and Woods

http://www.cse.iitd.ac.in/~pkalra/sil895

Minimum Distance Classifier



Adapted from source: Digital Image Processing Gonzalez and Woods

http://www.cse.iitd.ac.in/~pkalra/sil895

Home Assignment

Consider two class scenario with 2D features (x1,x2). Is the minimum distance classifier boundary perpendicular to the line joining the two means (prototypes)? Justify your answer.