Fuzzy Logic

Prem Kalra

Department of Computer Science and Enginering IIT Delhi

Boolean (Crisp) Logic

- Is it raining
- Yes/No
- True/False

Crisp answer

If answer - may be, may not be, ... (vague)

Not a crisp answer (fuzzy answer)

Fuzzy Logic

- Is this person tall?
- Yes/No
- Very tall, quite tall, not so tall, not tall,

7' $6^{\prime} \quad 5^{\prime} 6^{\prime \prime} \quad 5^{\prime}$

Better (more precise) description !
Introduced by Zadeh (1965), University of California Berkley

Fuzzy Logic

- Approximation ("granulation")

A color can be described precisely using RGB values, or it can be approximately described as "red", "blue", etc.

- Degree ("graduation")

Two different colors may both be described as "red", but one is considered to be more red than the other

- Fuzzy logic attempts to reflect the human way of thinking

Fuzzy Set

$\mathrm{X}=$ Entire population in a class
$M=$ All male population $\left(m_{1}, m_{2}, m_{3}, \ldots, m_{N}\right)$
F = All female population $\left(f_{1}, f_{2}, f_{3}, \ldots, f_{L}\right)$

Fuzzy Set

X = Entire population in a class of SIV895/CSM802
$S=$ All good students
$S=\{(s, g) \mid s \varepsilon X\}$ and $g(s)$ is a measurement of goodness of student s.
For example:
S = \{ (Rakesh, 0.8), (Sunita, 0.7), (Farhan, 0.1),
(Joseph, 0.9) \} etc

Fuzzy Set

Crisp Set
 $S=\{s \mid s \in X\}$
 $F=\{(s, \mu) \mid s \varepsilon X\}$ $\mu(s)$ is the degree of s.
 It is a collection of elements
 It is a collection of ordered pairs
 Inclusion is crisp (yes or no)
 Inclusion is fuzzy, i.e. if present then with a degree of membership

Crisp set is a fuzzy set with extreme membership values (0 or 1).

Related Terms

Fuzzy relation

Relationships can also be expressed on a scale of 0 to 1 e.g. degree of resemblance between two people

Fuzzy variable

Variable with (labels of) fuzzy sets as its values
Linguistic variable
Fuzzy variable with values that are words or sentences in a language e.g. variable color with values red, blue, yellow, green...
Linguistic hedge
Term used as a modifier for basic terms in linguistic values e.g. words such as very, a bit, rather, somewhat, etc.

Fuzzy Set

Examples Fuzzy Set
If cold is a fuzzy set, exact temperature values might be mapped to the fuzzy set as follows:

- 15 degrees $\rightarrow 0.2$ (slightly cold)
- 10 degrees $\rightarrow 0.5$ (quite cold)
- 0 degrees $\rightarrow 1$ (extremely cold)

Membership Function

If X is a universe of discourse and $x \varepsilon X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is $A=\left\{\left(x, \mu_{A}(x)\right) \mid x \varepsilon X\right\}$ where, $\mu_{A}(x)$ is called the membership function for the fuzzy set A.

Note: $\mu_{\mathrm{A}}(\mathrm{x})$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Membership Function

A fuzzy set is completely characterized by its membership function. So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

Note: A membership function can be on (a) a discrete universe of discourse and (b) a continuous universe of discourse.

Membership Function

Note: A membership function can be on
(a) a discrete universe of discourse and
(b) a continuous universe of discourse.

Membership Function

Singleton MF

$$
\mu(x)= \begin{cases}1, & x=c \\ 0, & \text { otherwise }\end{cases}
$$

Membership Function

Rectangular MF

$$
\mu(x)= \begin{cases}1, & l \leq x \leq r \\ 0, & \text { otherwise }\end{cases}
$$

Membership Function

Triangular MF

$$
\text { triangle }(x ; a, b, c)= \begin{cases}0 & \text { if } x \leq a \\ \frac{x-a}{b-a} & \text { if } a \leq x \leq b \\ \frac{c-x}{c-b} & \text { if } b \leq x \leq c \\ 0 & \text { if } c \leq x\end{cases}
$$

Membership Function

Trapeziodal MF

Membership Function

Gaussian MF

$$
\text { gaussian }(\mathrm{x} ; \mathrm{c}, \sigma)=e^{-\frac{1}{2}\left(\frac{x-\varepsilon}{\sigma}\right)^{2}} .
$$

Membership Function

Bell (Cauchy) MF

$$
\operatorname{bell}(x ; a, b, c)=\frac{1}{1+\left|\frac{x-c}{a}\right|^{2 b}}
$$

Membership Function

Sigmoidal MF

$$
\text { Sigmoid }(\mathrm{x} ; \mathrm{a}, \mathrm{c})=\frac{1}{1+e^{\left.-\frac{-}{x-c}\right]}}
$$

Example

Course Grading (Crisp)

Example

Course Grading (Fuzzy)

Operations on Fuzzy Sets

Union $(A \cup B)$:

$$
\mu_{A \cup B}(x)=\max \left\{\mu_{A}(x), \mu_{B}(x)\right\}
$$

Example:

$$
\begin{aligned}
& A=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 0.1\right),\left(x_{3}, 0.4\right)\right\} \text { and } \\
& B=\left\{\left(x_{1}, 0.2\right),\left(x_{2}, 0.3\right),\left(x_{3}, 0.5\right)\right\} ; \\
& C=A \cup B=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 0.3\right),\left(x_{3}, 0.5\right)\right\}
\end{aligned}
$$

Operations on Fuzzy Sets

Intersection $(A \cap B)$:

$$
\mu_{A \cap B}(x)=\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}
$$

Example:

$$
\begin{aligned}
& A=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 0.1\right),\left(x_{3}, 0.4\right)\right\} \text { and } \\
& B=\left\{\left(x_{1}, 0.2\right),\left(x_{2}, 0.3\right),\left(x_{3}, 0.5\right)\right\} ; \\
& C=A \cap B=\left\{\left(x_{1}, 0.2\right),\left(x_{2}, 0.1\right),\left(x_{3}, 0.4\right)\right\}
\end{aligned}
$$

Operations on Fuzzy Sets

Complement (A^{C}):

$$
\mu_{A_{A C}}(x)=1-\mu_{A}(x)
$$

Example:

$$
\begin{aligned}
& A=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 0.1\right),\left(x_{3}, 0.4\right)\right\} \\
& C=A^{C}=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 0.9\right),\left(x_{3}, 0.6\right)\right\}
\end{aligned}
$$

Properties

Commutativity :
$A \cup B=B \cup A$
$A \cap B=B \cap A$

Associativity :

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

Distributivity :

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Properties

Idempotence:

$$
\begin{aligned}
& A \cup A=A \\
& A \cap A=A \\
& A \cup \emptyset=A \\
& A \cap \emptyset=\emptyset
\end{aligned}
$$

Transitivity :

$$
\text { If } A \subseteq B, B \subseteq C \text { then } A \subseteq C
$$

Involution :

$$
\left(A^{c}\right)^{c}=A
$$

De Morgan's law :

$$
\begin{aligned}
& (A \cap B)^{c}=A^{c} \cup B^{c} \\
& (A \cup B)^{c}=A^{c} \cap B^{c}
\end{aligned}
$$

Operations on Fuzzy Sets

Example

Let A and B are two fuzzy sets defined over a universe of discourse X with membership functions $\mu_{A}(x)$ and $\mu_{B}(x)$, respectively. Two MFs $\mu_{A}(x)$ and $\mu_{B}(x)$ are shown graphically.

Operations on Fuzzy Sets

Example

Operations on Fuzzy Sets

Example

Fuzzy vs Probability

Fuzzy : When we say about certainty of a thing Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed. Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur Example: India will win the T20 tournament with a chance 60\% means that out of 100 matches, India own 60 matches.

Fuzzy System

Operations on Fuzzy Sets

Exercise

Consider the following two fuzzy sets A and B defined over a universe of discourse $[0,5]$ of real numbers with their membership functions

$$
\mu_{A}(x)=\frac{x}{1+x} \text { and } \mu_{B}(x)=2^{-x}
$$

$A \cup B$
. $A \cap B$

