
SWARM INTELLIGENCE - II

Today’s Lecture

� Recap

� Particle Swarm Optimization

� History

� Continuous PSO� Continuous PSO

� Variants

� Binary PSO

Swarm Intelligence

� Any attempt to design algorithms or distributed

problem solving devices inspired by the collective

behaviour of social insect colonies and other

animal societies

(Bonabeau et al., 1999)

Swarm Intelligence Algorithms

� Ant Colony Optimization

� Particle Swarm Optimization

� Stochastic Diffusion Search

� The Bees Algorithm� The Bees Algorithm

ACO Demo

� ACO Demonstration - Christian Borgelt

� http://www.borgelt.net/acopt.html

Particle Swarm Optimization

History

Separation: steer to avoid crowding local
flockmates

In 1986 Reynolds created model of coordinated animal motion

in which the agents (named boids) obeyed three simple local

rules which lead to surprisingly realistic behaviour:

flockmates

Alignment: steer towards the average
heading of local flockmates

Cohesion: steer to move toward the
average position of local flockmates

http://www.red3d.com/cwr/boids/

DEMO: Boids

� http://www.vergenet.net/~conrad/boids/

� http://www.siggraph.org/education/materials/Hyp

erGraph/animation/art_life/video/3cr.mov

History

� Heppner included a ‘roost’ (cornfield) that the

birds flocked around before landing there.

� Birds are attracted to a focal point, or roost; the

closer they get to it, the stronger the attraction.

� Birds are attracted to each other, but become � Birds are attracted to each other, but become

repelled if they get too close.

� Birds want to maintain a fixed velocity.

� Flight paths can be altered by random inputs such

as wind gusts, rainfall, appearance of a predator.

� Grenander translated Heppner's rules into a

mathematical language

Particle Swarm Optimization

� Use this to optimize continuous functions

Hypothesis: Individuals profit from the discoveries and previous

experience of all other members of the swarm

Hypothesis: Individuals profit from the discoveries and previous

experience of all other members of the swarm

Particle Swarm Optimization

� Developed by Russell Eberhart and James Kennedy in 1995

� “particle swarm algorithm imitates human (or insects) social

behaviour. Individuals interact with one another while

learning from their own experience, and gradually the learning from their own experience, and gradually the

population members move into better regions of the problem

space”.

Kennedy and Eberhart

The Optimization Problem

In general, any optimization problem P can be described as a

triple (S,Ω, f), where

1. S is the search space defined over a finite set of decision

variables Xi, i = 1, . . . , D. Ω is a set of constraints among the

variables;variables;

2. is the objective function that assigns a positive

cost value to each element (or solution) of S.

Goal is to find a solution s’ ∈ S such that f(s’) ≤ f(s), ∀ s ∈ S (in

case we want to minimize the objective function), or f(s’) ≥

f(s), ∀ s ∈ S (in case the objective function must be

maximized).

nSf ℜ→:

The Original PSO

� Each individual in the particle swarm is composed of three D-

dimensional vectors, where D is the dimensionality of the

search space. These are

� the current position xi - a solution

� the previous personal best position pi, and � the previous personal best position pi, and

� the velocity vi .

� New positions are chosen by adding vi to the coordinates xi

which can be seen as a step size

� For each individual, the fitness value of the previous personal

best position is stored in a variable that can be called pbesti

(for previous best)

Original PSO: Maximization

Randomly generate an initial swarm

repeat

for each particle i do

if f(xi) > f(pi) then pi = xi and pbesti = f(xi);

pbesti

pg = max(pneighbours);

UpdateVelocity;

UpdatePosition;

end for

until termination criterion is met

Original PSO

� Velocity Update & Position Update

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

xi = xi + vi

⊗ ⊗

xi = xi + vi

� ⊗ - pointwise vector multiplication

� ϕ1 = c1r1 and ϕ2 = c2r2 where

� r1 and r2 are two vectors of random numbers uniformly chosen

from [0, 1];

� c1 and c2 are acceleration coefficients

The Velocity

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

momentum
Cognitive

component

Social

component

⊗ ⊗

� Three components of velocity (rate of change)

� Momentum - previous velocity term to carry the particle in the

direction it has travelled so far

� Cognitive Component - tendency of the particle to return to the best

position it has visited so far

� Social component - tendency of the particle to be attracted towards

the position of the best position found by the entire swarm.

The Acceleration Coefficients

� c1 and c2 determine the magnitude of the random forces in the

directions of pi and pg

� The behaviour of the PSO can change drastically with c1 and c2.

� The system can become more or less responsive or even unstable.

Acceleration Coefficients

� Higher acceleration coefficients result in less stable systems in which the

velocity has a tendency to explode

� To fix this, the velocity vi is usually kept within the range [-vmax, vmax]

� The optimal value of vmax is problem specific and no reasonable rule of

thumb is available

� Moreover, limiting the velocity does not necessarily prevent particles

from leaving the search space, nor does it help to guarantee convergence

Acceleration Coefficients

� c1>0, c2=0 particles are independent hill-climbers

� c1=0, c2>0 swarm is one stochastic hill-climber

� c1=c2>0 particles are attracted to the average

� c2>c1 more beneficial for unimodal problems

� c1>c2 more beneficial for multimodal problems

� low c1, c2 smooth particle trajectories

� high c1, c2 more acceleration, abrupt movements

� Adaptive acceleration coefficients have also been proposed.

For example to have c1 and c2 decreased over time

vi = vi + c1r1 ⊗ (pi − xi) + c2r2 ⊗ (pg − xi)

Neighbourhood

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

Social

component

� Position pg in the “social” part is the best position found by

particles in the neighborhood of the ith particle.

� How is this neighbourhood defined?

Geographical Neighbourhood

� Based on Euclidean proximity in the search space

� Close to the real-world paradigm but computationally

expensive

Communication Topologies

� A PSO implementation

that chooses pg from

within a restricted local

neighborhood is

referred to as lbest PSOreferred to as lbest PSO

� Choosing pg without

any restriction (hence

from the entire swarm)

results in a gbest PSO.

Inertia Weight

� In order to better control search Shi and Eberhart proposed

vi = ω vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

Inertia Weight

� If ω, ϕ1 and ϕ2 are set correctly, this update rule allows for

convergence without the use of vmax

� ω ≥1: velocities increase over time, swarm diverges

� 0 < ω < 1: particles decelerate, convergence depends on ϕ1 and ϕ2ϕ1 ϕ2

� ω < 0: velocities decrease over time and the swarm convergences

� Studies show that setting ω = 0.7298 and ϕϕϕϕ1= ϕϕϕϕ2=1.49618

provides good convergence behavior

� If we interpret ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi) as

external force fi then the change in the particle’s velocity

∆∆∆∆vi = fi - (1 - ω) vi Friction coefficient

Constriction PSO

� Clerc and Kennedy (2000) suggested a general PSO, where a

constriction coefficient is applied to the velocity formula.

vi = χχχχ [vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)]

� If ϕϕϕϕ ≥≥≥≥ 4 and k is in [0,1], then the swarm is guaranteed to converge.

k controls the balance between exploration and exploitation.

� Typically, k is set to 1, and c1=c2=2.05; and the constriction

coefficient χχχχ is 0.7298

� Also limit Vmax to Xmax, the dynamic range of each variable on each

dimension. This gives the Canonical PSO

Fully Informed Particle Swarm

� In the standard version of PSO, the effective

sources of influence are in fact only two: self and

best neighbor.

� Information from the remaining neighbors is � Information from the remaining neighbors is

unused.

� In Mendes’ fully informed particle swarm (FIPS),

the particle is affected by all its neighbors

PSO Variants

� Tribes – An adaptive PSO version where swarm size is determined

by strategies for generating new particles as well as removing

poorly performing ones.

� ARPSO – The Attractive-Repuslive PSO uses a diversity measure

� Dissipative PSO – increases randomness;� Dissipative PSO – increases randomness;

� PSO with self-organized criticality – aims to improve diversity;

� Self-organizing Hierachicl PSO;

� FDR-PSO – The Fitness-distance ratio PSO encourages interactions

between particles that are both fit and close to each other;

� PSO with mutation

� DEPSO – aims to combine DE with PSO;

� CLPSO – incorporate learning from more previous best particles.

PSO Demo

� PSO Demonstration - Christian Borgelt

� http://www.borgelt.net/psopt.html

29

Binary PSO

� Each solution in the population is a binary string.

� Each binary string is of dimension n which is evaluated to give

parameter values.

� Each binary string represents a particle

� Strings are updated bit-by-bit� Strings are updated bit-by-bit

30

BPSO

� In regular (real valued) PSO, everything is in terms

of a velocity.

� In BPSO, how does one define a velocity for a

single bit?single bit?

� Generally the velocity is defined in terms of a

probability of the bit changing

31

� In BPSO, bit-by-bit updates are done
probabilistically

� For a chosen bit (d) in a chosen string (i) it is changed to a 1
with a probability (P) that is a function of

� its predisposition to be a 1,

BPSO

� its predisposition to be a 1,

� the best value of itself to date, and

� the best value of its neighbors.

� 1-P is the probability of changing to a 0

� Once P is determined, we generate a random number R,
and if R < P, then the bit becomes a 1; otherwise it
becomes a 0

32

BPSO

� The formula for an individual bit’s update is:

),),1(),(()1)((gdidididid pptvtxftxP −==

� The function P is a probability, and thus once this value is

computed for a given particle bit, we must generate a uniform

random number to see whether it should be a 1 or a 0

33

BPSO

current sstring' theof measure a is)1(

dbit at i string of statecurrent theis (t) x

bitstring in the site d at thebit for the 1 choose willi

invididualan y that probabilit theis)1)((

id

th

−•
•

=•

tv

txP id

date oneighbor tbest in the is d

bit of valueeon what th depending 0or 1 is p

0 aor 1 a i.e. i, individual of d

bit for date) (tofar so found statebest theis p

1 a choose y toprobabilit

current sstring' theof measure a is)1(

gd

id

•

•

−• tvid

34

BPSO

� What is f() ?

� There are several measures or expressions used for f,

one that is commonly used is the sigmoid function

))1()(())1()(()1()(
1

1
))(f(v

21

)(id

−−+−−+−=
+

= −

txptxptvtv
e

t

idgdidididid

tvid

ϕϕ

35

BPSO Example

� As an example, let’s say that we are dealing with a

population of 5 bit binary particles and a population

of 4 particles

10101

01011

11100

01101

� We are updating particle 2 (01011), bit 3 (0)

36

BPSO Example

� We assume that the current velocity of this bit to

be a 1 is 0.25.

� Assume that the best value of this particle (to

date) was 00100date) was 00100

� And the best value of the whole population (to

date) was 01111

37

BPSO Example

� Thus we have:

1p 1p

0)1(x 0.25)1(

g323

2323

==
=−=− ttv

7.1 5.2 21 == ϕϕ

988.0
1

1
))((

45.4)01)(7.1()01)(5.2(25.0)(

))1()(())1()(()1()(

45.423

23

21

=
+

=

=−+−+=

−−+−−+−=

−e
tvf

tv

txptxptvtv idgdidididid ϕϕ

38

BPSO Example

� Now, with the value for f, we generate a random

number, and if it is < f then bit x becomes a 1

otherwise, it becomes a 0.

39

BPSO

� Initializations

� Initial population (particle) values – just randomly generate

binary strings

� Initial velocities can be generated as

[0,1)on distributi

 uniform a fromchosen number random a is rand() where

()*)()0(minmaxmin randVVVvid −+=

The End

