
SWARM INTELLIGENCE - II



Today’s Lecture

� Recap

� Particle Swarm Optimization

� History

� Continuous PSO� Continuous PSO

� Variants

� Binary PSO



Swarm Intelligence

� Any attempt to design algorithms or distributed 

problem solving devices inspired by the collective 

behaviour of social insect colonies and other 

animal societies

(Bonabeau et al., 1999)



Swarm Intelligence Algorithms

� Ant Colony Optimization

� Particle Swarm Optimization

� Stochastic Diffusion Search

� The Bees Algorithm� The Bees Algorithm



ACO Demo

� ACO Demonstration - Christian Borgelt

� http://www.borgelt.net/acopt.html



Particle Swarm Optimization



History

Separation: steer to avoid crowding local 
flockmates

In 1986 Reynolds created model of coordinated animal motion 

in which the agents (named boids) obeyed three simple local 

rules which lead to surprisingly realistic behaviour:

flockmates

Alignment: steer towards the average 
heading of local flockmates

Cohesion: steer to move toward the 
average position of local flockmates

http://www.red3d.com/cwr/boids/



DEMO: Boids

� http://www.vergenet.net/~conrad/boids/

� http://www.siggraph.org/education/materials/Hyp

erGraph/animation/art_life/video/3cr.mov



History

� Heppner included a ‘roost’ (cornfield) that the 

birds flocked around before landing there.

� Birds are attracted to a focal point, or roost; the 

closer they get to it, the stronger the attraction. 

� Birds are attracted to each other, but become � Birds are attracted to each other, but become 

repelled if they get too close. 

� Birds want to maintain a fixed velocity. 

� Flight paths can be altered by random inputs such 

as wind gusts, rainfall, appearance of a predator.

� Grenander translated Heppner's rules into a 

mathematical language 



Particle Swarm Optimization

� Use this to optimize continuous functions

Hypothesis: Individuals profit from the discoveries and previous

experience of all other members of the swarm 

Hypothesis: Individuals profit from the discoveries and previous

experience of all other members of the swarm 



Particle Swarm Optimization

� Developed by Russell Eberhart and James Kennedy in 1995

� “particle swarm algorithm imitates human (or insects) social 

behaviour. Individuals interact with one another while 

learning from their own experience, and gradually the learning from their own experience, and gradually the 

population members move into better regions of the problem 

space”.

Kennedy and Eberhart



The Optimization Problem

In general, any optimization problem P can be described as a 

triple (S,Ω, f), where

1. S is the search space defined over a finite set of decision 

variables Xi, i = 1, . . . , D. Ω is a set of constraints among the 

variables;variables;

2. is the objective function that assigns a positive 

cost value to each element (or solution) of S.

Goal is to find a solution s’ ∈ S such that f(s’) ≤ f(s), ∀ s ∈ S (in 

case we want to minimize the objective function), or f(s’) ≥ 

f(s), ∀ s ∈ S (in case the objective function must be 

maximized). 

nSf ℜ→:



The Original PSO

� Each individual in the particle swarm is composed of three D-

dimensional vectors, where D is the dimensionality of the 

search space. These are 

� the current position xi - a solution 

� the previous personal best position  pi, and � the previous personal best position  pi, and 

� the velocity vi .

� New positions are chosen by adding vi to the coordinates xi 

which can be seen as a step size

� For each individual, the fitness value of the previous personal 

best position is stored in a variable that can be called pbesti

(for previous best)



Original PSO: Maximization

Randomly generate an initial swarm

repeat

for each particle i do

if f(xi) > f(pi) then pi = xi and pbesti =  f(xi);

pbesti

pg = max(pneighbours);

UpdateVelocity;

UpdatePosition;

end for

until termination criterion is met



Original PSO

� Velocity Update & Position Update

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

xi = xi + vi

⊗ ⊗

xi = xi + vi

� ⊗ - pointwise vector multiplication

� ϕ1 = c1r1 and ϕ2 = c2r2 where

� r1 and r2 are two vectors of random numbers uniformly chosen 

from [0, 1];

� c1 and c2 are acceleration coefficients



The Velocity

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

momentum
Cognitive

component

Social

component

⊗ ⊗

� Three components of velocity (rate of change)

� Momentum - previous velocity term to carry the particle in the 

direction it has travelled so far

� Cognitive Component - tendency of the particle to return to the best 

position it has visited so far 

� Social component - tendency of the particle to be attracted towards 

the position of the best position found by the entire swarm.



The Acceleration Coefficients

� c1 and c2 determine the magnitude of the random forces in the 

directions of pi and pg

� The behaviour of the PSO can change drastically with c1 and c2. 

� The system can become more or less responsive or even unstable. 



Acceleration Coefficients

� Higher acceleration coefficients result in less stable systems in which the 

velocity has a tendency to explode

� To fix this, the velocity vi is usually kept within the range  [-vmax, vmax]

� The optimal value of vmax is problem specific and no reasonable rule of 

thumb is available

� Moreover, limiting the velocity does not necessarily prevent particles 

from leaving the search space, nor does it help to guarantee convergence



Acceleration Coefficients

� c1>0, c2=0 particles are independent hill-climbers

� c1=0, c2>0 swarm is one stochastic hill-climber

� c1=c2>0 particles are attracted to the average 

� c2>c1 more beneficial for unimodal problems

� c1>c2 more beneficial for multimodal problems

� low c1, c2 smooth particle trajectories

� high c1, c2 more acceleration, abrupt movements

� Adaptive acceleration coefficients have also been proposed. 

For example to have c1 and c2 decreased over time

vi = vi + c1r1 ⊗ (pi − xi) + c2r2 ⊗ (pg − xi)



Neighbourhood

vi = vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)

Social

component

� Position pg in the “social” part is the best position found by 

particles in the neighborhood of the ith particle. 

� How is this neighbourhood defined?



Geographical Neighbourhood

� Based on Euclidean proximity in the search space

� Close to the real-world paradigm but computationally 

expensive



Communication Topologies

� A PSO implementation 

that chooses pg from 

within a restricted local 

neighborhood is 

referred to as lbest PSOreferred to as lbest PSO

� Choosing pg without 

any restriction (hence 

from the entire swarm) 

results in a gbest PSO.



Inertia Weight

� In order to better control search Shi and Eberhart proposed

vi = ω vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)



Inertia Weight

� If ω, ϕ1 and ϕ2 are set correctly, this update rule allows for 

convergence without the use of vmax

� ω ≥1: velocities increase over time, swarm diverges

� 0 < ω < 1: particles decelerate, convergence depends on ϕ1 and ϕ2ϕ1 ϕ2

� ω < 0: velocities decrease over time and the swarm convergences

� Studies show that setting ω = 0.7298 and ϕϕϕϕ1= ϕϕϕϕ2=1.49618 

provides good convergence behavior

� If we interpret ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi) as 

external force fi then the change in the particle’s velocity

∆∆∆∆vi =  fi - (1 - ω) vi Friction coefficient



Constriction PSO

� Clerc and Kennedy (2000) suggested a general PSO, where a 

constriction coefficient is applied to the velocity formula.

vi = χχχχ [vi + ϕϕϕϕ1 ⊗ (pi − xi) + ϕϕϕϕ2 ⊗ (pg − xi)]

� If ϕϕϕϕ ≥≥≥≥ 4 and k is in [0,1], then the swarm is guaranteed to converge. 

k controls the balance between exploration and exploitation.

� Typically, k is set to 1, and c1=c2=2.05; and the constriction 

coefficient χχχχ is 0.7298

� Also limit Vmax to Xmax, the dynamic range of each variable on each 

dimension. This gives the Canonical PSO



Fully Informed Particle Swarm

� In the standard version of PSO, the effective 

sources of influence are in fact only two: self and 

best neighbor. 

� Information from the remaining neighbors is � Information from the remaining neighbors is 

unused. 

� In Mendes’ fully informed particle swarm (FIPS), 

the particle is affected by all its neighbors



PSO Variants

� Tribes – An adaptive PSO version where swarm size is determined 

by strategies for generating new particles as well as removing 

poorly performing ones.

� ARPSO – The Attractive-Repuslive PSO uses a diversity measure

� Dissipative PSO – increases randomness;� Dissipative PSO – increases randomness;

� PSO with self-organized criticality – aims to improve diversity;

� Self-organizing Hierachicl PSO;

� FDR-PSO – The Fitness-distance ratio PSO encourages interactions 

between particles that are both fit and close to each other;

� PSO with mutation

� DEPSO – aims to combine DE with PSO;

� CLPSO – incorporate learning from more previous best particles.



PSO Demo

� PSO Demonstration - Christian Borgelt

� http://www.borgelt.net/psopt.html
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Binary PSO

� Each solution in the population is a binary string.

� Each binary string is of dimension n which is evaluated to give 

parameter values.

� Each binary string represents a particle

� Strings are updated bit-by-bit� Strings are updated bit-by-bit
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BPSO

� In regular (real valued) PSO, everything is in terms 

of a velocity. 

� In BPSO, how does one define a velocity for a 

single bit?single bit?

� Generally the velocity is defined in terms of a 

probability of the bit changing 
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� In BPSO, bit-by-bit updates are done 
probabilistically

� For a chosen bit (d) in a chosen string (i) it is changed to a 1 
with a probability (P) that is a function of 

� its predisposition to be a 1, 

BPSO

� its predisposition to be a 1, 

� the best value of itself to date, and

� the best value of its neighbors.

� 1-P is the probability of changing to a 0

� Once P is determined, we generate a random number R, 
and if R < P, then the bit becomes a 1; otherwise it 
becomes a 0
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BPSO

� The formula for an individual bit’s update is:

),),1(),(()1)(( gdidididid pptvtxftxP −==

� The function P is a probability, and thus once this value is 

computed for a given particle bit, we must generate a uniform 

random number to see whether it should be a 1 or a 0
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BPSO
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BPSO

� What is f() ?

� There are several measures or expressions used for f, 

one that is commonly used is the sigmoid function
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BPSO Example

� As an example, let’s say that we are dealing with a 

population of 5 bit binary particles and a population 

of 4 particles

10101

01011

11100

01101

� We are updating particle 2 (01011), bit 3 (0)
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BPSO Example

� We assume that the current velocity of this bit to 

be a 1 is 0.25. 

� Assume that the best value of this particle (to 

date) was 00100date) was 00100

� And the best value of the whole population (to 

date) was 01111



37

BPSO Example

� Thus we have:
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BPSO Example

� Now, with the value for f, we generate a random 

number, and if it is < f then bit x becomes a 1 

otherwise, it becomes a 0.
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BPSO

� Initializations

� Initial population (particle) values – just randomly generate 

binary strings

� Initial velocities can be generated as

[0,1)on distributi

 uniform a fromchosen number  random a is rand() where

()*)()0( minmaxmin randVVVvid −+=



The End


