SWARM INTELLIGENCE - I

Swarm Intelligence

\square Any attempt to design algorithms or distributed problem solving devices inspired by the collective behaviour of social insect colonies and other animal societies
(Bonabeau et al., 1999)

Why Imitate Swarms?

\square Emergent, collective intelligence of groups of simple agents.

Harmonious Flight
The ability of animal groups-such as this flock of starlings-to shift shape as one, even when they have no leader, reflects the genius of collective behavior.

Swarm Intelligence in Nature

\square Two categories
\square Species whose individuals form a swarm because they benefit in some way and
\square Social insects - which live in colonies whose members cannot survive on their own.

Interesting Characteristics of Social Colonies

\square Flexible: the colony can respond to internal perturbations and external challenges
\square Robust: Tasks are completed even if some individuals fail
\square Decentralized: there is no central control in the colony
\square Self-organized: paths to solutions are emergent rather than predefined

Emergent Behaviour

Emergence is the way complex systems and patterns arise out of a multiplicity of relatively simple interactions.

Interactions

\square Self-organization in social insects often requires interactions among insects.
\square Interactions

- Direct
- Indirect
- Stigmergy

Stigmergy

- Stigmergy is a method of indirect communication in a selforganizing emergent system where its individual parts communicate with one another by modifying their local environment.
\square The two main characteristics of stigmergy that differentiate it from other forms of communication are the following.
- Stigmergy is an indirect, non-symbolic form of communication mediated by the environment: insects exchange information by modifying their environment; and
- Stigmergic information is local: it can only be accessed by those insects that visit the locus in which it was released (or its immediate neighborhood).

Stigmergy

\square Stigmergy was first observed in social insects.
\square Ants:

- Ants exchange information by laying down pheromones on their way back to the nest when they have found food.
- In that way, they collectively develop a complex network of trails, connecting the nest in the most efficient way to the different food sources.

Real Ants

http://en.wikipedia.org/wiki/Ant_colony_optimization

StarLogo Demo: Ants

StarLogo is
developed at Media
Laboratory and
Teacher
Education
Program, MIT, Cambridge, Massachusetts.
\square A programmable modeling environment for exploring the workings of decentralized systems -- systems that are organized without an organizer, coordinated without a coordinator.
\square With StarLogo, you can model many real-life phenomena, such as bird flocks, traffic jams, ant colonies, and market economies.
\square Designed to help students (as well as researchers) develop new ways of thinking about and understanding decentralized systems.
\square StarLogo is an extension of the Logo programming language.

Sigmergy in General

\square Stigmergy is not restricted to eusocial creatures, or even to physical systems.
\square On the Internet there are many emergent phenomena that arise from users interacting only by modifying local parts of their shared virtual environment.

- Wikipedia is an example of this.
- The massive structure of information available in a wiki, or an open source software project such as the Linux kernel could be compared to a termite nest
- one initial user leaves a seed of an idea (a mudball) which attracts other users who then build upon and modify this initial concept, eventually constructing an elaborate structure of connected thoughts.

Ant Colony Optimization (ACO)

ACO - Inspiration

\square The inspiring source of ACO is the pheromone trail laying by real ants.
\square The pheromone trails in ACO serve as a distributed, numerical information which the ants use to probabilistically construct solutions to the problem being solved and which the ants adapt during the algorithm's execution to reflect their search experience

Towards an ACO Algorithm

\square Assume, to begin with, all ants are in the nest. There is no pheromone in the environment.
\square The foraging starts. In probability, 50% of the ants take the short path and 50\% take the long path to the food source

Towards an ACO Algorithm

\square The ants that have taken the short path have arrived earlier at the food source. Therefore, while returning, the probability that they will take the shorter path is higher.
\square The pheromone trail on the short path receives, in probability, a

1

2

3 stronger reinforcement and the probability of taking this path grows. Finally due to evaporation of the pheromone on the long path, the whole colony will, in probability, use the shorter path

Towards an ACO Algorithm

$\square I_{2}>I_{1}$
\square Real ants deposit pheromone on the paths on which they move.
\square We introduce an artificial pheromone value τ_{i} for each of the two links $e_{i}, i=1,2$.
\square This indicates the strength of the pheromone trail on the corresponding path.

\square Introduce n_{a} artificial ants.

Towards an ACO Algorithm

\square Each ant behaves as follows:

Starting from $v_{s^{\prime}}$, an ant chooses with probability

$$
\mathbf{p}_{i}=\frac{\tau_{i}}{\tau_{1}+\tau_{2}} \quad, i=1,2
$$

between path e1 and path e2 for reaching the food source v_{d}.
\square For returning from v_{d} to v_{s}, an ant uses the same path as it chose to reach v_{d}, and it changes the artificial pheromone value associated with the used edge.

$$
\tau_{i} \leftarrow \tau_{i}+\frac{Q}{l_{i}}
$$

where the positive constant Q is a parameter of the model.

Towards an ACO Algorithm

\square In nature the deposited pheromone
 is subject to an evaporation over time. This is simulated as

$$
\tau_{i} \leftarrow(1-\rho) \cdot \tau_{i} \quad, i=1,2
$$

The parameter $\rho \in(0,1]$ is a parameter that regulates the pheromone evaporation.
\square The foraging of an ant colony is in this model iteratively simulated as follows:

- At each step (or iteration) all the ants are initially placed in node v_{s}.
- Then, each ant moves from v_{s} to v_{d} choosing a path with probability.
- Pheromone evaporation is performed
- Finally, all ants conduct their return trip and reinforce their chosen path.

A Simulation

$\square I_{1}=1, I_{2}=2, Q=1$.

\square The two pheromone values were initialized to 0.5

(a) Colony size: 10 ants

(b) Colony size: 100 ants

Results of 100 independent runs (error bars show the standard deviation for each 5th iteration).

Combinatorial Optimization Problem

A model $P=(\mathbf{S}, \Omega, f)$ of a combinatorial optimization problem consists of:
\square a search space \mathbf{S} defined over a finite set of discrete decision variables $X_{i}, i=1, \ldots, n$;

- a set Ω of constraints among the variables; and
\square an objective function $f: \mathbf{S} \rightarrow \mathbb{R}_{0}^{+}$to be minimized.
The generic variable X_{i} takes values in $\mathbf{D}_{i}=\left\{v_{i}^{1}, \ldots, v_{i}^{\left|\mathbf{D}_{i}\right|}\right\}$. A feasible solution $s \in \mathbf{S}$ is a complete assignment of values to variables that satisfies all constraints in Ω. A solution $s^{*} \in \mathbf{S}$ is called a global optimum if and only if: $f\left(s^{*}\right) \leq f(s) \forall s \in \mathbf{S}$.

The Travelling Salesman Problem

\square Given a completely connected, undirected graph $G=(V, E)$ with edge weights.

- Vertices V represent the cities, and
- edge weights represent the distances between the cities.
\square Goal: find a closed path in G that contains each node exactly once (a tour) and whose length is minimal.
\square Search space S consists of all tours in G. The objective function value $f(s)$ of a tour s
 $\in S$ is defined as the sum of the edge weights of the edges that are in s.

Solution vs Solution Components

\square Solution

- A complete tour
\square Solution Components
- The edges of the TSP graph

Heuristic Search

\square Construction Algorithms
\square Local Search
\square Population Based

Construction Algorithms

Procedure GreedyConstructionHeuristic
$s_{p}=$ emptySolution;
while s_{p} not a complete solution do
$e=$ GreedyComponent();
$s_{p}=s_{p} \otimes e ;$
end
return s_{p};
end

Construction Algorithms and TSP

\square Nearest Neighbour Tour
Build a tour to start from some initial city and always choose to go to the closest still unvisited city before returning to the start city.

Local Search

Procedure IterativeImprovement ($s \in S$)

$s^{\prime}=$ Improve(s);
while $s^{\prime} \neq s$ do

$$
\begin{aligned}
& s=s^{\prime} ; \\
& \left.s^{\prime}=\text { Improve(} s\right) ;
\end{aligned}
$$

end

return s;

end

Local Search and TSP

\square Need: a neighborhood examination scheme that defines how the neighborhood is searched and which neighbour solution replaces the current one

ACO: A Construction Algorithm

\square Artificial ants used in ACO are stochastic solution construction procedures that probabilistically build a solution by iteratively adding solution components to partial solutions by taking into account

- heuristic information on the problem instance being solved, if available, and
- (artificial) pheromone trails which change dynamically at run-time to reflect the agents' acquired search experience.

Some Successful ACO Algorithms

ALGORITHM

ANT SYSTEM (AS)
ELITIST AS
ANT-Q
ANT COLONY SYSTEM
MAX $-\mathcal{M I N}$ AS
RANK-BASED AS
ANTS
BWAS
HYPER-CUBE AS

AUTHORS

DORIGO ET AL.
DORIGO ET AL.
GAMBARDELLA \& DORIGO
DORIGO \& GAMBARDELLA
STÜTZLE \& HOOS
BULLNHEIMER ET AL.
MANIEZZO
CORDON ET AL.
BLUM ET AL.

The ACO Metaheuristic

Combinatorial Optimization Problem

A model $P=(\mathbf{S}, \Omega, f)$ of a combinatorial optimization problem consists of:
\square a search space \mathbf{S} defined over a finite set of discrete decision variables $X_{i}, i=1, \ldots, n$;

- a set Ω of constraints among the variables; and
\square an objective function $f: \mathbf{S} \rightarrow \mathbb{R}_{0}^{+}$to be minimized.
The generic variable X_{i} takes values in $\mathbf{D}_{i}=\left\{v_{i}^{1}, \ldots, v_{i}^{\left|\mathbf{D}_{i}\right|}\right\}$. A feasible solution $s \in \mathbf{S}$ is a complete assignment of values to variables that satisfies all constraints in Ω. A solution $s^{*} \in \mathbf{S}$ is called a global optimum if and only if: $f\left(s^{*}\right) \leq f(s) \forall s \in \mathbf{S}$.

Pheromone Model

\square The model of a combinatorial optimization problem is used to define the pheromone model of ACO.
\square A value that can be assigned to a decision variable is a solution component.
\square Let C be the set of all possible solution components.
\square A pheromone value is associated with each possible solution component.
\square Formally, the pheromone value $\tau_{i j}$ is associated with the solution component $c_{i j}$, which consists of the assignment $X_{i}=v_{i}^{j}$.

Problem Representation

\square In ACO, an artificial ant builds a solution by traversing the fully connected construction graph $G_{C}(V, E)$
$\square \mathrm{V}$ is a set of vertices and
$\square \mathrm{E}$ is a set of edges.
\square This graph can be obtained from the set of solution components \mathbf{C} in two ways:

- Components may be represented either by vertices or by edges.

Ant Behaviour

\square An artificial ant moves from vertex to vertex along the edges of the graph, incrementally building a partial solution.
\square Additionally, the ant deposits a certain amount of pheromone on the components; that is, either on the vertices or on the edges that it traverses.
\square The amount τ of pheromone deposited may depend on the quality of the solution found.
\square Subsequent ants use the pheromone information as a guide toward promising regions of the search space.

TSP

\square In the TSP, a solution can be represented through a set of n variables, where n is the number of cities.
\square Each of these variables is associated with a city.
\square The variable X_{i} indicates the city to be visited after city i.
\square Solution components are pairs of cities to be visited one after the other, in the given order

- The solution component $c_{i j}=(i, j)$ indicates that the solution under analysis prescribes that city j should be visited immediately after city i.

TSP

\square The construction graph is a graph in which the vertices are the cities of the original traveling salesman problem, and the edges are solution components.
\square As a consequence, ants deposit pheromone on the edges of the construction graph.

TSP

\square

,

Components associated with edges
Components associated with vertices

The ACO Metaheuristic

The ACO Metaheuristic

Set parameters, initialize pheromone trails while termination condition not met do

ProbabilisticSolution Construction
ApplyLocalSearch (optional)
PheromoneValueUpdate

endwhile

```
Each ant has a memory that it uses to store information
about the path it has followed so far. Memory can be used
for:
-Building feasible solutions
-Evaluating the solution found
\bulletRetracing the path backward to deposit pheromone.
```

nd before
o improve the local search. This
s optional
the-art ACO

The Ant System (AS) and TSP

\square The First ACO proposed in the literature
\square Let the number of ants be m and cities n

The Ant System (AS) and TSP

Initialize the pheromone $\tau_{i j}$, associated with the edge joining cities \mathbf{i} and j ;
Place each ant on a randomly selected city;
Let best be the best tour;
$\mathrm{t}=1$;
While t < max_iterations do for each ant do
build tour;
end
(Perform local search);
Evaluate the length of the tour performed by each ant;
If a shorter tour has been found update best;
Perform pheromone update;
$\mathrm{t}=\mathrm{t}+1$;
end

Solution Construction

\square When ant k is in city i and has so far constructed the partial solution s_{p}, the probability of going to city j is given by:

$$
p_{i j}^{k}= \begin{cases}\frac{\left[\tau_{i j}\right]^{\alpha}\left[\eta_{i j}\right]^{\beta}}{\sum_{l \in N\left(s_{p}\right)}\left[\tau_{i l}\right]^{\alpha}\left[\eta_{i l}\right]^{\beta}} & \text { if } c_{i j} \in N\left(s_{p}\right) \\ 0 & \text { otherwise }\end{cases}
$$

$\square N\left(s_{p}\right)$ is the set of feasible components; that is, edges ($\left.i, I\right)$ where / is a city not yet visited by the ant k.

- α, β are parameters

$$
p_{i j}^{k}=\left\{\begin{array}{lc}
\frac{\left[\tau_{i j}\right]^{\alpha}\left[\eta_{i j}\right]^{\beta}}{\sum_{l \in N\left(s_{p}\right)}\left[\tau_{i l}\right]^{\alpha}\left[\eta_{i l}\right]^{\beta}} & \text { if } c_{i j} \in N\left(s_{p}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

\square The parameters α and β control the relative importance of the pheromone value versus the heuristic information $\eta_{i j}$, which is given by:

$$
\eta_{i j}=\frac{1}{d_{i j}}
$$

where d_{ij} is the distance between cities i and j

- If α is small then the closest cities are favored - classic greedy algorithm
- A high value for α means that trail is very important and therefore ants tend to choose edges chosen by other ants in the past.
- If β is small only pheromone +ve feedback at work - may choose non-optimal paths too quickly

Pheromone Update

\square The main characteristic of AS is that, at each iteration, the pheromone values are updated by all the m ants that have built a solution in the iteration itself.

Pheromone Update

\square The pheromone $\tau_{i j}$, associated with the edge joining cities i and j , is updated as follows:

$$
\tau_{i j}=(1-\rho) \cdot \tau_{i j}+\sum_{k=1}^{m} \Delta \tau_{i j}^{k}
$$

- where $\rho=(0,1]$ is the evaporation rate, m is the number of ants, and $\Delta \tau_{i j}^{k}$ is the quantity of pheromone laid on edge (i, j) by ant k :

$$
\Delta \tau_{i j}^{k}=\left\{\begin{array}{cl}
Q / L_{k} & \text { if ant k uses edge i } \mathrm{i} \mathrm{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

where Q is a constant, and L_{k} is the length of the tour constructed by ant k.

Elitist Strategy

\square Give the best tour since the start of the algorithm, Tgb, a strong additional weight

$$
\Delta \tau_{i j}^{g b}=\left\{\begin{array}{cl}
e / L^{g b} & \text { if }(i, j) \in T^{g b} \\
0 & \text { otherwise }
\end{array}\right.
$$

Flocks, Herds and Schools

\square What are the advantages for herd animals, flocks of birds and schools of fish that cause the formation of swarms?

- Defense against predators
- The disadvantage of sharing food sources can be outweighed by the reduced chances of finding no food at all, whenever the food is unpredictably distributed
- Individuals may also increase their chances of finding a mate
- For animals that travel great distances - like migratory birdsthere is a decrease in energy consumption when moving in a tight formation.

Flocks, Herds and Schools

\square Flocks, herds and schools can become very large and the individuals are both limited in their mental capacity and their perception
\square Can be assumed that only simple, local rules control the movements of a single animal.
\square The most basic behaviors seem to be an urge to stay close to the swarm and one to avoid collisions
\square References in the next lecture slides

Questions?

