
A Spatial Hierarchical Compression Method
for 3D Streaming Animation

Toshiki Hijiri, Kazuhiro Nishitani, Tim Cornish, Toshiya Naka and Shigeo Asahara
Multimedia Development Center

Matsushita Electric Industrial Co., Ltd.
1006, Kadoma, Kadoma-City, Osaka, 571-8501, Japan

{hijiri, nisitani, tim, naka, asahara}@isl.mei.co.jp

ABSTRACT

When distributing 3D contents real-time over a network with a
narrow bandwidth such as a telephone line, methods for
streaming and data compression can be considered indispensable.

In previous work, we made possible the real-time streaming of
3D animation data on a network with a narrow bandwidth such
as a telephone line by partitioning motion data for humanoid
characters (data obtained by motion capture, for example full
frame data at 30 frames/sec) into packets and then carrying out
compression by culling data along the time axis.

However, as a 3D scene becomes more complex, the number of
humanoid characters also increases. Accordingly, the
transmission rate also increases, becoming greater than the
available bandwidth and making real-time distribution
impossible.

In this paper, we concentrate on the problem of real-time
distribution, describing a new data packet format which allows
flexible scalability of the transmission rate, and a data
compression method, SHCM, which maximizes the features of
this format using a 3D scene structure.

Because compression using a 3D scene structure aims to obtain
the optimal overall compression rate by altering the compression
rate for each object, based on information on the position in 3D
space relative to the behavior (motion) data of each object, its
application to MPEG4 can be expected.

Using this method the real-time distribution of 3D contents
becomes possible despite the bandwidth restrictions of an
ordinary telephone line.

Keywords

streaming, animation, VRML, humanoid character, hierarchy,
compression

1. INTRODUCTION
In recent years, streaming technology has grown in usage for the

real-time distribution of video and audio data on the internet.

With regard to the distribution of 3D data, VRML97 [5, 14],
which forms the base of Web3D technology, has already been
standardized, and as an extension of this there is also 3D
Streaming Technology, with the VRML Streaming WG of the
Web3D Consortium [1, 15] preparing a draft report on 3D
streaming.

We devised a Motion Data Streaming Method [11], which
divides humanoid character1 motion data conforming to VRML
Humanoid Animation Version 1.1 [2] (currently being proposed
for standardization by the H-Anim WG) into packets, and then
compresses and transmits those packets, and have developed a
client/server system for this purpose. Using this system it
becomes possible to realize the transmission and playback of 3D
character animation with minimum time lag, even on a network
with a narrow bandwidth such as a telephone line.

However, in the case of contents where a number of characters
appear, the bandwidth of a telephone line proves to be
insufficient and real-time transmission becomes impossible. In
order to solve this problem, we considered how to even further
optimize the data for any one character, and how to optimize data
for a number of characters based on their relative spatial
positions.

In this paper, we describe a method for data optimization, the
Spatial Hierarchical Compression Method (SHCM), which,
when data has been divided into packets using existing
technology, makes real-time transmission in a limited bandwidth
possible for contents with a packet size that is greater than the
available bandwidth.

Section 2 describes 3D Streaming Animation. Section 3 describes
the SHCM and then an example implementation is given and
relevant issues discussed in Section 4. Our conclusions are
presented in Section 5.

2. 3D Streaming Animation
2.1 Related Work
Currently, as MPEG4/Web3D Convergence Plan [13], the
technologies such as Face and body animation, Binary format, 3D
hierarchical mesh coding, etc. are widely evaluated. In concrete
work,

1 “ character” means “ humanoid character” , not “ text

character” in this paper.

Permission to make digital or hard copies of part of all of this work
or personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

VRML 2000, Monterey, CA USA
© ACM 2000 1-58113-211-5/00/02 � $5.00

95

MAGNET: the compression capabilities in MPEG and binary
encoding for VRML [6].

MetaStream: a framework for the storage of multiresolution
3D models including associated geometry and texture data [12].

These two technologies are providing sufficient functionality for
the static object encoding such as 3D scene, geometry, texture,
etc. On the other hand, the method mentioned in this paper is
providing functionality for the dynamic data such as animation
data (corresponding to the data of Interpolator node in VRML97
expression). We think that MPEG4/Web3D Streaming
Animation technology will be able to be improved by
collaborating these two technologies.

2.2 Classification of Contents Data
The data that makes up a 3D scene can be classified as static
data or dynamic data. The latter can be considered a suitable
object for real-time transmission as a 3D stream. This data is
further classified as (1) unsequential Structural Data, (2)
sequential Animation Data and (3) Audio Data (See Figure 1).

3D Content
File

Position
Rotation
Scale
Camera
Lighting
etc.

1. Shape Data File

2. Animation Data File

3. Audio Data File

Figure 1: Classification of 3D Contents Data

 (1) Structural Data:

This is needed before the animation begins, and is therefore
downloaded initially and stored on the client.

 (2) Animation Data: This is our main interest. The file format
used is described in detail in Section 2.4. In this paper we use

"Animation Data" to mean all the data necessary to generate an
animation scene such as information on position, rotation, scale,
position of viewpoint, light sources etc.

(3) Audio Data:

We use, as an example, the de facto standard RealAudio
(Developed by RealNetworks [9]) which allows high quality
audio even with a low bitrate, however, there is no restriction
and other audio streams may be used [7, 8].

2.3 Overview of Animation Data
Transmission
The overall flow of animation data from transmission to
rendering is represented in Figure 2.

At the client, compressed data packets being sent from the server
are buffered, and then the data is decompressed using linear,
spline or other interpolation methods. It is then rendered, using
time stamps attached to the packets to ensure synchronization
with audio data. Our system is implemented with extensions to
RealSystemG2 (by RealNetworks [9]). This utilizes RTSP (Real
Time Streaming Protocol) [4] whose delivery mechanisms based
on RTP (RealTime Transport Protocol) [3]. Therefore, by
multiplexing the structure of the data packets, while retaining
scalability, data transfer can continue in real-time, even with a
dynamically changing transmission bandwidth. Operations
involving the time line, such as fast forward, rewind, pause etc.
can be carried out at the client side.

2.4 Animation Data File Format
The file for (2), the Animation Data (as classified in 2.1) is
divided into a Header Part and a Data Part (See Figure 3).
Section 2.4.1 describes the Header Part and 2.4.2 the Data Part
in more detail.

Server

Client

Buffering Process

Shape
Data

Animation Data
(High rate)

Audio Data

3D Content

Internet
(RTSP)

Data Converter

Buffering Process

Decompression
Process

Decompression
Process

Synchronous
Playing

Animation Data
(Middle rate)

Animation Data
(Low rate)

Figure 2: Flow of Processing of Animation Data to Rendering

96

Header Part Data Part
Stream Info. Channel Info. … DESDAT DAT DAT … DAT

(DAT : Data Packet, DES : Description Packet)

Figure 3: Animation Data File Format

2.4.1 Header Part
This section describes the Header Part, which contains
information that must be transmitted before the streaming starts.
The Header Part is further divided into Stream Information and
Channel Information. The main part of the Stream Information is
the offset value from the start of the file that indicates the address
of the start of the Data Part, the length of the Data Part, the
number of packets in the Data Part, the average and largest
packet size of the Data Part, etc. Also included here as necessary
are version information, the size of the Header Part etc.

The Channel Information contains information for the definition
of all channels that will carry the Data Packets of the Data Part.

What we mean by "Channel" in this paper corresponds to an
Interpolator Node of VRML97 (PositionInterpolator,
OrientationInterpolator, ScalarInterpolator, etc.) and is one type
of Animation Data in this paper. We call definition information
for these channels together a "Channel Table".

In the Data Part there are Data Packets with Animation Data and
Description Packets with the Channel Tables (details are given in
2.3.2).

At the start of the Channel Information is the total number of
channels with Data Packets to be transmitted (TC), then channel
definitions for each of those channels. The definitions for each
channel are given below (Figure 4).

Channel Number 0

Channel Type 0

Parent Object Name 0

Parent Object Name Length 0

Object Name Length 0

Object Name 0

0 ~ TC

(TC : Total number of Channels)

Figure 4: Channel Table

In Figure 4, Channel Number is an ID number, Channel Type is a
predetermined type number to distinguish position, rotation and
scaling information of an object, or viewpoint information etc.
Below that, Length of Parent Object Name and Name are the
length of the object's name and the name itself.

The client viewer, using the Object Name defined in each
channel and its Parent Object Name, finds by name
corresponding nodes in the already loaded Structural Data and
establishes correspondences between them. We call this "Channel
Authentication". Using this Channel Authentication, Data Packets

that are subsequently transmitted can be interpreted. However,
because channel data that fails Channel Authentication
subsequently cannot be received, caution is necessary.

2.4.2 Data Part
As described in the previous section, in the Data Part there are
Data Packets with the Animation Data, and Description Packets
with the Channel Tables.

Data Packets are constructed with information about the number
of channels in that data packet first, and then the data for each of
those channels follows. Similarly, for each channel, first there is
information on the number of frames, then the animation data for
each of those frames follows.

When represented graphically, a 2D array structure is formed
with the number of channels and the number of frames as the
axes (Figure 5). The aim of this paper is to describe how, with
this structure, it becomes possible to alter the size of each packet.
This packet size is actually determined according to the target
bandwidth by “ optimally apportioning weight of compression
between the temporal domain and the spatial domain” , however,
this will be explained in detail in Section 3.

In Figure 5, Emn is the Animation Data - in VRML97 notation it
is data for SFVec3f, SFRotation etc. The number of channels M
is an optional value fulfilling the condition that it is less than the
total number of channels (TC) defined in the Channel Table. The
number of frames for each channel can also be explicitly set. In
this way, because the size of the vertical and horizontal axes can
be explicitly set, the packet size as a whole can also be explicitly
set.

Frame Number

0

M

0

1

1

… …

E00 E01

E10 E11

EM0 EM1C
ha

nn
el

 N
um

be
r

(Emn : Animation Data)

Time domain

Sp
at

ia
l d

om
ai

n

:
:

:
:

:
:

… …

… …

… …

… …

Figure 5: Structure of Data Packet

A Description Packet is a packet that is transmitted in the case
that the existing Channel Tables should be altered. After a
Description Packet has been transmitted, the animation should
continue according to this new Channel Table. In the case of a
very large number of channels, and when it is clear that the
necessary channel structure will change greatly during
transmission according to the scene being broadcast, the need to
define all the channels at the start disappears, and it becomes

97

possible to reduce the size of the Header Part. Also, during a live
broadcast, when a new object is suddenly introduced, it is
possible to add a channel for that object. However, Description
Packets are normally transmitted infrequently, and if there is no
need to alter the Channel Table during the broadcast, it does not
have to be transmitted at all.

2.5 Data Packet Creation Method
Generally, animation data for 3D contents is expressed as
keyframe data. This section explains our method of creating the
Data Packets described in Section 2.4 based on this keyframe
data.

Time (sec)
0

D
at

a
V

al
ue

1 2 3 4 5

: Original Keyframe Data
: Frame Data in Data Packet

DAT 0
(DAT : Data Packet)

DAT 1 DAT 2 DAT 3 DAT 4

Figure 6: Frame Data Creation Method in Data Packet

Keyframe data is simply divided up into time units, and Data
Packets created. In this paper, for the same of simplicity, 1 Data
Packet is taken to represent data for 1 second. This is shown in
graphical form in Figure 6.

In Figure 6, the original keyframe data for the 3D contents is
linearly interpolated data. Based on this data, the frame data at
the border between data packets is determined by a calculation
from the original keyframe data on both sides. The frame data of
each Data Packet is the data calculated for each edge and the
original key frame data in between. The reason for adding data
for each edge to the data packet is that in order to be able to
render data packets from anywhere along the time line, each data
packet is handled as a piece of independent data. Also, even
when the interpolation method is not linear, for example with
spline interpolation, the method of creation of the Data Packet is
the same.

3. SHCM (Spatial Hierarchical Compression
Method)
If Data Packets are created using the method described in Section
2.5, a file with a data size such as shown in Figure 7 will be
created. In this case, with connection to a 28.8kbps or 56kbps
telephone line, the shaded part exceeds the transmission
bandwidth, so realtime distribution of the Data Packets is not
possible. This section describes a Data Packet optimization
method, SHCM, which is effective in such a case.

Time (sec)

D
at

a
Si

ze

28.8 kbps

56 kbps

64 kbps
(ISDN-1ch)

Figure 7: Size of the Created Data Packets

3.1 Prioritization of Channels in the Packet
When Data Packets are compressed, the data is not compressed
equally for all channels in the data packet – rather spatial
priorities are assigned and data compression carried out
according to this. When deciding these priorities, the
“ hierarchical structure of the character” and “ relative position

of characters” are used. This is SHCM. This section explains
this method of deciding prioritization in detail.

3.1.1 Using the Character’ s Hierarchical Structure
As an example a Humanoid Character based on the VRML
Humanoid Animation Version 1.1 definition such as that shown
in Figure 8 will be used. A Humanoid Character such as that in
Figure 8 has a hierarchical structure as shown in Figure 9. With
this Humanoid Character as an example, this section describes
our prioritization method, concentrating on just one channel of
the Humanoid Character.

In the case of a hierarchical structure such as that in Figure 9,
prioritization is decided simply by the depth of the structure
starting at the root and decreasing towards the leaf nodes. The
reason for this is that usually, for a Humanoid Character, the
character’ s motions and is therefore the most important node.
On the other hand, as you move out to the extremities, such as
hands and feet, it is often the case that importance of motions is
not high. Therefore, in the hierarchical structure in Figure 9,
priorities are set as highest at the top, and decrease as you
descend the levels. In concrete terms, for a Humanoid Character,
this means that accuracy is sacrificed first at the fingers and toes,
then working level by level back up the hierarchy as necessary.

Humanoid
Root

l_hip

l_knee

l_ankle

sacroiliac l_wrist

l_elbow

l_shoulder

r_hip

r_shoulder

r_wrist

r_elbow

r_ankle

r_knee

vt12
vc7

skullbase

Figure 8: Example Humanoid Character

98

HumanoidRoot

l_hip

sacroiliac

l_knee

l_ankle

r_hip

r_knee

r_ankle

r_shoulder

r_elbow

r_wrist

l_shoulder

l_elbow

l_wrist

vc7

skullbase

vt12

Local Priority

4

5

3

2

1

6

Figure 9: Example of Humanoid’ s Hierarchical Structure

Because we only decide priorities for one character, not the scene
as a whole, we call this “ Local Priority (LP)” .

3.1.2 Using the Relative Position of Characters
This section describes a method to decide priorities when there
are multiple characters in a scene, using relative positions
relating to the basis of the point of view. The distance between
the viewpoint and HumanoidRoot of each Humanoid Character is
calculated and priorities decided according to proximity to the
viewpoint. That is, the priority of the character closest to the
viewpoint is the highest and decreases as you go further away.
Priorities are decided using the characteristic of human sight that
the relation between distance and priority is logarithmic
(perception decreases with distance by ln (natural log) [10]) (See
Figure 10).

A

B

C

B
A

C

GP

1
2
3

User’s
Eye

Character

0 1 2 3

(GP : Global Priority)

Figure 10: Prioritization According to Relative Position of
Characters

This relates to the scene as a whole and is therefore called
“ Global Priority (GP)” .

3.1.3 Final Prioritization
As described in Sections 3.1.1 and 3.1.2, LP and GP are decided
and their sum calculated for each channel. The result is called the
“ Final Priority” . For example, taking character A in Figure 10
as having the hierarchical structure shown in Figure 9, the
priority of the channel for vt12 (position, rotational angle, scale
etc.) is that GP is 1, and LP is 3, so FP is 4. In this way a FP
prioritization is decided for all channels.

3.2 Data Compression Method for Each
Channel
As described in Section 3.1, once a priority has been decided for
all channels, data size is reduced for channels whose FP is low by
culling frame rate data along the time axis in Data Packets. In
actual fact, first, starting with the channel that has the lowest
priority, frame rate is reduced by 1. If this exceeds the bandwidth
of the transmission being attempted at that time, the frame rate of
the channel with the lowest priority is again reduced by 1, so a
total of 2, and the frame rate of the channel with the next lowest
priority is decreased by 1. This operation is continued until the
transmission fits the available bandwidth. One important note is
that the frame data for either side of the time axis in the Data
Packet should not be deleted. If only these two points remain,
they should not be deleted. This is because, as we explained in
Section 2.5, in order to make each Data Packet independent data,
connection between the outer edges of any two Data Packets must
be assured. The result of carrying out this series of actions is
shown as an example of the Data Packet created in Figure 11. In
this way, by reducing the number of frame data, based on the FP
value for each channel, the size of the Data Packet can be reduced.

When the number of channels is huge, and even if the number of
frame data for all channels is 2, and the transmission still exceeds
the available bandwidth, starting with the data of the channel
with the lowest priority, that data is deleted from the Data Packet
and the transmission suppressed to within the available
bandwidth.

Frame Number
0

M (

0(
1

1(

… …

:
:

E00 E01

E10 E11

EM0 EM1C
ha

nn
el

 N
um

be
r

(FP : Final Priority, Emn : Animation Data)

FP

1
1

6

2 (2

N
E0N

E20 E21

Humanoid Root
Position)

Humanoid Root
Rotation)
sacroiliac
Rotation)

l_wrist
Rotation)

Time domain

S
pa

ti
al

 d
om

ai
n

… …
… …

… …
… …

:
:

:
:

:
:

Figure 11: Data Packet after Optimization

3.3 Correction of Final Priority
As described in Section 3.1, priorities for channels are decided,
and as described in Section 3.2 Data Packets are compressed. It is
conceivable that the resultant animation scene is vastly different
from the original. In this case, using a Data Conversion Tool, the
user, while constantly checking the animation scene, can correct
by hand the Final Priority of the channels that they think are most
different.

99

4. Example Implementation and Discussion
4.1 Example Implementation
This section describes an example implementation of 3D
Streaming Animation, the VRML contents “ Lovely Mimi”
(Table 1, Figure 12).

Table 1: Contents Information

Playback Time [minutes]

Total Number of Channels [ch]
(Total Number of Interpolator Nodes)

1

99

Number of Characters 4

Character A (mimi) [ch]

Character B (small mimi) [ch]

Character C (roach) [ch]

Character D (mouse) [ch]

Number of Non-Characters [ch]
(slippers, kettle etc.)

29

23

21

11

12

(ch: Number of Channels)

Using the packet creation method described in Section 2.5, a
Stream Data File is created. The target transmission bandwidth
for this example is assumed to be a 33.6kbps modem. In this case,
we assume that a bandwidth of 25kbps can be used for data
transmission. Making allowances for the audio stream
(RealAudio), a file is created with 3 levels of scalability with 3D
Animation Data transmission rates at 18kbps, 14kbps and 10kbps.
This is optimized with a SHCM converter tool and the user
carries out fine tuning on the resultant file with a stream editor.

The file created is transmitted using RTSP from the server
(RealServerG2) to the player (RealPlayerG2) along with the
RealAudio file, and the 3D Streaming Animation can then be
played.

4.2 Discussion
As the bit-rate decreases, the accuracy of movements of the hands
and feet also decreases, as their LP priority in the hierarchical
structure of the humanoid character has been set as low. However,
as regards the animation of the character as a whole, because a
balance of animation quality is maintained, this can almost be
disregarded. Of course, in this case also, as the size of all the data
packets is contained within the transmission bandwidth,
continuous playback is possible without having to break part way
through.

As regards the method for determining the priority of each
channel, because the number of components that depend on
individual contents is very large, support by the user is necessary
and this is a great burden for the user. In future research we will
further add to the conditions used in determining priorities for the
SHCM in the hope of raising its accuracy. Apart from the static
information described in this paper, such as position and object
hierarchies, it is necessary to also consider priority determination

Figure 12(a): 3D Streaming Manga “ LovelyMimi” 2

Figure 12(b): 3D Streaming Manga “ LovelyMimi”

methods using dynamic information such as, for example, the
degree of change in animation data for each unit of time.
Moreover, while in this paper we have talked about the case of
several Humanoid Characters in a scene, this technique can be
applied to any 3D contents with a 3D scene structure.

5. Conclusion
In this paper, we have described a new 3D Streaming Animation
Compression Method, SHCM. Using this technology, with 3D
contents that does not require high quality animation, such as that
for entertainment, even when several characters exist and the
transmission rate exceeds the bandwidth, real-time distribution is
possible, dynamically adapting to the bandwidth.

As a result, content creators do not need to worry about
bandwidth, and users can enjoy 3D streaming animation over a
network with a consumer-available bandwidth such as 33k
modems. Because of this, the handling of 3D contents on the
Internet becomes easier, and a contribution can be made to the
spread of Web3D.

2 Content “ LovelyMimi” created by Shout Interactive.

100

Furthermore, by widening the scope of application beyond that of
the PC and Internet, it becomes possible to implement this easily
in digital broadcasting (Broadcast Cable, STB), portable devices
etc. and it also forms core technology for game distribution
systems etc.

As future work, we need to investigate the compression of
structural data downloaded before animation begins, and the
streaming of that structural data itself. And we would like to form
contacts with the MPEG4/Web3D Work for liaison.

6. ACKNOWLEDGMENTS
The authors would like to thank all the reviewers of this paper. A
special thanks to Yoshiyuki Mochizuki, who gave us many
meaningful advice, and Michiharu Katsuda, who helped us to
make sample programs. Finally thanks to the Multimedia
Development Center of Matsushita Electric Industrial Co., Ltd.,
for giving us the opportunity for this type of creative work.

7. REFERENCES
[1] Bernie Roehl, “ Draft Proposal for the VRML Streaming

Working Group – (DRAFT) Version 0.1” , 1998.
http://ece.uwaterloo.ca:80/~broehl/streams/proposal.html.

[2] Bernie Roehl, “ Specification for a Standard Humanoid
Version 1.1” , Humanoid Animation WG, August 1997.
http://ece.uwaterloo.ca:80/~h-anim/spec1.1/.

[3] IETF (Internet Engineering Task Force), RFC1889 (RTP: A
Transport Protocol for Real-Time Applications), January
1996.

[4] IETF (Internet Engineering Task Force), RFC2326 (Real
Time Streaming Protocol), April 1998.

[5] Jed Hartman and Josie Wernecke, “ The VRML 2.0
Handbook Building Moving Worlds on the Web” , 1996,
Addison Wesley Developers Press.

[6] Julien Signes and J. Jeffery Close, “ MAGNET” ,
SIGGRAPH’ 98 Visual Proceedings, July 1998.

[7] MP3’ Tech., http://www.mp3tech.org/.

[8] MPEG.ORG, “ MPEG Audio Resources and Software” .
http://www.mpeg.org/MPEG/audio.html.

[9] RealNetworks. http://www.real.com.

[10] Smith, V.C. and Pokorny, J., Spectral sensitivity of the
foveal cone photopigments between 400 and 500 nm, Vis.
Res. 15, pp.161-171, 1975.

[11] Toshiya Naka, Yoshiyuki Mochizuki, Toshiki Hijiri, Tim
Cornish and Shigeo Asahara, “ A
Compression/Decompression Method for Streaming Based
Humanoid Animation” , VRML99, pp.63-70, 1999.

[12] Vadim Abadjev, Miguel del Rosario, Alexei Lebedev,
Alexander Migdal and Victor Paskhaver, “ MetaStream” ,
VRML99, pp.53-62, 1999.

[13] VRML-MPEG WG, “ MPEG4/Web3D Convergence Plan” ,
http://www.web3d.org/WorkingGroups/vrml-mpeg4/mpeg4-
web3d.html.

[14] VRML97 International Standard ISO/IEC 14772-1,
December 1997.
http://www.web3d.org/Specifications/VRML97/index.html.

[15] Web3D Consortium - VRML Streaming WG.
http://www.web3d.org/WorkingGroups/vrml-streams/.

101

