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We introduce in this chapter some fundamental theories for content-based image 
retrieval. Section 1.1, looks at the development of content-based image retrieval 
techniques. Then, as the emphasis of this chapter, we introduce in detail in Section 
1.2 some widely used methods for visual content descriptions. After that, we briefly 
address similarity/distances measures between visual features, the indexing schemes, 
query formation, relevance feedback, and system performance evaluation in Sections 
1.3, 1.4 and 1.5. Details of these techniques are discussed in subsequent chapters. 
Finally, we draw a conclusion in Section 1.6. 
 
 

1.1 Introduction 
 
Content-based image retrieval, a technique which uses visual contents to search 
images from large scale image databases according to users' interests, has been an 
active and fast advancing research area since the 1990s. During the past decade, 
remarkable progress has been made in both theoretical research and system 
development. However, there remain many challenging research problems that 
continue to attract researchers from multiple disciplines.  

Before introducing the fundamental theory of content-based retrieval, we will take 
a brief look at its development. Early work on image retrieval can be traced back to 
the late 1970s. In 1979, a conference on Database Techniques for Pictorial 
Applications [6] was held in Florence. Since then, the application potential of image 
database management techniques has attracted the attention of researchers [12, 13, 16, 
18]. Early techniques were not generally based on visual features but on the textual 
annotation of images. In other words, images were first annotated with text and then 
searched using a text-based approach from traditional database management systems. 
Comprehensive surveys of early text-based image retrieval methods can be found in 
[14, 93]. Text-based image retrieval uses traditional database techniques to manage 
images. Through text descriptions, images can be organized by topical or semantic 
hierarchies to facilitate easy navigation and browsing based on standard Boolean 
queries. However, since automatically generating descriptive texts for a wide 
spectrum of images is not feasible, most text-based image retrieval systems require 
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manual annotation of images. Obviously, annotating images manually is a 
cumbersome and expensive task for large image databases, and is often subjective, 
context-sensitive and incomplete. As a result, it is difficult for the traditional 
text-based methods to support a variety of task-dependent queries.  

In the early 1990s, as a result of advances in the Internet and new digital image 
sensor technologies, the volume of digital images produced by scientific, educational, 
medical, industrial, and other applications available to users increased dramatically. 
The difficulties faced by text-based retrieval became more and more severe. 
Theefficient management of the rapidly expanding visual information became an 
urgent problem. This need formed the driving force behind the emergence of 
content-based image retrieval techniques. In 1992, the National Science Foundation 
of the United States organized a workshop on visual information management 
systems [49] to identify new directions in image database management systems. It 
was widely recognized that a more efficient and intuitive way to represent and index 
visual information would be based on properties that are inherent in the images 
themselves. Researchers from the communities of computer vision, database 
management, human-computer interface, and information retrieval were attracted to 
this field. Since then, research on content-based image retrieval has developed 
rapidly [11, 23, 24, 35, 49, 50, 102]. Since 1997, the number of research publications 
on the techniques of visual information extraction, organization, indexing, user query 
and interaction, and database management has increased enormoulsy.  Similarly, a 
large number of academic and commercial retrieval systems have been developed by 
universities, government organizations, companies, and hospitals. Comprehensive 
surveys of these techniques and systems can be found in [31, 77, 87].  

Content-based image retrieval, uses the visual contents of an image such as color, 
shape, texture, and spatial layout to represent and index the image. In typical 
content-based image retrieval systems (Figure 1-1), the visual contents of the images 
in the database are extracted and described by multi-dimensional feature vectors. The 
feature vectors of the images in the database form a feature database. To retrieve 
images, users provide the retrieval system with example images or sketched figures. 
The system then changes these examples into its internal representation of feature 
vectors. The similarities /distances between the feature vectors of the query example 
or sketch and those of the images in the database are then calculated and retrieval is 
performed with the aid of an indexing scheme. The indexing scheme provides an 
efficient way to search for the image database. Recent retrieval systems have 
incorporated users' relevance feedback to modify the retrieval process in order to 
generate perceptually and semantically more meaningful retrieval results. In this 
chapter, we introduce these fundamental techniques for content-based image 
retrieval. 
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Figure 1-1. Diagram for content-based image retrieval system 

 
 

 

1.2 Image Content Descriptors 
 
Generally speaking, image content may include both visual and semantic content.  
Visual content can be very general or domain specific. General visual content include 
color, texture, shape, spatial relationship, etc. Domain specific visual content, like 
human faces, is application dependent and may involve domain knowledge. Semantic 
content is obtained either by textual annotation or by complex inference procedures 
based on visual content. This chapter concentrates on general visual contents 
descriptions. Later chapters discuss domain specific and semantic contents.  

A good visual content descriptor should be invariant to the accidental variance 
introduced by the imaging process (e.g., the variation of the illuminant of the scene). 
However, there is a tradeoff between the invariance and the discriminative power of 
visual features, since a very wide class of invariance loses the ability to discriminate 
between essential differences. Invariant description has been largely investigated in 
computer vision (like object recognition), but is relatively new in image retrieval [8].  

A visual content descriptor can be either global or local. A global descriptor uses 
the visual features of the whole image, whereas a local descriptor uses the visual 
features of regions or objects to describe the image content. To obtain the local visual 
descriptors, an image is often divided into parts first. The simplest way of dividing an 
image is to use a partition, which cuts the image into tiles of equal size and shape. A 
simple partition does not generate perceptually meaningful regions but is a way of 
representing the global features of the image at a finer resolution. A better method is 
to divide the image into homogenous regions according to some criterion using 
region segmentation algorithms that have been extensively investigated in computer 
vision. A more complex way of dividing an image, is to undertake a complete object 
segmentation to obtain semantically meaningful objects (like ball, car, horse). 
Currently, automatic object segmentation for broad domains of general images is 
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unlikely to succeed.  
    In this section, we will introduce some widely used techniques for extracting 
color, texture, shape and spatial relationship from images.  
 
COLOR 
Color is the most extensively used visual content for image retrieval [27, 43, 44, 45, 
47, 65, 71, 89, 91, 103]. Its three-dimensional values make its discrimination 
potentiality superior to the single dimensional gray values of images. Before 
selecting an appropriate color description, color space must be determined first.  
 

Color Space 
Each pixel of the image can be represented as a point in a 3D color space. Commonly 
used color space for image retrieval include RGB, Munsell, CIE L*a*b*, CIE L*u*v*, 
HSV (or HSL, HSB), and opponent color space. There is no agreement on which is 
the best. However, one of the desirable characteristics of an appropriate color space 
for image retrieval is its uniformity [65]. Uniformity means that two color pairs that 
are equal in similarity distance in a color space are perceived as equal by viewers. In 
other words, the measured proximity among the colors must be directly related to the 
psychological similarity among them.  

RGB space is a widely used color space for image display. It is composed of three 
color components red, green, and blue. These components are called "additive 
primaries" since a color in RGB space is produced by adding them together. In 
contrast, CMY space is a color space primarily used for printing. The three color 
components are cyan, magenta, and yellow. These three components are called 
"subtractive primaries" since a color in CMY space is produced through light 
absorption. Both RGB and CMY space are device-dependent and perceptually 
non-uniform.  

The CIE L*a*b* and CIE L*u*v* spaces are device independent and considered to 
be perceptually uniform. They consist of a luminance or lightness component (L) and 
two chromatic components a and b or u and v. CIE L*a*b* is designed to deal with 
subtractive colorant mixtures, while CIE L*u*v* is designed to deal with additive 
colorant mixtures. The transformation of RGB space to CIE L*u*v* or CIE L*a*b* 
space can be found in [47].  

In HSV (or HSL, or HSB) space is widely used in computer graphics and is a more 
intuitive way of describing color. The three color components are hue, saturation 
(lightness) and value (brightness). The hue is invariant to the changes in illumination 
and camera direction and hence more suited to object retrieval. RGB coordinates can 
be easily translated to the HSV (or HLS, or HSB) coordinates by a simple formula 
[27].  
  The opponent color space uses the opponent color axes (R-G, 2B-R-G, R+G+B). 
This representation has the advantage of isolating the brightness information on the 
third axis. With this solution, the first two chromaticity axes, which are invariant to 
the changes in illumination intensity and shadows, can be down-sampled since 
humans are more sensitive to brightness than they are to chromatic information. 
  In the following sections, we will introduce some commonly used color descriptors: 
the color histogram, color coherence vector, color correlogram, and color moments. 
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Color Moments 
Color moments have been successfully used in many retrieval systems (like QBIC  
[26, 67]), especially when the image contains just the object. The first order (mean), 
the second (variance) and the third order (skewness) color moments have been 
proved to be efficient and effective in representing color distributions of images [89].  
Mathematically, the first three moments are defined as: 
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where fij is the value of the i-th color component of the image pixel j, and N is the 
number of pixels in the image. 

Usually the color moment performs better if it is defined by both the L*u*v* and 
L*a*b* color spaces as opposed to solely by the HSV space Using the additional 
third-order moment improves the overall retrieval performance compared to using 
only the first and second order moments. However, this third-order moment 
sometimes makes the feature representation more sensitive to scene changes and thus 
may decrease the performance. 

Since only 9 (three moments for each of the three color components) numbers are 
used to represent the color content of each image, color moments are a very compact 
representation compared to other color features. Due to this compactness, it may also 
lower the discrimination power. Usually, color moments can be used as the first pass 
to narrow down the search space before other sophisticated color features are used 
for retrieval. 
 
Color Histogram  
The color histogram serves as an effective representation of the color content of an 
image if the color pattern is unique compared with the rest of the data set. The color 
histogram is easy to compute and effective in characterizing both the global and local 
distribution of colors in an image. In addition, it is robust to translation and rotation 
about the view axis and changes only slowly with the scale, occlusion and viewing 
angle.  

Since any pixel in the image can be described by three components in a certain 
color space (for instance, red, green, and blue components in RGB space, or hue, 
saturation, and value in HSV space), a histogram, i.e., the distribution of the number 
of pixels for each quantized bin, can be defined for each component. Clearly, the 
more bins a color histogram contains, the more discrimination power it has. However, 
a histogram with a large number of bins will not only increase the computational cost, 
but will also be inappropriate for building efficient indexes for image databases. 



Chapter 1 

Proof 
 

Only 

Furthermore, a very fine bin quantization does not necessarily improve the retrieval 
performance in many applications. One way to reduce the number of bins is to use 
the opponent color space which enables the brightness of the histogram to be down 
sampled. Another way is to use clustering methods to determine the K best colors in a 
given space for a given set of images. Each of these best colors will be taken as a 
histogram bin. Since that clustering process takes the color distribution of images 
over the entire database into consideration, the likelihood of histogram bins in which 
no or very few pixels fall will be minimized. Another option is to use the bins that 
have the largest pixel numbers since a small number of histogram bins capture the 
majority of pixels of an image [35] Such a reduction does not degrade the 
performance of histogram matching, but may even enhance it since small histogram 
bins are likely to be noisy.  

When an image database contains a large number of images, histogram comparison 
will saturate the discrimination. To solve this problem, the joint histogram technique 
is introduced [71]. In addition, color histogram does not take the spatial information 
of pixels into consideration, thus very different images can have similar color 
distributions. This problem becomes especially acute for large scale databases. To 
increase discrimination power, several improvements have been proposed to 
incorporate spatial information. A simple approach is to divide an image into 
sub-areas and calculate a histogram for each of those sub-areas. As introduced above, 
the division can be as simple as a rectangular partition, or as complex as a region or 
even object segmentation. Increasing the number of sub-areas increases the 
information about location, but also increases the memory and computational time.  
 
Color Coherence Vector 
In [72] a different way of incorporating spatial information into the color histogram, 
color coherence vectors (CCV), was proposed. Each histogram bin is partitioned into 
two types, i.e., coherent, if it belongs to a large uniformly-colored region, or 
incoherent, if it does not. Let αi  denote the number of coherent pixels in the ith color 
bin and βi denote the number of incoherent pixels in an image. Then, the CCV of the 
image is defined as the vector <(α1, β1), (α2, β2), …, (αN, βN)>. Note that 
<α1+β1, α2+β2, …, αN+βN> is the color histogram of the image.  

Due to its additional spatial information, it has been shown that CCV provides 
better retrieval results than the color histogram, especially for those images which 
have either mostly uniform color or mostly texture regions. In addition, for both the 
color histogram and color coherence vector representation, the HSV color space 
provides better results than CIE L*u*v* and CIE L*a*b* space.  
 

Color Correlogram 
The color correlogram [44] was proposed to characterize not only the color 
distributions of pixels, but also the spatial correlation of pairs of colors. The first and 
the second dimension of the three-dimensional histogram are the colors of any pixel 
pair and the third dimension is their spatial distance. A color correlogram is a table 
indexed by color pairs, where the k-th entry for (i, j) specifies the probability of 
finding a pixel of color j at a distance k from a pixel of color i in the image. Let I 
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represent the entire set of image pixels and Ic(i) represent the set of pixels whose 
colors are c(i). Then, the color correlogram is defined as:  
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where i, j ∈  {1, 2, …, N}, k∈  {1, 2, …, d}, and | p1 – p2 | is the distance between 
pixels p1 and p2.  If we consider all the possible combinations of color pairs the size 
of the color correlogram will be very large (O(N2d)), therefore a simplified version of 
the feature called the color autocorrelogram is often used instead. The color 
autocorrelogram only captures the spatial correlation between identical colors and 
thus reduces the dimension to O(Nd).  

Compared to the color histogram and CCV, the color autocorrelogram provides the 
best retrieval results, but is also the most computational expensive due to its high 
dimensionality. 

 
Invariant Color Features 
Color not only reflectsthe material of surface, but also varies considerably with the 
change of illumination, the orientation of the surface, and the viewing geometry of 
the camera. This variability must be taken into account. However, invariance to these 
environmental factors is not considered in most of the color features introduced 
above.  

Invariant color representation has been introduced to content-based image retrieval 
recently. In [33], a set of color invariants for object retrieval was derived based on the 
Schafer model of object reflection. In [25], specular reflection, shape and 
illumination invariant representation based on blue ratio vector (r/b, g/b,1) is given. 
In [34], a surface geometry invariant color feature is provided.  

These invariant color features, when applied to image retrieval, may yield 
illumination, scene geometry and viewing geometry independent representation of 
color contents of images, but may also lead to some loss in discrimination power 
among images. 
 
TEXTURE 
 
Texture is another important property of images. Various texture representations have 
been investigated in pattern recognition and computer vision. Basically, texture 
representation methods can be classified into two categories: structural and statistical. 
Structural methods, including morphological operator and adjacency graph, describe 
texture by identifying structural primitives and their placement rules. They tend to be 
most effective when applied to textures that are very regular. Statistical methods, 
including Fourier power spectra, co-occurrence matrices, shift-invariant principal 
component analysis (SPCA), Tamura feature, Wold decomposition, Markov random 
field, fractal model, and multi-resolution filtering techniques such as Gabor and 
wavelet transform, characterize texture by the statistical distribution of the image 
intensity. In this section, we introduce a number of texture representations  [7, 19, 
21, 28, 29, 30, 33, 48, 51, 53, 54, 57, 58, 62, 63, 64, 70, 75, 92, 99], which have been 
used frequently and have proved to be effective in content-based image retrieval 
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systems.  
 
Tamura Features 
The Tamura features [92], including coarseness, contrast, directionality, linelikeness, 
regularity, and roughness, are designed in accordance with psychological studies on 
the human perception of texture. The first three components of Tamura features have 
been used in some early well-known image retrieval systems, such as QBIC [26, 67] 
and Photobook [73]. The computations of these three features are given as follows. 
 
Coarseness 
Coarseness is a measure of the granularity of the texture. To calculate the coarseness, 
moving averages Ak(x,y) are computed first using 2k × 2k (k = 0, 1, …, 5) size 
windows at each pixel (x, y), i.e., 
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where g(i, j) is the pixel intensity at (i, j).  
Then, the differences between pairs of non-overlapping moving averages in the 

horizontal and vertical directions for each pixel are computed, i.e., 
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After that, the value of k that maximizes E in either direction is used to set the best 
size for each pixel, i.e., 
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The coarseness is then computed by averaging Sbest over the entire image, i.e., 
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Instead of taking the average of Sbest, an improved version of the coarseness feature 
can be obtained by using a histogram to characterize the distribution of Sbest. 
Compared with using a single value to represent coarseness, using histogram-based 
coarseness representation can greatly increase the retrieval performance. This 
modification makes the feature capable of dealing with an image or region which has 
multiple texture properties, and thus is more useful to image retrieval applications.  
 
Contrast 
The formula for the contrast is as follows: 

4/1
4α
σ=conF                (1-9) 

where the kurtosis α4 = µ4/σ4, µ4 is the fourth moment about the mean, and σ2 is the 
variance. This formula can be used for both the entire image and a region of the 
image. 
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Directionality 
To compute the directionality, image is convoluted with two 3x3 arrays (i.e., 
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) and a gradient vector at each pixel is computed.  

The magnitude and angle of this vector are defined as: 
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where ∆H and ∆V are the horizontal and vertical differences of the convolution.   
Then, by quantizing θ and counting the pixels with the corresponding magnitude 

|∆G| larger than a threshold, a histogram of θ, denoted as HD, can be constructed. 
This histogram will exhibit strong peaks for highly directional images and will be 
relatively flat for images without strong orientation. The entire histogram is then 
summarized to obtain an overall directionality measure based on the sharpness of the 
peaks:  
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In this sum p ranges over np peaks; and for each peak p, wp is the set of bins 
distributed over it; while φp is the bin that takes the peak value.  
 
Wold Features 
Wold decomposition  [28, 57] provides another approach to describing textures in 
terms of perceptual properties. The three Wold components, harmonic, evanescent, 
and indeterministic, correspond to periodicity, directionality, and randomness of 
texture respectively. Periodic textures have a strong harmonic component, highly 
directional textures have a strong evanescent component, and less structured textures 
tend to have a stronger indeterministic component.  

For a homogeneous regular random field {y(m,n), (m,n)∈ Z2}, 2D Wold 

decomposition allows the field to be decomposed into three mutually orthogonal 

components: 

),(),(),(),(),(),( nmenmhnmunmdnmunmy ++=+=    (1-12)  

where ),( nmu  is the indeterministic component; and ),( nmd  is the 

deterministic component which can be further decomposed into the harmonic 
component ),( nmh and evanescent component ),( nme . In the frequency domain, 

a similar expression exists: 
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where ),(),,(),,(),,(),,( ηξηξηξηξηξ ehduy FFFFF  are the spectral distribution 

functions (SDF) of )},({ nmy , )},({ nmu , )},({ nmd , )},({ nmh and 
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)},({ nme respectively.  

In the spatial domain, the three orthogonal components can be obtained by the 
maximum likelihood estimation (MLE), which involves fitting a high-order AR 
process, minimizing a cost function, and solving a set of linear equations. In the 
frequency domain, Wold components can be obtained by global thresholding of 
Fourier spectral magnitudes of the image. In [57], a method using harmonic peak 
extraction and MRSAR modeling without an actual decomposition of the image is 
presented. This method is designed to tolerate a variety of inhomogeneities in natural 
texture patterns.  
 
Simultaneous Auto-Regressive (SAR) Model 
The SAR model is an instance of Markov random field (MRF) models, which have 
been very successful in texture modeling in the past decades. Compared with other 
MRF models, SAR uses fewer parameters. In the SAR model, pixel intensities are 
taken as random variables. The intensity g(x,y) at pixel (x,y) can be estimated as a 
linear combination of the neighboring pixel values g(x',y') and an additive noise term 
ε(x,y), i.e., 
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where µ is a bias value determined by the mean of the entire image; D is the neighbor 
set of (x, y); θ(x',y') is a set of weights associated with each of the neighboring pixels; 
ε(x,y) is an independent Gaussian random variable with zero mean and variance σ2. 
The parameters θ and σ are used to measure texture. For instance, a higher σ  value 
implies a finer granularity or less coarseness; a higher θ(x, y+1) and θ(x, y−1) values 
indicate that the texture is vertically oriented. The least square error (LSE) technique 
or the maximum likelihood estimation (MLE) method is usually used to estimate the 
parameters of the SAR model. 

The SAR model is not rotation invariant. To derive a rotation-invariant SAR model 
(RISAR), pixels lying on circles of different radii centered at each pixel (x,y) serve as 
its neighbor set D. Thus the intensity g(x,y) at pixel (x,y) can be estimated as 
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where p is the number of circular neighborhood. To make the computational cost 
inexpensive and to achieve rotation invariance at the same time, p can neither be too 
large nor too small. Usually p = 2. l(x,y) can be computed by: 
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where Ni is the ith circular neighborhood of (x,y); wi(x',y') is a set of pre-computed 
weights indicating the contribution of the pixel (x',y') in the ith circle.  

To describe textures of different granularities, the multi-resolution simultaneous 
auto-regressive model (MRSAR) [64] has been proposed to enable multi-scale texture 
analysis. An image is represented by a multi-resolution Gaussian pyramid with 
low-pass filtering and sub-sampling applied at several successive levels. Either the 
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SAR or RISAR model may then be applied to each level of the pyramid.  
MRSAR has been proved  [63, 75]to have better performance on the Brodatz 

texture database [7] than many other texture features, such as principal component 
analysis, Wold decomposition, and wavelet transform.  

 

Gabor Filter Features 
The Gabor filter has been widely used to extract image features, especially texture 
features [22] [48]. It is optimal in terms of minimizing the joint uncertainty in space 
and frequency, and is often used as an orientation and scale tunable edge and line (bar) 
detector. There have been many approaches proposed to characterize textures of 
images based on Gabor filters. The basic idea of using Gabor filters to extract texture 
features is as follows.   

A two dimensional Gabor function g(x, y) is defined as: 
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where, σx and σy are the standard deviations of the Guassian envelopes along the x 
and y direction.  

Then a set of Gabor filters can be obtained by appropriate dilations and rotations of 

g(x, y): 
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where a >1, θ = nπ/K, n = 0, 1, …, K-1, and m = 0, 1, …, S-1. K and S are the 
number of orientations and scales. The scale factor a-m is to ensure that energy is 
independent of m.  
  Given an image I(x, y), its Gabor transform is defined as: 
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where * indicates the complex conjugate. Then the mean µmn and the standard 

deviation σmn of the magnitude of Wmn (x, y), i.e., ,,,...,,[ 0000 mnmnf σµσµ=  

],, 1111 −−−− KSkS σµΛ can be used to represent the texture feature of a homogenous 

texture region.  
 

Wavelet Transform Features 
Similar to the Gabor filtering, the wavelet transform  [21, 62] provides a 
multi-resolution approach to texture analysis and classification  [19, 54]. Wavelet 
transforms decompose a signal with a family of basis functions ψmn(x) obtained 
through translation and dilation of a mother wavelet ψ(x), i.e., 
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where m and n are dilation and translation parameters. A signal f(x) can be 
represented as: 
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The computation of the wavelet transforms of a 2D signal involves recursive 
filtering and sub-sampling. At each level, the signal is decomposed into four 
frequency sub-bands, LL, LH, HL, and HH, where L denotes low frequency and H 
denotes high frequency. Two major types of wavelet transforms used for texture 
analysis are the pyramid-structured wavelet transform (PWT) and the tree-structured 
wavelet transform (TWT). The PWT recursively decomposes the LL band. However, 
for some textures the most important information often appears in the middle 
frequency channels. To overcome this drawback, the TWT decomposes other bands 
such as LH, HL or HH when needed. 

After the decomposition, feature vectors can be constructed using the mean and 
standard deviation of the energy distribution of each sub-band at each level. For 
three-level decomposition, PWT results in a feature vector of 3x4x2 components. For 
TWT, the feature will depend on how sub-bands at each level are decomposed. A 
fixed decomposition tree can be obtained by sequentially decomposing the LL, LH, 
and HL bands, and thus results in a feature vector of 52x2 components. Note that in 
this example, the feature obtained by PWT can be considered as a subset of the 
feature obtained by TWT. Furthermore, according to the comparison of different 
wavelet transform features [58], the particular choice of wavelet filter is not critical 
for texture analysis.  
 
SHAPE 
Shape features of objects or regions have been used in many content-based image 
retrieval systems [32, 36, 46, 94]. Compared with color and texture features, shape 
features are usually described after images have been segmented into regions or 
objects. Since robust and accurate image segmentation is difficult to achieve, the use 
of shape features for image retrieval has been limited to special applications where 
objects or regions are readily available. The state-of-art methods for shape 
description can be categorized into either boundary-based (rectilinear shapes [46], 
polygonal approximation [2], finite element models [84], and Fourier-based shape 
descriptors [1, 52, 74]) or region-based methods (statistical moments [41, 101]). A 
good shape representation feature for an object should be invariant to translation, 
rotation and scaling. In this section, we briefly describe some of these shape features 
that have been commonly used in image retrieval applications. For a concise 
comprehensive introductory overview of the shape matching techniques, see [97]. 
 
Moment Invariants 
Classical shape representation uses a set of moment invariants. If the object R is 
represented as a binary image, then the central moments of order p+q for the shape of 
object R are defined as: 
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where (xc, yc) is the center of object. This central moment can be normalized to be 
scale invariant [[48]]: 
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Based on these moments, a set of moment invariants to translation, rotation, and 

scale can be derived [41] [101]: 
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Turning Angles 
The contour of a 2D object can be represented as a closed sequence of successive 
boundary pixels (xs, ys), where 0 ≤ s ≤ N-1 and N is the total number of pixels on the 
boundary. The turning function or turning angle θ(s), which measures the angle of 
the counterclockwise tangents as a function of the arc-length s according to a 
reference point on the object’s contour, can be defined as: 
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One major problem with this representation is that it is variant to the rotation of 
object and the choice of the reference point. If we shift the reference point along the 
boundary of the object by an amount t, then the new turning function becomes θ(s+t).  
If we rotate the object by angle ω, then the new function becomes θ(s)+ω. 

Therefore, to compare the shape similarity between objects A and B with their 
turning functions, the minimum distance needs to be calculated over all possible 
shifts t and rotations ω, i.e.,  
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Here we assume that each object has been re-scaled so that the total perimeter length 
is 1. This measure is invariant under translation, rotation, and change of scale. 
 
Fourier Descriptors 
Fourier descriptors describe the shape of an object with the Fourier transform of its 
boundary. Again, consider the contour of a 2D object as a closed sequence of 
successive boundary pixels (xs, ys), where 0 ≤ s ≤ N-1 and N is the total number of 
pixels on the boundary. Then three types of contour representations, i.e., curvature, 
centroid distance, and complex coordinate function, can be defined. 

The curvature K(s) at a point s along the contour is defined as the rate of change in 
tangent direction of the contour, i.e.,  

)()( s
ds

d
sK θ=                     (1-27) 

where θ(s) is the turning function of the contour, defined as (1-25). 
  The centroid distance is defined as the distance function between boundary pixels 
and the centroid (xc, yc) of the object: 

22 )()()( cscs yyxxsR −+−=           (1-28) 

The complex coordinate is obtained by simply representing the coordinates of the 

boundary pixels as complex numbers: 

)()()( cscs yyjxxsZ −+−=           (1-29) 

The Fourier transforms of these three types of contour representations generate 
three sets of complex coefficients, representing the shape of an object in the 
frequency domain. Lower frequency coefficients describe the general shape property, 
while higher frequency coefficients reflect shape details. To achieve rotation 
invariance (i.e., contour encoding is irrelevant to the choice of the reference point), 
only the amplitudes of the complex coefficients are used and the phase components 
are discarded. To achieve scale invariance, the amplitudes of the coefficients are 
divided by the amplitude of DC component or the first non-zero coefficient. The 
translation invariance is obtained directly from the contour representation. 

The Fourier descriptor of the curvature is: 

[ ]221 ,...,, MK FFFf =           (1-30) 

The Fourier descriptor of the centroid distance is: 
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where Fi in (1-30) and (1-31) denotes the ith component of Fourier transform 
coefficients. Here only the positive frequency axes are considered because the 
curvature and centroid distance functions are real and, therefore, their Fourier 
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transforms exhibit symmetry, i.e., |F-i| = |Fi|.   
The Fourier descriptor of the complex coordinate is: 
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where F1 is the first non-zero frequency component used for normalizing the 
transform coefficients. Here both negative and positive frequency components are 
considered. The DC coefficient is dependent on the position of a shape, and therefore, 
is discarded.  

To ensure the resulting shape features of all objects in a database have the same 
length, the boundary ((xs, ys), 0 ≤ s ≤ N-1) of each object is re-sampled to M samples 
before performing the Fourier transform. For example, M can be set to 2m = 64 so 
that the transformation can be conducted efficiently using the fast Fourier transform.  

 

Circularity, Eccentricity, and Major Axis Orientation 
Circularity is computed as:  

2
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P

Sπα =               (1-33) 

where S is the size and P is the perimeter of an object. This value ranges between 0 
(corresponding to a perfect line segment) and 1 (corresponding to a perfect circle). 

The major axis orientation can be defined as the direction of the largest 
eigenvector of the second order covariance matrix of a region or an object. The 
eccentricity can be defined as the ratio of the smallest eigenvalue to the largest 
eigenvalue. 
 
SPATIAL INFORMATION 
 
Regions or objects with similar color and texture properties can be easily 
distinguished by imposing spatial constraints. For instance, regions of blue sky and 
ocean may have similar color histograms, but their spatial locations in images are 
different. Therefore, the spatial location of regions (or objects) or the spatial 
relationship between multiple regions (or objects) in an image is very useful for 
searching images. 

The most widely used representation of spatial relationship is the 2D strings  
proposed by Chang et al [17]. It is constructed by projecting images along the x and y 
directions. Two sets of symbols, V and A, are defined on the projection. Each symbol 
in V represents an object in the image. Each symbol in A represents a type of spatial 
relationship between objects. As its variant, the 2D G-string [15] cuts all the objects 
along their minimum bounding box and extends the spatial relationships into two sets 
of spatial operators. One defines local spatial relationships. The other defines the 
global spatial relationships, indicating that the projection of two objects are disjoin, 
adjoin or located at the same position. In addition, 2D C-string [55] is proposed to 
minimize the number of cutting objects. 2D-B string [56] represents an object by two 
symbols, standing for the beginning and ending boundary of the object. All these 
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methods can facilitate three types of query. Type 0 query finds all images containing 
object O1, O2, …., On. Type 1 finds all images containing objects that have certain 
relationship between each other, but the distance between them is insignificant. Type 
2 finds all images that have certain distance relationship with each other.  

In addition to the 2D string, spatial quad-tree [82], and symbolic image [37] are 
also used for spatial information representation. However, searching images based on 
spatial relationships of regions remains a difficult research problem in content-based 
image retrieval, because reliable segmentation of objects or regions is often not 
feasible except in very limited applications. Although some systems simply divide 
the images into regular sub-blocks [90], only limited success has been achieved with 
such spatial division schemes since most natural images are not spatially constrained 
to regular sub-blocks. To solve this problem, a method based on the radon transform, 
which exploits the spatial distribution of visual features without a sophisticated 
segmentation is proposed in  [38, 100].  
 
1.3 Similarity Measures and Indexing Schemes 
 
SIMILARITY/DISTANCE MEASURES 
Instead of exact matching, content-based image retrieval calculates visual similarities 
between a query image and images in a database. Accordingly, the retrieval result is 
not a single image but a list of images ranked by their similarities with the query 
image. Many similarity measures have been developed for image retrieval based on 
empirical estimates of the distribution of features in recent years. Different 
similarity/distance measures will affect retrieval performances of an image retrieval 
system significantly. In this section, we will introduce some commonly used 
similarity measures. We denote D(I, J) as the distance measure between the query 
image I and the image J in the database; and fi(I) as the number of pixels in bin i of I .  
 
Minkowski-Form Distance 
If each dimension of image feature vector is independent of each other and is of 
equal importance, the Minkowski-form distance Lp is appropriate for calculating the 
distance between two images. This distance is defined as: 
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when p=1, 2, and ∞, D(I, J) is the L1, L2 (also called Euclidean distance), and L∞ 

distance respectively. Minkowski-form distance is the most widely used metric for 
image retrieval. For instance, MARS system [78] used Euclidean distance to compute 
the similarity between texture features; Netra  [61, 60]used Euclidean distance for 
color and shape feature, and L1 distance for texture feature; Blobworld [9] used 
Euclidean distance for texture and shape feature. In addition, Voorhees and Poggio 
[99] used L∞ distance to compute the similarity between texture images. 

The Histogram intersection can be taken as a special case of L1 distance, which is 

used by Swain and Ballard [91] to compute the similarity between color images. The 

intersection of the two histograms of I and J is defined as: 
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It has been shown that histogram intersection is fairly insensitive to changes in image 
resolution, histogram size, occlusion, depth, and viewing point. 
 
Quadratic Form (QF) Distance 
The Minkowski distance treats all bins of the feature histogram entirely 
independently and does not account for the fact that certain pairs of bins correspond 
to features which are perceptually more similar than other pairs. To solve this 
problem, quadratic form distance is introduced:  

)()(),( JI
T

JIJID FFAFF −−=                    (1-36) 

where A=[aij] is a similarity matrix, and aij denotes the similarity between bin i and j. 

IF  and JF  are vectors that list all the entries in fi(I) and fi(J).  

Quadratic form distance has been used in many retrieval systems [40, 67] for color 
histogram-based image retrieval. It has been shown that quadratic form distance can 
lead to perceptually more desirable results than Euclidean distance and histogram 
intersection method as it considers the cross similarity between colors. 
 
Mahalanobis Distance 
The Mahalanobis distance metric is appropriate when each dimension of image 
feature vector is dependent of each other and is of different importance. It is defined 
as: 
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where C is the covariance matrix of the feature vectors.  
The Mahalanobis distance can be simplified if feature dimensions are independent. 

In this case, only a variance of each feature component, ci, is needed.  
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Kullback-Leibler (KL) Divergence and Jeffrey-Divergence (JD) 
The Kullback-Leibler (KL) divergence measures how compact one feature 
distribution can be coded using the other one as the codebook. The KL divergence 
between two images I and J is defined as: 
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The KL divergence is used in [66] as the similarity measure for texture. 
The Jeffrey-divergence (JD) is defined by: 
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where 2/)]()([ˆ JfIff iii += . In contrast to KL-divergence, JD is symmetric and 

numerically more stable when comparing two empirical distributions.  
 
INDEXING SCHEME 
Another important issue in content-based image retrieval is effective indexing and 
fast searching of images based on visual features. Because the feature vectors of 
images tend to have high dimensionality and therefore are not well suited to 
traditional indexing structures, dimension reduction is usually used before setting up 
an efficient indexing scheme.  

One of the techniques commonly used for dimension reduction is principal 
component analysis (PCA). It is an optimal technique that linearly maps input data to 
a coordinate space such that the axes are aligned to reflect the maximum variations in 
the data. The QBIC system uses PCA to reduce a 20-dimensional shape feature 
vector to two or three dimensions [26] [67]. In addition to PCA, many researchers 
have used Karhunen-Loeve (KL) transform to reduce the dimensions of the feature 
space. Although the KL transform has some useful properties such as the ability to 
locate the most important sub-space, the feature properties that are important for 
identifying the pattern similarity may be destroyed during blind dimensionality 
reduction [53]. Apart from PCA and KL transformation, neural network has also been 
demonstrated to be a useful tool for dimension reduction of features [10].  

After dimension reduction, the multi-dimensional data are indexed. A number of 
approaches have been proposed for this purpose, including R-tree (particularly, 
R*-tree [5]), linear quad-trees [98], K-d-B tree [76] and grid files [68]. Most of these 
multi-dimensional indexing methods have reasonable performance for a small 
number of dimensions (up to 20), but explore exponentially with the increasing of the 
dimensionality and eventually reduce to sequential searching. Furthermore, these 
indexing schemes assume that the underlying feature comparison is based on the 
Euclidean distance, which is not necessarily true for many image retrieval 
applications. One attempt to solve the indexing problems is to use hierarchical 
indexing scheme based on the Self-Organization Map (SOM) proposed in [[102]]. In 
addition to benefiting indexing, SOM provides users a useful tool to browse the 
representative images of each type. Details of indexing techniques are given in 
Chapter 8. 
 
1.4 User Interaction 
 
For content-based image retrieval, user interaction with the retrieval system is crucial 
since flexible formation and modification of queries can only be obtained by 
involving the user in the retrieval procedure. User interfaces in image retrieval 
systems typically consist of a query formulation part and a result presentation part.  
 
QUERY SPECIFICATION 
Specifying what kind of images a user wishes to retrieve from the database can be 
done in many ways. Commonly used query formations are: category browsing, query 
by concept, query by sketch, and query by example. Category browsing is to browse 
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through the database according to the category of the image. For this purpose, images 
in the database are classified into different categories according to their semantic or 
visual content [95]. Query by concept is to retrieve images according to the 
conceptual description associated with each image in the database. Query by sketch 
[25] and query by example [3] is to draw a sketch or provide an example image from 
which images with similar visual features will be extracted from the database. The 
first two types of queries are related to the semantic description of images which will 
be introduced in the following chapters. 

Query by sketch allows user to draw a sketch of an image with a graphic editing 
tool provided either by the retrieval system or by some other software. Queries may 
be formed by drawing several objects with certain properties like color, texture, 
shape, sizes and locations. In most cases, a coarse sketch is sufficient, as the query 
can be refined based on retrieval results.  

Query by example allows the user to formulate a query by providing an example 
image. The system converts the example image into an internal representation of 
features. Images stored in the database with similar features are then searched. Query 
by example can be further classified into query by external image example, if the 
query image is not in the database, and query by internal image example, if otherwise. 
For query by internal image, all relationships between images can be pre-computed. 
The main advantage of query by example is that the user is not required to provide an 
explicit description of the target, which is instead computed by the system. It is 
suitable for applications where the target is an image of the same object or set of 
objects under different viewing conditions. Most of the current systems provide this 
form of querying.  

Query by group example allows user to select multiple images. The system will 
then find the images that best match the common characteristics of the group of 
examples. In this way, a target can be defined more precisely by specifying the 
relevant feature variations and removing irrelevant variations in the query. In addition, 
group properties can be refined by adding negative examples. Many recently 
developed systems provide both query by positive and negative examples.  
  
RELEVANCE FEEDBACK 
Human perception of image similarity is subjective, semantic, and task-dependent. 
Although content-based methods provide promising directions for image retrieval, 
generally, the retrieval results based on the similarities of pure visual features are not 
necessarily perceptually and semantically meaningful. In addition, each type of visual 
feature tends to capture only one aspect of image property and it is usually hard for a 
user to specify clearly how different aspects are combined. To address these problems, 
interactive relevance feedback, a technique in traditional text-based information 
retrieval systems, was introduced. With relevance feedback [79] [66] [80] [42], it is 
possible to establish the link between high-level concepts and low-level features.  

Relevance feedback is a supervised active learning technique used to improve the 
effectiveness of information systems. The main idea is to use positive and negative 
examples from the user to improve system performance. For a given query, the 
system first retrieves a list of ranked images according to a predefined similarity 
metrics. Then, the user marks the retrieved images as relevant (positive examples) to 
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the query or not relevant (negative examples). The system will refine the retrieval 
results based on the feedback and present a new list of images to the user. Hence, the 
key issue in relevance feedback is how to incorporate positive and negative examples 
to refine the query and/or to adjust the similarity measure. Detail discussions on 
various feedback approaches can be found in chapter 3. 
 
1.5 Performance Evaluation 
 
To evaluate the performance of retrieval system, two measurements, namely, recall 
and precision [87], are borrowed from traditional information retrieval. For a query q, 
the data set of images in the database that are relevant to the query q is denoted as 
R(q), and the retrieval result of the query q is denoted as Q(q). The precision of the 
retrieval is defined as the fraction of the retrieved images that are indeed relevant for 
the query: 
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The recall is the fraction of relevant images that is returned by the query: 
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Usually, a tradeoff must be made between these two measures since improving one 
will sacrifice the other. In typical retrieval systems, recall tends to increase as the 
number of retrieved items increases; while at the same time the precision is likely to 
decrease. In addition, selecting a relevant data set R(q) is much less stable due to 
various interpretations of the images. Further, when the number of relevant images is 
greater than the number of the retrieved images, recall is meaningless. As a result, 
precision and recall are only rough descriptions of the performance of the retrieval 
system.  

Recently MPEG7 recommend a new retrieval performance evaluation measure, the 
average normalized modified retrieval rank (ANMRR) [104]. It combines the 
precision and recall to obtain a single objective measure. Denote the number of 
ground truth images for a given query q as N(q) and the maximum number of ground 
truth images for all Q queries, i.e., max(N(q1), N(q2), …, N(qQ)), as M. Then for a 
given query q, each ground truth image k is assigned a rank value rank(k) that is 
equivalent to its rank in the ground truth images if it is in the first K (where 
K=min[4N(q), 2M]) query results; or a rank value K+1 if it is not. The average rank 
AVR(q) for query q is computed as: 
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The modified retrieval rank MRR(q) is computed as: 

)(*5.05.0)()( qNqAVRqMRR −−=               (1-48) 

MRR(q) takes value 0 when all the ground truth images are within the first K retrieval 
results.  
   The normalized modified retrieval rank NMRR(q), which ranges from 0 to 1, is 
computed as: 
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Then the average normalized modified retrieval rank ANMRR over all Q queries is 

computed as: 
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1.6 Conclusion 
 
In this chapter, we introduced some fundamental techniques for content-based image 
retrieval, including visual content description, similarity/distance measures, indexing 
scheme, user interaction and system performance evaluation. Our emphasis is on 
visual feature description techniques. Details of indexing of high-dimensional 
features, user relevance feedback, and semantic description of visual contents will be 
addressed in chapters 3, 4, 8 and 9. 

General visual features most widely used in content-based image retrieval are color, 
texture, shape, and spatial information. Color is usually represented by the color 
histogram, color correlogram, color coherence vector, and color moment under a 
certain color space. Texture can be represented by Tamura feature, Wold 
decomposition, SAR model, Gabor and Wavelet transformation. Shape can be 
represented by moment invariants, turning angles, Fourier descriptors, circularity, 
eccentricity, and major axis orientation and radon transform. The spatial relationship 
between regions or objects is usually represented by a 2D string. In addition, the 
general visual features on each pixel can be used to segment each image into 
homogenous regions or objects. Local features of these regions or objects can be 
extracted to facilitate region-based image retrieval. 

There are various ways to calculate the similarity distances between visual features. 
This chapter introduced some basic metrics, including the Minkowski-form distance, 
quadratic form distance, Mahalanobis distance, Kullback-Leibler divergence and 
Jeffrey divergence. Up to now, the Minkowski and quadratic form distance are the 
most commonly used distances for image retrieval.  

Efficient indexing of visual feature vectors is important for image retrieval. To set 
up an indexing scheme, dimension reduction is usually performed first to reduce the 
dimensionality of the visual feature vector. Commonly used dimension reduction 
methods are PCA, ICA, Karhunen-Loeve (KL) transform, and neural network 
methods. After dimension reduction, an indexing tree is built up. The most 
commonly used tree structures are R-tree, R*-tree, quad-tree, K-d-B tree, etc. Details 
of indexing techniques will be introduced in Chapter 8. 

Image retrieval systems rely heavily on user interaction. On the one hand, images 
to be retrieved are determined by the user’s specification of the query. On the other 
hand, query results can be refined to include more relevant candidates through the 
relevance feedback of users. Updating the retrieval results based on the user’s 
feedback can be achieved by updating the images, the feature models, the weights of 
features in similarity distance, and select different similarity measures. Details will 
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be introduced in Chapter 3. 
Although content-based retrieval provides an intelligent and automatic solution for 

efficient searching of images, the majority of current techniques are based on low 
level features OR current techniques are primarily based on low level features. In 
general, each of these low level features tends to capture only one aspect of an image 
property. Neither a single feature nor a combination of multiple features has explicit 
semantic meaning. In addition, the similarity measures between visual features do not 
necessarily match human perception. Users are interested in are semantically and 
perceptually similar images, the retrieval results of low-level feature based retrieval 
approaches are generally unsatisfactory and often unpredicable. Although relevance 
feedback provides a way of filling the gap between semantic searching and low-level 
data processing, this problem remains unsolved and more research is required. New 
techniques in semantic descriptions of visual contents will be addressed in Chapters 4 
and 9.  
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