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Abstract 

In this paper, we present a method for controlling a mo- 
torized, string-driven marionette using motion capture data 
from human actors. The motion data must be adapted for 
the marionette because its kinematic and dynamic proper- 
ties differ from those of the human actor in degrees of free- 
dom, limb length, workspace, mass distribution, sensors, 
and actuators. This adaptation is accomplished via an in- 
verse kinematics algorithm that takes into account marker 
positions, joint motion ranges, string constraints, and po- 
tential energy. We also apply a feedforward controller to 
prevent extraneous swings of the hands. Experimental re- 
sults show that our approach enables the marionette to per- 
form motions that are qualitatively similar to the original 
human motion capture data. 

1 Introduction 

Entertainment is one of the more immediately prac- 
tical applications of humanoid robots and several robots 
have recently been developed for this purpose [ l ,  2,31. In 
this paper, we explore the use of an inexpensive entertain- 
ment robot controlled by motion capture data with the goal 
of making such robots readily available and easily pro- 
grammable. The robot is a marionette where the length 
and pivot points of the strings are controlled by eight servo 
motors that bring the hands and the feet of the marionette 
to the desired positions (Figure 1). 

Standard marionettes are puppets with strings operated 
by a human performer’s hands and fingers. Creating ap- 
pealing motion with such a puppet is difficult and requires 
extensive practice. Although for our marionette the servo 
motors move the strings, programming a robotic version 
of such a device by hand to produce expressive gestures 
would also be difficult. We solve this problem by using 
full-body human motion data to drive the motion. The hu- 
man motion data is recorded as the positions of markers 
in three dimensions while an actor tells a story with his or 
her hands. After adaptation, the data are used to drive the 
motion of the marionette by taking into account the mar- 

Figure 1: The motor-driven marionette and its model. The 
marionette is about 60cm tall. The shoulder and elbow 
joints have cloth stops to prevent unrealistic joint angles. 

ionette’s swing dynamics. These adaptations and dynam- 
ics compensation are necessary because the marionette has 
many fewer degrees of freedom and much smaller size than 
the human actor, strings rather than actuators at the joints, 
and no sensors except for the rotation of the motors. 

The method described in this paper consists of four 
steps: ( 1 )  identify the swing dynamics of the hands and 
design a feedforward controller to prevent swinging and 
obtain a desired response, (2) obtain the translation, ori- 
entation, and scaling parameters that map the measured 
marker positions for the human motion into the mari- 
onette’s workspace, (3) apply the controller to modify the 
mapped marker positions to prevent swing, and (4) com- 
pute the motor commands to bring the (virtual) markers at- 
tached to the marionette to the revised positions computed 
in step (3). 

The relationship between the four steps is illustrated in 
Figure 2.  In steps (2) and (4), we solve the inverse kine- 
matics problem with many different constraints including 
marker positions, joint motion ranges, strings, and gravity. 
This algorithm is an extension of the first author’s previ- 
ous work [4]. In step ( l ) ,  we model the dynamics of swing 
by capturing the response to a step input of each desired 
marker position and then use that response to design a feed- 
forward controller to compensate for the swing motion. 

As a demonstration of the algorithm, we include exper- 
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imental results to compare the marionette motion to that of 
human actors. The motions of the marionette and the hu- 
man actor are similar enough to distinguish different styles 
for the same story. 

1 :::Ed 
4. inverse kinematics ,_1 motor commands 

2 Related Work 

Hoffmann [5 ]  developed a human-scale marionette and 
controlled it to perform dancing motions using human data. 
The size and controllable degrees of freedom of the mari- 
onette are much closer to those of human than ours. The 
research is therefore focused more on image processing for 
measuring human motion than on mapping between human 
and marionette motions. 

Mapping motion data is a common problem in applying 
motion capture data to a real robot or to a virtual charac- 
ter. The factors considered in previous work include joint 
angle and velocity limits [6], kinematic constraints 171, and 
physical consistency [8, 91. However, the original and tar- 
get human figures are usually more similar in degrees of 
freedom, dimensions, and actuators than the marionette is 
to a human actor. 

The mechanism and dynamics of a string-driven mari- 
onette are quite similar to those of wired structures such as 
a crane. A number of researchers have worked on control- 
ling a crane to bring an object to a desired position without 
significant oscillations [IO]. This work assumes that the 
position of the object is known through the direction of the 
wire. Although we measure the position of the hand and 

Figure 3: Closeup of the motors and pulleys; front of mar- 
ionette (left), hack (right). 

Figure 4: The mechanism for moving the hand in the hori- 
zontal direction. 

feet for recording the swing dynamics, we do not have this 
information during a performance. Our accuracy require- 
ments are much less because the mari0nette.k gesturing in 
free space rather than precisely positioning an object. 

3 Experimental Setup 

The marionette is modeled as a 17DOF kinematic chain 
(Figure 1 right). Closeups of the motors and pulleys are 
shown in Figure 3. The marionette has eight servo mo- 
tors (Airtronics Servo 94102); six control the arms and 
two control the legs. The motors are controlled by position 
commands sent from a serial port of a PC via an 8-channel 
controller hoard (Pontech SV203). 

Motors 3 and 6 change the length of the strings connect- 
ing the hands. Motors 7 and 8 move the knee up and down. 
Motors I ,  2, 4 and 5 move the hands in horizontal direc- 
tions by rotating the “pipes” and moving the pipe ends via 
four independent planar linkages (Figure 4). 

We used a commercially available motion capture sys- 
tem from Vicon for capturing the actor’s performance and 
the marionette’s motion for identification of the swing 
dynamics. The system has nine cameras, each capable 
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of recording images of l000x 1000 pixels resolution at 
120Hz. We used different camera placements for the 
human subject and the marionette to accommodate the 
smaller workspace of the marionette and to ensure accu- 
rate measurements. 

4 Inverse Kinematics 

The inverse kinematics algorithm is used to enforce 
constraints to bring the markers representing the desired 
motion into the workspace of the marionette and to deter- 
mine the motor angles that satisfy the desired marker po- 
sitions and the physical constraints, including the desired 
marker positions, joint motion ranges, length and orien- 
tation of the strings, and potential energy. The potential 
energy constraint is introduced to model the effect of grav- 
ity. The inverse kinematics algorithm computes the joint 
angles and the motor commands that locally optimize the 
constraints. Because the algorithm was described in a pre- 
vious paper [41, we present a short outline here. 

Often, all the constraints cannot be satisfied due to the 
singularity of the configuration or to inconsistencies be- 
tween the constraints. Therefore, the user is asked to divide 
the constraints into two groups: those that must be satisfied 
and those where some error is acceptable. The algorithm 
applies singularity-robust (SR) inverse [ l l]  (also known 
as damped pseudo inverse[12]) to the lower-priority con- 
straints. As described below, the SR-inverse distributes the 
error among the lower-priority constraints according to the 
given weights so that the resulting joint velocity does not 
become too large even if there are singularities or inconsis- 
tencies in the constraints. 

We design a feedback controller for each constraint to 
ensure that the lower-priority constraints are satisfied as 
much as possible and to eliminate integration errors in both 
higher- and lower-priority constraints. The controller com- 
putes the required velocity when constraints are violated. 
For example, the feedback controller to bring a link to its 
reference position p Y e f  is pdes = kp(p'"f - p )  where kp 
is a positive gain, p is the current position, and pd"" is the 
desired velocity. Note that this velocity is not always real- 
ized for lower-priority constraints due to the nature of the 
SR-inverse algorithm. 

With nl higher-priority constraints and n2 lower- 
priority constraints, we have the following equations in 
generalized velocity 6: 

,716 = up" ( 1 )  
J z 8  = U,"" (2) 

where wp and up" are the desired velocities correspond- 
ing to higher- and lower-priority constraints respectively. 

and J1 and J 2  are the Jacobian matrices of the constraints 
with respect to 8. 

We solve this equation for the generalized velocity as 
follows. First, we compute the set of exact solutions of 
Eq.(U by 

S = ~f.p + (r - ~ 1 5 ~ ) ~  (3) 

where Jf is the pseudo inverse of J 1 ,  I is the identity 
matrix of the appropriate size, and y is an arbitrary vector. 
We can rewrite this equation as 8 = el + W y  where 6,  = 
JEuP",,and W = I-J",l. Next, wecomputethey with 
which 0 would satisfy Eq.(2) as closely as possible by 

A 

A 

y = ( J z W ) * ( u P  - J z f h )  (4) 

where (J*W)* is the SR-inverse of J z W .  Finally, the 
generalized velocity 6 is computed by substituting y into 
Eq.(3), which is then integrated to compute the generalized 
coordinates in the next step. 

In order to add a new constraint, we must design a feed- 
back controller to compute the desired velocity and derive 
the corresponding Jacobian matrix. We describe the string 
and potential energy constraints in detail because the other 
constraints were described in the earlier paper [4]. 

4.1 String Constraints 

Each string has a start point, an end point, and some 
number of intermediate points (Figure 5 left). The string 
can slide back and forth at the intermediate points. The 
current length of a string, 1 ,  must always be equal to or 
smaller than its nominal length l o .  1 is computed by sum- 
ming the length of all segments: 

N-1 N-1 

1 = l i  = IPi+l -Pi1 
"-0 i-0 

N-1 

= \ l(Pi+l - Pi)T(Pi+l  pi) ( 5 )  
i=O 

where N is the number of segments, l i  (0 5 i 5 N - 1) is 
the length of segment i, p i  (0 5 i 5 N) is the position of 
the i-th point. The Jacobian matrix of 1 with respect to the 
generalized coordinates 0 is computed by 

ae 1 = I,(Pi+l 1 -Pi)* (+ - - 

Note that the Jacobian matrix is not defined for segments 
with l i  = 0, although we never encounter such situations in 
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Figure 5 :  String models for inverse kinematics (left) and 
swing controller (right). 

physical mechanisms. The feedback law for a string con- 
straint is ut;; = k,,,(lo - 1).  

In addition to the length, we also constrain the 
( N  - 1)th segment of the string to be vertical due to grav- 
ity. The two points p,- ,  and p ,  should then be vertical: 

hi . d N - i , , v  = 0, h~ . d N - i , , v  = 0 (7) 

where hi and hz are independent unit vectors in the hor- 
izontal plane (e.g. hi = (1 0 n)T,hz = (0 1 0 )T 
if the gravity is in t direction) and d N - I , N  is the unit 
vector from p,-, to p N ,  namely d N - L , N  = ( p ,  - 
P N - 1 ) / 1 N - l .  The Jacobian matrix for this constraint is 

The desired velocity for this constraint is 

where IC ,  is a positive gain. 

4.2 Potential Energy 

Because the joints that do not have strings directly at- 
tached to them will bend downward due to gravity, we also 
constrain the potential energy to be as small as possible by 
constraining the center of mdSS of the whole body to be as 
low as possible. The Jacobian matrix for this constraint is 
computed as J, ,  = dTJcoM where d ,  = (0 0 l)T is 
the unit vector in the direction of the gravity and JcoM 
is the Jacobian matrix of the center of mass with respect 
to the generalized coordinates. A method for computing 
J c o ~  can be found in [13]. The desired velocity for this 
constraint is a negative constant -ICpe. 

5 Mapping 

Before applying the measured marker positions to a 
marionette, we need to map them into new positions not 

only to adapt to the size of the marionette but also to 
comply with such physical constraints as the strings. Our 
marionette, for example, does not have a mechanism to 
move the pelvis. Therefore, if the captured motion contains 
translation or rotation of the pelvis, the motion should be 
translated or rotated so that the pelvis motion is eliminated. 

In this section, we describe an algorithm to compute 
seven parameters for translation, rotation, and scaling that 
map the measured marker positions into new positions that 
satisfy the constraints of the inverse kinematics model de- 
scribed in Section 4. We compute the mapping parameters 
independently for each frame rather than using the same 
parameters for all frames. Although it might seem natural 
to fix a parameter such as scaling for a particular human 
actor, we have found that, because of the marionette's lim- 
ited range of motion, using the hest possible mapping for 
each frame is preferable to using a fixed mapping bounded 
by the most difficult posture in the motion clip. 

Suppose we use N markers in frame IC as reference and 
denote the positions of the markers attached to the mari- 
onette by p F i ,  those of the captured markers by p f , ;  and 
those of the mapped markers by p:,,(i = 1 . . . N). We rep- 
resent the translational, rotational, and scaling parameters 
of frame IC by a position vector t k ,  a 3-by-3 rotation matrix 
Rk, and a scalar sk, respectively. Using these parameters, 
we compute the mapped position p &  of marker i from its 

The system first computes the scaling, translation, and 
orientation parameters that minimize the total square dis- 
tance between the measured markers and the virtual mark- 
ers on the marionette in a fixed configuration. We can then 
use the inverse kinematics algorithm to compute the joint 
angles and string lengths that provide the best match be- 
tween the two sets of markers. These two steps are re- 
peated a number of times to refine the result. 

The system finds the translation, rotation, and scaling 
parameters t k , R k ,  and sk that minimize the evaluation 
function 

original captured position p z i  as ~ 2 , ~  = ~ ~ R k p , , ~  C + t k .  

.. 

p f i  are constant because the configuration of the mari- 
onette is fixed during this frame by frame computation. 

We combine the unknowns into one variable qk E R', 
where the rotation matrix is represented by three inde- 
pendent variables whose time derivatives correspond to 
the angular velocity. We then use the common gradient 
methodtl41 to compute the optimum qk incrementally as 

The partial derivative of the mapped position p &  with re- 
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spect to qk is computed as 

A 
where I3  is the 3-by-3 identity matrix, T = skRkp'$. and 
[ r x ]  is the cross product matrix of T .  Using  HE,^, the 
partial derivative of J;, is computed by 

We apply this process to each frame independently by 
starting from the same initial guess. Using the,result of 
previous frame as the initial guess would reduce the com- 
putation time, hut the algorithm might not recover from a 
failure to obtain good mapping parameters in one frame 
due to, for example, missing markers. Regardless of the 
initial guess, the resulting mapping parameters may not be 
continuous because the algorithm is finding only a local 
minima. Small discontinuities are not a problem, however, 
because the marker positions are "filtered" by the feedback 
controller and by the SR-inverse used in the inverse kine- 
matics computation. 

6 Controlling Swing 

If the mapped motion is applied directly to the man- 
onette, the hands of the marionette will swing and the mo- 
tion will not be a good match to that of the human actor. 
We solve this problem by building a simple linear model 
for the swing dynamics and experimentally identifying its 
parameters. An alternative approach would he to model the 
full dynamics of the marionette, but this tactic is not prac- 
tical because of uncertainty in the model parameters and 
the limitations of the motors and sensors. Because mari- 
onette is made of wood and cloth, it is difficult to precisely 
determine the mass, inertia, and friction parameters of the 
joints. The joints are cleverly designed to prevent unre- 
alistic joint angles (Figure I), but this design also makes 
modeling of the system more difficult. The motors are in- 
expensive hobby servos and do not provide precise control. 
Furthermore, we do not have sensors that measure the cur- 
rent state of the marionette during a performance. 

For the simple model of the dynamics, we make three 
assumptions. (1) Swinging of the hands occurs in the hor- 
izontal plane. Pulling the hands or legs up or down does 
not create a swinging motion. (2) The motion of a hand 
along the x axis (lefthght) and the y axis (forwardback) 
are independently controlled by one motor each. (3) There 
is no coupling between the swinging of the left and right 
hands. These simplifying assumptions allow us to model 
swing as four independent systems, two for each hand. 

Some situations occur in which the second and third as- 
sumptions do not hold. The hand marker sometimes moves 
along a circular trajectory rather than a straight line. The 
markers with fixed inputs inevitably move slightly when 
other markers are moved, violating the last assumption. 
Both problems are most likely to occur when the hand is 
relatively close to the body because the stiffness of the 
elbow and shoulder joints forces the hand away from the 
body. 

6.1 Modeling of Swing Dynamics 

In this section we describe the swing dynamics model 
that, when combined with the feedback controller of the in- 
verse kinematics algorithm in Section 4, predicts the swing 
motion. 

The inverse kinematics algorithm included a propor- 
tional controller, where the velocity of the pipe end x is 
computed from the current position of the pipe end x and 
the desired position U as x = k(u ~ x) where k is a con- 
stant gain. Therefore the transfer function from the marker 
trajectory to the motion of the pipe end takes the form 

where U is the input (marker trajectory), x is the output 
(motion of the pipe end), s is the Laplace transforma- 
tion operator, and atk is the parameter that determines the 
amount of delay. 

The motion of the hand for a given trajectory of the pipe 
end can be modeled as a pendulum with a moving base 
(Figure 5 right). Using the length of the pendulum 1 and the 
damping term d, the equation of motion of the pendulum 
under gravity g is linearized around x = y as 5 = l /g(z  - 
y) + d ( x  - y). In general, therefore, the transfer function 
from the motion of the pipe end to the marker motion is 
written as 

X 
bas + 1 

= ass2 + b,s + 1 

where y is the output (actual marker trajectory) and a, 
and b, are the parameters that determine the frequency and 
damping respectively. 

Combining Eqs.(l4) and (15). the system computing the 
desired marker trajectory from the actual trajectory will be 
a 3rd-order system. We estimate the three parameters from 
motion capture data. 

The gains of both systems were assumed to be 1, which 
turned out to be not true, probably because the joint motion 
ranges of the pipe prevented the pipe end from reaching the 
desired position or because the stiffness of the arm joints 
did not allow the string to be perpendicular. We decided not 
to consider these model errors because the desired marker 
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position is not achievable if it violates the joint range con- 
straint and the stiffness strongly depends on the configura- 
tion of the arm making the system too complicated. 

6.2 Feedforward Controller 

The feedfonvard controller K is formed by connecting 
the desired response GD and the inverse of the estimated 
model P, in series, that is, K = GDP;’. In order for 
the controller to be proper (the order of the denominator of 
the transfer function is larger than that of the numerator), 
the order of GD must be larger than 2. We selected a 3rd- 
order Go so that the output of the controller is continuous. 
We can also improve the response of the total system by 
selecting GD with a smaller delay. In practice, however, 
we cannot use an arbitrarily fast Go because as the gain of 
the controller increases, it becomes sensitive to modeling 
errors. 

The parameters of the string dynamics model, a, and b,, 
depend on the length of the strings; therefore, we repeat the 
identification process for several different heights for each 
hand and design a controller for each model. We then apply 
the weighted sum of the outputs of the three controllers, 
where the weights are determined according to the actual 
height during a performance. 

7 Results 

The inverse kinematics computation to obtain the motor 
commands was repeated four times for each frame to en- 
sure convergence. The total computation time was about 
36ms per frame on a laptop PC with a Mobile PentiumIII 
lGHz processor. Motor commands were sent every 50ms. 

Based on the inverse kinematics computation, we de- 
veloped an online control interface for the marionette. The 
model consists of nine string length constraints, joint mo- 
tion range constraints for eight joints, two string direction 
constraints, and the potential energy constraint. The user 
can select a marker and drag it to any position. The inverse 
kinematics algorithm then computes the motor commands 
and the joint angles to move the marker to the specified po- 
sition. Figure 6 shows several snapshots of the marionette 
model and the corresponding postures of the actual mari- 
onette. 

The swing controller was designed for three different 
heights (-0.59m, -0.44111, and -0.29m, measured from 
the center of the panel where the motors and pulleys are 
attached). We had a total of twelve controllers for the x 
and y directions of both hands. Table 1 lists the parameter 
sets for the right hand in the x direction. The parameters 
were tuned manually, although it should also he possible to 
apply standard system identification techniques [151. 

Figure 6: Postures generated by the interactive interface. 
Above: marionette, below: simulation. 

Table 1: Parameters of the string dynamics models for the 
x direction of the right hand. 

I height [m] 11 -0.59 I -0.44 I -0.29 I 

Figures 7 and 8 show the results of identification, con- 
troller design, and verification processes at the height of 
-0.29m. We used the motion capture system to measure 
the motion of the pipe end and right hand when a step input 
in x direction (left to right) was given as the desired marker 
trajectory (Figure 7). Then we designed a swing controller 
with the desired response G D  = 1/(0.2s + l)3. 

Finally, the designed controller was applied to the same 
desired marker trajectory used for the identification and the 
response was measured (Figure 8). The swing controller 
reduced the width of the first vibration by 40%. The tra- 
jectory of the hand without the swing controller is differ- 
ent from that used for parameter identification (Figure 7), 
although we used the same reference trajectory. This dis- 
crepancy probably explains why the controller could not 
remove the vibration completely, thereby illustrating that a 
small difference in the configuration results in a relatively 
large difference in the swing dynamics due to the stiffness 
of the arms. 

To test the motion of the marionette on a longer per- 
formance, we recorded the motions of two actors for two 
stories: “Who Killed Cockrobin?” and “Alaska.” Figure 9 
compares the motions based on “Alaska” performed by ac- 
tor 1.  We used 32 reference markers and the two steps 
for mapping (computing approximate parameters and com- 
puting exact parameters) were repeated up to 500 times at 
each frame. The iteration was suspended if the total error 
of the marker positions were larger than the previous iter- 
ation. The computation time was approximately 5 seconds 
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Figure I :  Actual and model responses to a step input. The 
amplitude of each motion is normalized. The hand of the 
marionette comes close to its head at this height. 
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Figure 8: Response of the pipe and the hand to a step input. 

per frame. 
Figures 9 and IO illustrate the same story performed 

by two different actors. The gestures are taken from 
approximately the same point in the story. The mo- 
tion in Figure l l is based on a different story per- 
formed by actor I .  The video clips are available online 
at http://humanoids.cs.cmu.edu/projects/marionettel.html, 
which also includes comparisons between the motions with 
and without the swing controller. The marionette’s feet 
touch the floor as in a real performance. 

8 Discussion 

The motions of the actor and the marionette showed 
good correspondence, and we were able to distinguish two 
different styles for the same story (Figures 9 and IO). How- 
ever, significant differences between the actor’s and the 
marionette’s postures were sometimes visible because of 

Figure 9: From the top: performance of actor 1 for 
“Alaska,” the motion capture data, mapped marker posi- 
tions, and the marionette’s motion. 

Figure IO: Marionette’s motion for “Alaska” performed by 
actor 2.  

the limited range of motion of the pipes (for example the 
middle column of Figure 9). The marionette also had 
difficulty with fast motions because of the latency in the 
feedback controller of the inverse kinematics computation. 
This problem could be solved with a faster computer that 
could execute more iterations per step of the inverse kine- 
matics computation, thereby increasing the stability of the 
computation and allowing larger gains. 

Although the swing controller had a significant effect in 
isolated experiments, its effect during longer performances 
was quite small. We believe this discrepancy occurred be- 
cause the stiffness of the arms is highly dependent on the 
configuration and this effect was not taken into account in 
the swing model. We could include this effect by testing 
the response of the system for both pipe position and string 
length. 

The examples in this paper were limited to motions 
where the actor was told to stand in place during the perfor- 
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Figure 11: Marionette’s motion for “Who Killed Cock- 
robin?’ performed by actor I .  

mance. We could extend the range of feasible motions by 
adding more controllable strings and degrees of freedom. 
For example, a motor to control the string connecting the 
back would allow the marionette to bow. We could also 
add a pair of strings and motors to control the elbows in- 
dependently or to move the entire marionette as a human 
operator would do for walking. In the construction of mar- 
ionettes for human-operated performances extra strings are 
often added to enable a particular set of behaviors for that 
marionette’s character. 

We did not consider self collisions between the puppet 
and the strings or interaction with the environment. In the 
motions shown here we did not encounter situations where 
self collisions caused significant change of motion, but this 
issue is a serious concern in the design of performance 
marionettes with clothing that may catch on the strings. We 
kept the feet in contact with the floor to reduce the swing 
of the pelvis but did not explicitly consider contact with 
the environment in the control system. If the marionette 
had the additional degrees of freedom for such whole-body 
motions as walking, modeling of the interaction with the 
environment would be essential. 

.We explored two interfaces for driving the marionette: 
direct input of marker positions for realtime control and 
offline processing of human motion data. A third dter- 
native would have been to capture a human-operated mari- 
onette performance to take advantage of the talent of a pro- 
fessional operator. The control scheme for this interface 
would presumably be significantly less complex because 
the motions would already be appropriate to the dynamics 
of the marionette. Such a system, however, could not eas- 
ily be operated by an untrained user. In contrast, the con- 
trol scheme described in this paper enables a naive user to 
program a motorized marionette to create entertaining per- 
formances simply by performing the gestures in a motion 
capture system. 
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