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Image Enhancement in Frequency Domain
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Main Idea: A periodic function can be decomposed
into a summation of sine and cosine functions

It may be easier and natural to apply some
operations in the frequency domain

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.
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Image Enhancement in Frequency Domain

Fourier Transform

In continuous domain Fu)=3{f(x)} = J(/‘j(,\‘)e—jz””'\. dx
1-D: —e2

F(u) and f(x) form
a Fourier pair.

f(x)=3{F(u) = jF(z_.,)ef'm-"c/z.,

Fuv) = [[ fGeoy)e™ ) dx dy
2-D: *

f(x,}/’)= F(u\) PR dy

~
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Image Enhancement in Frequency Domain

Discrete Fourier Transform

e Suppose
f:[f()ﬂfltfi """ jf\ l]
is a sequence of length N
F:[FU,F1,F3 ..... a1
where
] 2] LT
F, = ~ TZO exp ’—Zﬂ’? N fa
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Image Enhancement in Frequency Domain

Discrete Fourier Transform

e For M x N matrix, forward and inverse fourier transforms can

be written
M—1N-1 U Yv
F(u,v) = Z Z f(z,y)exp [—27(?3 (— + —,)] )
=0 y=0 M N
1 1"/—' J{\v’—] TU ?/?'
flz,y) = MN “ZO :z:o F(u,v)exp [Zm (ﬁ + V)] .
where

e xindices go from 0... M — 1 (x cycles over distance M)

e yindices go from 0... N— 1 (y cycles over distance N)
Digital Image Processing
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Image Enhancement in Frequency Domain

Discrete Fourier Transform

M—1 N-—1
Fen = £ F stesron]

r=0 y=0

M—1N-1
fle,y) = A[}\' ,2:0 “z_: F{u,v)exp [

Source: https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecturel0.pdf
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Image Enhancement in Frequency Domain

Discrete Fourier Transform

e DFT as spatial filter: These values are just basis functions (are
independent of f and F)

. . {xTu yv
exp |£2me ﬂ+ N

e (Can be computed in advance, put into formulas later

e Implies each value F(u,v) obtained by multiplying every value of f{(x,y)
by a fixed value, then adding up all results (similar to a filter!)
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Image Enhancement in Frequency Domain

Discrete Fourier Transform

2-D DFT
Often it is convenient o
to consider a v(k)= z u(n)W,™ and
symmetric transform: * ' n=0
u(n) = Z v(k)w,

f A/
"\' n=tl

l N-1 N-
In 2-D: wkl)=— 2 w(m.n) W, W
consider a N om0 no
NXN image [ M-
u(m, n)—TZ Z wk) W, ~hm-ln
IV k=0 1=
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Discrete Fourier Transform

Properties e Notice that Fourier transform “filter elements” can be
expressed as products

6. [Tu yo\| Goxul [ yv
exp [Zm. (H + N)] = exp [Zm M’] exp [Zm N

2D DFT 1D DFT (row) 1D DFT (column)

Seperability

e Formula above can be broken down into simpler formulas for
1D DFT

M—1 )
U

Flu) = flx)exp | =2mi |,
1 ,ZO T (‘xp[ i ﬁ'f]

M—1
flz) = % Z F(u)exp [2m%l

=)
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Discrete Fourier Transform

Properties  F'(u,v) = § Yaro eopl~ 5] Lyo /(@ y)ean[-*5"]

e Using their separability property, can use 1D DFTs to calculate
rows then columns of 2D Fourier Transform

Seperability

(a) Original image (b) DFT of each row of (a) (¢) DFT of each column of (b)
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Discrete Fourier Transform

Properties

e Linearity: DFT of a sum is equal to sum (or multiplication)lof
the individual DFT's

F(f+g) = F(f)+Fg)
f(/sf) = A.F(f) kis a scalar
e Useful property for dealing with degradations that can be
expressed as a sum (e.g. noise)
d=f+mn
Where fis original image, n is the noise, d is degraded image
e We can find fourier transform as:

F(d) =F(f)+ F(n)

e Noise can be removed/reduced by modifying transform of n
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Discrete Fourier Transform

Properties

Translation

(@, y)exp[=E4) ¢ F(u — ug, v — vo)

2im (uzy+vyo

f(z = zo,y — o) & F(u,v)exp[—=—=—"]
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Discrete Fourier Transform

Properties

Rotation

f(r,0+ 6y) & F(w, ¢+ 6))

Source: https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecturel0.pdf
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Discrete Fourier Transform

Properties

Not commutative

f[fl(xsy)°f2($’y)] #f[fl(ﬂf,’lj)]f[fg(l‘,’y)]
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Discrete Fourier Transform

Properties

Periodicity and Conjugate Symmetry

F(u,v) = F(u+ N,v) = F(u,v+ N) = F(u+ N,v+ N)

F(u,v) = F*(—u, —v)
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Discrete Fourier Transform

Properties

e Recall that:
M—1N—1
=0 y=0

e The value F(0,0) of the DFT is called the dc coefficient
o Ifweputu=v=0,then

M-1N-1 M-I N

F(0.0) Z Z [z y)exp(0) = Z Z flz,y)

=0 y=0 z=0 y=0

e Essentially F(0,0) is the sum of all terms in the original matrix
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Discrete Fourier Transform

Properties e F(0,0) at top left corner
e Fordisplay, convenient to have DC component in center

e Just swap four quadrants of Fourier transform

‘ b P ' i Swap 4 quadrants to
»7 T ; center DC component

DFT spectrum after
centering

Source: https://web.cs.wpi.edu/~emmianuel/courses/cs545/S14¢slides/lecturel0.pdf
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Discrete Fourier Transform

Properties

Convolution f(z) * h(z f fla)h(z — a)da

f(z) * h(z) = 3_ f(a)h(z — )

Ff(z) * Mz)] = Ff(z)].F[h(z)]
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Discrete Fourier Transform

TABLE 4.1 .
. . Property Expression(s)
Summary of some >
important . X ol o
R ) A ansfo L) = J2m(ux/M+vy/N)
properties of the Fourier transform  F(u, v) ;ﬂ ‘an(r y)e
2-D Fourier
transform Inverse Fourier S 2 (ux/M+vy/N)
storm. anst flx.y) = 2 2 F(u v)elriirms
transform ! frrr
Polar F(u,v) = |F(u, v)|e #)

representation

Spectrum

Phase angle
Power spectrum

Average value

Translation

Digital Image Processing

|F(ll. L‘)| = [Rz(ll. v) + Iz(ll. v)]l,/Z

I{u.v)
h v) = tan!
d(u, v) = tan [R(u. v)]

P(u,v) = |F(u, v)|

R = Real(F) and
I = Imag(F)

]\Il'\

2 > f(xy)

x=0 y=0

F(x.y) = F(0,0) =

f(x, y)e?mms/Mevwy/N) o By — ug, v — vy)
flx = xo.y — o) & F(u, v)e 2rx/Mron/N)
When xq = uy = M/2and y, = v, = N/2.then
Fx Y)Y = Fu — M/2.v — N/2)

flx = M/2y = NJ2) < Fuv)(-1)""
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Discrete Fourier Transform

Conjugate F(u,v) = F'(—u.—v)
symmetry |F(u,v)| = |F(—u, )|
a"f(x,y
Differentiation L"}) < (ju)"F(u,v) TABLE, 4.1 ‘
ax (continued)
o a"F(u, v)
(—jx)"f(x.y) = o
au
Laplacian Vif(x.y) & —(u® + v*)F(u. v)
Distributivity J[fi(x y) + folx y)] = I[Ax )]+ SI[fHx )]
[ y) - L)) # A )] - [ f(x )]
Scaling af(x, y) < aF(u.v). f(ax, by) < |a_lb|F(“/a' v/D)
Rotation X = rcosé y = rsiné U= wcose V= wsing
f(r.o + 8,) = Flo,¢ + 8)
Periodicity Flu,v) = F(u + M.v) = F(u.v + N) = F(u + M.v + N)
fle.y) =f(x + M.y) = f(x.y + N) =f(x + M,y + N)
Separability See Eqs. (4.6-14) and (4.6-15). Separability implies that we can

compute the 2-D transform of an image by first computing 1-D
transforms along each row of the image. and then computing a
1-D transform along each column of this intermediate result.
The reverse, columns and then rows, yields the same result.
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Image Enhancement in Fourier Domain

e one reason for using Fourier transform in image processing is
due to convolution theorem

e Spatial convolution can be performed by element-wise
multiplication of the Fourier transform by suitable “filter
matrix”
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Image Enhancement in Fourier Domain

Frequency domain filtering operation

. Filter Inverse
Fourier i . \
3 function Fourier
transform )
H(u,v) transform

Hu,v)F(u,v)

Post-
processing

Pre-
processing,

fx.y) g(x.y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.
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Image Enhancement in Fourier Domain

=

G, v) = H(u,v) F (i v)

, H(u.v)
LPF J] it DGuv)< D, 1

H(u,v) = - |
0 if  Dav)> D,

D(u.v)=+fu"+v> (Circularly symmetric)
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Image Enhancement in Fourier Domain

H{u.v) H(u,v)

F

= D(u,v)

abc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.
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Image Enhancement in Fourier Domain

2saagdaaaad

ab

FIGURE 4.11 (a) An image of size 500 X 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0,
94.6,96.4,98.0, and 99.5% of the image power, respectively.
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Image Enhancement in Fourier Domain
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a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8.5.4,3.6,2, and 0.5% of the total, respectively.
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Image Enhancement in Fourier Domain

1 H (u,v) Butterworth filter:
I
H(u.v)= .
D(u,v)/D, (V) [+ D(u.v)/ D™
H(u,v) H(”f v)

1.0

v 05

albiic
FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.
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Image Enhancement in Fourier Domain

Digital Image Processing
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Image Enhancement in Fourier Domain

H(u,v) = exp(—Dz(u, v)/207)

H(u, v) H(u.v)
1‘ 1.0'L

D, =10
D, =20
D, = 40

0.667

D, = 100

D(u,v)

ablc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c¢) Filter
radial cross sections for various values of D,.
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Image Enhancement in Fourier Domain

(Source: Gonzalez and Woods)

Digital Image Processing
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FIGURE 4.18 (a) Original image. (b)~(f) Results of filtering with Gaussian lowpass a b
filters with cutoff frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in ¢
Fig. 4.11(b). Compare with Figs.4.12 and 4.15.
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Image Enhancement in Fourier Domain

HPF | jo if  D(u,v)< D,
it D(u,v)> D,

Butterworth filter:

l

H(u,v)= —
L+[D, / D(u,v)]™
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Image Enhancement in Fourier Domain

H(u, v)
1o

I
B E— D(u, v
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Image Enhancement in Fourier Domain
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80.
respectively. Problems with ringing are quite evident in (a) and (b).
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Image Enhancement in Fourier Domain
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15,
30. and 80, respectively. These results are much smoother than those obtained with an [LPF.
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Image Enhancement in Fourier Domain
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FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15.
30. and 80, respectively. Compare with Figs. 4.24 and 4.25.
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Fast Fourier Transform

e Many ways to compute DFT quickly

e Fast Fourier Transform (FFT) algorithm is one such
way
e One FFT computation method
e Divides original vector into 2
o Calculates FFT of each half recursively
e Merges results

Source: https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecturel0.pdf
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